
Social Cloud: Cloud Computing in Social Networks
Kyle Chard,∗ Simon Caton,† Omer Rana,‡ and Kris Bubendorfer∗

∗ School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
{kyle,kris}@ecs.vuw.ac.nz

†Institute für Informationswirtschaft und Management (IISM), Karlsruhe Institute of Technology, Germany
simon.caton@kit.edu

‡School of Computer Science, Cardiff Univeristy, UK,
o.f.rana@cs.cardiff.ac.uk

Abstract—With the increasingly ubiquitous nature of Social

networks and Cloud computing, users are starting to explore new

ways to interact with, and exploit these developing paradigms.

Social networks are used to reflect real world relationships that

allow users to share information and form connections between

one another, essentially creating dynamic Virtual Organizations.

We propose leveraging the pre-established trust formed through

friend relationships within a Social network to form a dynamic

“Social Cloud”, enabling friends to share resources within the

context of a Social network. We believe that combining trust rela-

tionships with suitable incentive mechanisms (through financial

payments or bartering) could provide much more sustainable

resource sharing mechanisms. This paper outlines our vision of,

and experiences with, creating a Social Storage Cloud, looking

specifically at possible market mechanisms that could be used

to create a dynamic Cloud infrastructure in a Social network

environment.

I. INTRODUCTION

Social networking has become an everyday part of many
peoples’ lives as evidenced by the huge user communities.
Some communities even exceed the population of large coun-
tries, for example Facebook has over 400 million active users.1
Social networks provide a platform to facilitate communication
and sharing between users, therefore modelling real world
relationships. Social networking has also extended beyond
communication between friends, for instance, there are a
multitude of integrated applications and some organizations
even utilize a user’s Facebook credentials for authentication
rather than requiring their own credentials (for example the
Calgary Airport authority in Canada uses Facebook Connect2
to grant access to their WiFi network).

The structure of a Social Network is essentially a dynamic
virtual organization with inherent trust relationships between
friends. We propose using this trust as a foundation for
resource (information, hardware, services) sharing in a Social
Cloud. Cloud environments typically provide low level ab-
stractions of computation or storage. Computation and Storage
Clouds are complementary and act as building blocks from
which high level service Clouds and mash-ups can be created.
Storage Clouds are often used to extend the capabilities of
storage-limited devices such as phones and desktops, and
provide transparent access to data from anywhere. There

1http://facebook.com/press/info.php?statistics – last accessed April. 2010
2http://developers.facebook.com/connect.php – last accessed April. 2010

are a large number of commercial Cloud providers such as
Amazon EC2/S3, Google App Engine, Microsoft Azure and
also many smaller scale open Clouds like Nimbus [1] and
Eucalyptus [2]. These Clouds provide access to scalable vir-
tualized resources (computation, storage, applications) through
pre-dominantly posted price mechanisms. A Social Cloud,
therefore, is a scalable computing model in which virtualized
resources contributed by users are dynamically provisioned
amongst a group of friends. Compensation for use is optional
as users may wish to share resources without payment, and
rather utilize a reciprocal credit (or barter) based model [3]. In
both cases guarantees are offered through customized SLAs.
In a sense, this model is similar to a Volunteer computing
approach, in that friends share resources amongst each other
for little to no gain. However, unlike Volunteer models there
is inherent accountability through existing friend relationships.
There are a number of advantages gained by leveraging
Social networking platforms, in particular we gain access to
huge user communities, can exploit existing user management
functionality, and rely on pre-established trust formed through
user relationships.

In this paper we outline our vision of a Social Cloud and
describe our experiences with a prototype. The rest of the pa-
per is organized as follows: section II outlines related research
and some example applications that may use a Social Storage
Cloud. Section III presents the design of a Social Cloud using
Facebook as the Social network. A prototype Social Storage
Cloud is described in section IV, before the evaluation of our
prototype is presented in section V. Finally, section VI outlines
future work and provides concluding remarks.

II. RELATED WORK

There are multiple instances of Social network and Cloud
computing integration. However, most examples use Cloud
platforms to host Social networks or create scalable appli-
cations within the Social network. For example, Facebook
users can build scalable Cloud based applications hosted by
Amazon Web Services [4]. There is no literature related to
creating a Cloud infrastructure leveraging Social networking
as a means of dynamic user management, authentication, and
user experience. Automated Service Provisioning ENviron-
ment (ASPEN) [5] takes an enterprise approach to integrating
Web 2.0, Social networking and Cloud Computing by exposing



applications hosted by Cloud providers to user communities
in Facebook. There are similar efforts in the Grid community
to leverage Social networking concepts, communities, and
mechanisms. PolarGrid [6] is one such example which extracts
Social data using the OpenSocial [7] interface and relies on
OpenID [8] for identification. Different Social networking
functions are then incorporated in an application specific
portal.

An alternative approach involves building a Social network
around a specific application domain such as MyExperi-
ment (www.myExperiment.org) for biologists and nanoHub
(www.nanoHub.org) for the nanoscience community. MyEx-
periment provides a virtual research environment where col-
laborators can share research and execute scientific work-
flows remotely. nanoHub allows users to share data as well
as transparently execute applications on distributed resource
providers such as TeraGrid. These platforms highlight the
types of collaborative scientific scenarios possible in Social
networks, however they are not generic as they are focused
on the communities they serve and lack the sizable user bases
of Social networking platforms. Additionally, administrators
need to create and manage proprietary social infrastructures
and users require credentials for each network they participate
in (unless they use OpenID). The same functionality can be
realized using a Social Cloud deployed in an existing Social
network. For example Social Storage Clouds can be used
to store/share data and information (for example academic
papers, scientific workflows, datasets, and analysis) within a
community.

Volunteer computing is a distributed computing model
in which users donate computing resources to a specific
(academic) project. The first volunteer project was the
Great Internet Mersenne Prime Search (www.mersenne.org)
in 1996, however the term gained much exposure through the
SETI@Home [9] and Folding@home [10] projects in the late
90’s. These projects showed the enormous computing power
available through collaborative systems. One of the most
relevant Volunteer computing efforts is Storage@Home [11]
which is used to back up and share huge data sets arising from
scientific research. The focus of Volunteer computing has since
shifted towards generic middleware providing a distributed
infrastructure independent of the type of computation, for
example the Berkeley Open Infrastructure for Network Com-
puting (BOINC) [12]. Most Volunteer platforms do not define
SLAs, typically users are anonymous and are not accountable
for their actions (they are rewarded with different incentives
however). In a Social Cloud context this does not suffice
as users need to have some level of accountability. A more
realistic model for this type of open sharing is a credit based
system in which users earn credits by contributing resources
and then spend these credits when using other resources. This
type of policy is used in systems such as PlanetLab [13].

III. SOCIAL CLOUD ARCHITECTURE

The Social Cloud architecture presented is designed as a
Facebook application, to make use of this widely used plat-

form, development environment and API. In a Social Cloud,
services can be mapped to particular users through Facebook
identification, allowing for the definition of unique policies
regarding the interactions between users. For example, a user
could limit trading with close friends only, users in the same
country/network/group, all friends, or even friends of friends.
A specialized banking component manages the transfer of
credits between users while also storing information relating
to current reservations. A high level architecture of a Social
Cloud is shown in Fig. 1.

Market Infrastructure

MDS
Auctioneer / 
Posted Price 

Index

Banking 
Service

Provider administration

Monitoring

Contract 
Management

User

Resource Fabrics

Service Interaction (as consumer)

Fig. 1. Social Cloud Architecture. Users register Cloud services and friends
are then able to provision and use these resources through the Social Cloud
Facebook application. Allocation is conducted by the underlying market
infrastructure(s).

A. Facebook Applications

Facebook exposes an application API through a REST-
like interface which includes methods to get a range of data
including friends, events, groups, application users, profile
information, and photos. Facebook Markup Language (FBML)
includes a subset of HTML with proprietary extensions that
enables the creation of applications that integrate completely
with the Facebook look and feel. Facebook JavaScript (FBJS)
is Facebook’s version of JavaScript – rather than sandboxing
JavaScript, FBJS is parsed when a page is loaded to create a
virtual application scope.

Facebook applications are hosted independently and are not
hosted within the Facebook environment. A Facebook canvas
URL is created for user access, this URL maps to a user
defined callback URL which is hosted remotely. The process
of rendering an application page is shown in Fig. 2. When
a page is requested by the user through the Facebook Can-
vas URL (http://apps.facebook.com/socialcloud/) the Facebook
server forwards the request to the defined callback URL. The
application creates a page based on the request and returns
it to Facebook. At this point the page is parsed and Face-
book specific content is added according to the FBML page
instructions. The final page is then returned to the user. This
routing structure presents an important design consideration in
a Social Cloud context as access to the Cloud services would
be expensive if routed through both the Facebook server and
the callback application server in order to get data from the
actual Cloud service. To reduce this effect FBJS can be used



to request data asynchronously from the specified service in
a transparent manner without routing through the application
server.

Social
Cloud

Fig. 2. Facebook application hosting environment. The Social Cloud web
application generates page content which is parsed by Facebook to create the
page delivered to the user.

B. Virtualized resources

Cloud computing relies on exposing virtualized resources
as a service in a metered and elastic manner. A Social Cloud
service could represent any resource that users may wish to
share, ranging from low level computation or storage through
to high level mash-ups such as photo storage. There are two
generic requirements of this service: firstly, the interface needs
to provide a mechanism to create a stateful instance for a
reservation. In our model the Social Cloud application passes
a SLA to the service which is parsed and used to instantiate the
required state. Secondly, in order to be discovered the service
needs to advertise capacity so that it can be included in the
market. In our design this advertised capacity is XML based
metadata which is periodically refreshed and stored in Globus
Monitoring and Discovery System (MDS) [14].

C. Banking

The prototype Social Cloud includes a credit-based system
that rewards users for contributing resources and charges users
for consuming resources. The banking service registers every
member of the cloud and stores their credit balance and all
agreements they are participating (or have participated) in.
Credits are exchanged between users when an agreement is
made, prior to the service being used. To bootstrap participa-
tion in the Social Cloud, users are given an initial number of
credits when joining the Cloud. While suitable for testing, this
initial credit policy is susceptible to inflation and cheating (if
fake users are created and the initial credits are transferred).
Currently there is no mapping between Social Cloud credits
and real currencies or Facebook credits.

D. Registration
Fig. 3 shows the registration process. – users first need to

register themselves, and then specify the Cloud services they
are willing to trade. As users are pre-authenticated through
Facebook, user instances can be transparently created in the
banking service using the users Facebook ID. Having regis-
tered, the user is presented with an MDS EndPoint Reference
(EPR) and Cloud ID which they use to configure their service
for registration (and refreshment) of resource capacity. Market
services utilize the MDS XPath interface to discover suitable
services based on user IDs and real time capacity.

Social Cloud Bank

Get user from session

MDS

RegisterUser()

Register Service(s)

User

Register

Cloud Service

Periodic Updates

Fig. 3. Registration in a Social Cloud.

E. Service Marketplaces
Service usage is exchanged for credits within a marketplace.

The Social Cloud marketplace is generic and not limited to
a specific type of market, although two implementations are
provided.

1) Posted Price: In a posted price model providers adver-
tise offers relating to particular service levels for a predefined
price or following a linear pricing function; consumers are then
able to fine tune specific parameters to create a SLA. Creating
such a market requires coordination between a number of the
Social Cloud components to; discover Cloud services, create
agreements, and transfer credits. Fig. 4 shows the flow of
events for a posted price trade in a Social Cloud. When a
user requests posted price offers the Cloud application uses the
user ID (from the session) to check the user is registered in the
bank and they have sufficient credits available. A list of all the
users friends is generated using the Facebook REST API, this
list is used to compose a query to discover particular Cloud
services from MDS. The result of which populates the offer
list that describes availability and pricing information. When
the user selects a Cloud service, the Social Cloud application
creates a SLA which it sends to the Cloud Service. Assuming
both parties accept the agreement it is then passed to the Bank
to transfer credits between users.

2) Auctions: In an auction-based market trades are estab-
lished through a competitive bidding process between users
or services. Like the posted price market, a list of friends is
discovered and passed to a specialized auctioneer to create
and run the auction. Fig. 5 details the auction process. In
this example a reverse auction protocol is used, where Cloud



Get user ID from session

View Storage

Create Storage

Create agreement

Get Credits()

Get Friends()

Get Service List (Friends)

Transfer Credits

Create Provision(Agreement)

Social Cloud Bank Facebook API MDSUser Cloud Service

Fig. 4. Posted Price marketplace in a Social Cloud

services compete (bid) for the right to host the users task.
The auctioneer uses the list of friends to locate a group
of suitable Cloud services; these are termed the bidders in
the auction. Each provider requires an agent to act on its
behalf to value resource requests, determine a bid based on
locally defined policies, and follow the auction protocol. The
auctioneer determines the auction winner and creates a SLA
between the auction initiator and the winning bidder. As in the
posted price mechanism, the agreement is sent to the specified
service for instantiation and the bank for credit transfer.

Create Auction

Create Auction

Locate Bidders

Solicit Bids

Valuation

Bid

Determine winner

Get Agreement

Social Cloud MDSUser Cloud Service Agent Auctioneer

Create Agreement

Fig. 5. Auction marketplace in a Social Cloud. This diagram excludes the
actions taken to find the users’ ID, retrieve the users’ friends, instantiate the
Cloud service, and transfer Credits these actions are shown in Fig 4.

F. Risk
Although there is a level of trust between participants in a

Social network, this trust may not be sufficient in some situa-
tions. Take for example a storage service, where consumers are

risking loss, compromise, or corruption of files while providers
are risking their own environment by hosting unknown files.
In a Social Cloud users may want to take into consideration
this lack of control over corresponding users’ actions and
attempt to minimize risk. In the storage example providers
can alleviate risk through service design and sandboxing, on
the other hand consumers can avoid compromising file content
through encryption and reduce the impact of file loss through
replication. This raises the possibility of automatically man-
aging such approaches, and offering premium differentiated
services such as replication. For example Storage@home [11]
includes a level of redundancy to minimize the risk of loss.

IV. IMPLEMENTATION

The Social Cloud prototype utilizes Web Services to create
a scalable, distributed and decentralized infrastructure. All
services use Web Service Resource Framework (WSRF) and
run on Globus WS-core/Tomcat. The Facebook application
is a JSP based web application. Two concurrent economic
markets have been implemented to trade storage, both operate
independently and are designed to work simultaneously. In
a posted price market users select storage from a list of
friends’ service offers. In the auction market, consumers
outline specific storage requirements and pass this description
to the Social Cloud infrastructure, providers then bid to host
the storage. Both markets result in the establishment of a SLA
between users. The SLA is redeemed through the appropriate
storage service to create the storage instance. In the market
implementations participating users know the corresponding
users identity, to provide accountability between friends. In
traditional Cloud environments users are unaware of the lo-
cation of their provision, the prototype Social Cloud could
provide this transparency by removing user information from
posted price listings, auction requests, and storage access.

A. Tools and Systems
Our implementation utilizes various tools and systems we

have developed previously. In particular gRAVI (Grid Remote
Application Virtualization Interface) [15] was used to create
a base storage service, SORMA [16] is used to create WS-
Agreements, and DRIVE (Distributed Resource Infrastructure
for a Virtual Economy) [17] provides the auction framework.

B. Storage as a Service
A Social Storage Cloud is based on a generic Storage

service which provides an interface for users to access virtu-
alized storage. This service exposes a set of file manipulation
operations to users and maps their actions to operations on the
local file system. Users create storage by passing an agreement
to the storage service, this creates a mapping between a user,
agreement, and the storage instance. Instances are identified by
user and agreement allowing individual users to have multiple
storage instances in the same storage service. The storage
service creates a representative resource and an associated
working directory for each instance. The resource keeps track
of service levels as outlined in the agreement such as the data



storage limit. Additionally the service has interfaces to list
storage contents, retrieve the amount of storage used/available,
upload, download, preview and delete files.

Each storage service relies on a Web application to deliver
content to the Facebook application without routing data
through the Social Cloud application. To do this the storage
service has a collection of JSP pages that perform a specific
action (corresponding to the service) and deliver a response
in the form of JSON. This approach allows dynamic Ajax
invocation of storage operations without requiring a callback
or page reload of the Social Cloud Application.

C. Banking Service
The banking service manages user and agreement informa-

tion. The service itself is composed of two associated context
services each representing different instance data. The first
context service records user resources while the second stores
agreements. The user resource stores the user’s Facebook
ID, current credits, agreement IDs the user has participated
in, and auction references (EPR/ID). The agreement resource
contains any agreements created in the system which are
used to manage provision information as well as acting as a
receipt. Fig. 6 shows a summary page generated by querying
the banking service, this page displays current and historical
agreements with other users. It includes both storage provided
and consumed, and information corresponding to each reser-
vation.

Fig. 6. Summary of services used and hosted

D. Posted Price Marketplace
In a posted price marketplace a user can select any adver-

tised service and define specific requirements (storage amount,
duration, availability, and penalties) of the provision. Fig. 7
shows the posted price marketplace page in the Social Cloud
application. When the user selects a service and chooses
required service levels, a SLA is created using the SLA

creation component of SORMA. To do this the requirements
are encoded into an EJSDL [18]; (JSDL [19] with economic
extensions) document describing the storage request. This doc-
ument is then converted into an agreement using SORMA SLA
tools. The EJSDL document acts as the Service Description
Term of the agreement and individual requirements are split
into guarantee terms (as defined in [18]). EJSDL extends JSDL
by adding additional economic information describing pricing
and penalties which are mapped to their respective Business
Value Lists. We have further extended this term language to
include two additional Cloud specific QoS terms: Availability
and Error Rate, which are defined as JSDL ranges and are used
to describe and monitor the availability of the storage service.
The SORMA reservation specification is used to capture the
period of a service provision. Having created a SLA it is
passed to the appropriate storage service to create a storage
instance. The storage service determines if it will accept the
agreement based on local policy and current resource capacity.
Having instantiated the storage the agreement is then passed
to the banking service to exchange credits and store a copy
as a receipt. If either the banking service or storage service
decline the agreement both entities remove the reservation.

Fig. 7. Posted Price marketplace

E. Auction Marketplace

The prototype implementation uses of a subset of DRIVE
services to provide an auction framework. A reverse Vickrey
auction protocol is used due to the existing trust relationships
within the Social network. Fig. 8 shows the dynamic auction
marketplace, which lists currently running auctions. New
auctions can be started by specifying required service levels,
which are used as the basis for valuation and bid computation.
When the auction completes a SLA is created between the user
and the winning provider, the state of the SLA and the final
price paid is displayed on the list of current auctions.



In DRIVE, an Auction Manager (AM) is responsible for
creating the auction, soliciting bids, and determining a winner.
Individual Bidding Agents (BA) act on behalf of a user to
compute valuations according to local policy and valuation
functions. The standard DRIVE BA has been modified to
interact with the Storage Service (to check capacity). A
Contract Manager (CM) is used to create a WS-Agreement
based SLA between the user and auction winner.

Fig. 8. Auction marketplace.

V. EVALUATION

This section outlines measurements obtained from a de-
ployed Social Storage Cloud focusing on the economic mar-
ketplaces used and the Facebook application load time. For the
following experiments we assume an average Facebook user
has 130 friends.3 Unless otherwise stated these experiments
are run on a single server running Windows Vista with a 2.2
GHz Dual Core processor and 2 GB memory.

A. Posted Price Allocation
Posted price trading requires several steps: identification

of storage requirements, generation of a SLA, instantiation
of a storage service, and registering the transaction with the
banking service. The time taken to perform these operations is
generally small compared to the time taken to locate applicable
storage offers, which is dependent on the registration service.
The prototype uses MDS to register and discover XML-based
metadata describing the real time capabilities of a storage
service. Fig. 9 shows the time taken to query MDS for an
increasing number of registered entries. The time includes the
cost of converting the XML result into a Java Object. MDS
performance is dependent on the amount of memory given
to the container and the number of registered entries. With
1GB of memory over 2000 entries can be retrieved in less

3http://facebook.com/press/info.php?statistics – last accessed April. 2010

than 2 seconds. Therefore, MDS can be run even on a low
specification server yet still support a small Social Cloud and
its market.

0

2

4

6

8

10

12

14

5 10 15 20 25

Ti
m
e
  (
s)

Number  of  metadata  entries  returned  (00s)

512MB
756MB
1024MB

Fig. 9. Time taken to retrieve service metadata from MDS with different
amounts of container memory.

In a Social Cloud environment policies dictate the services
with which a user is willing to interact with (e.g. friends,
friends of friends). Such services can be identified by querying
for registered services matching particular user IDs (i.e all
friends’ IDs). Fig. 10 reflects this situation by loading an
increasing number of services in MDS and querying for a
subset of registered services (friend’s services). The query
result ranges between 20 and 200 services, while the number
of registered services is increased from 200 to 2000. The
container is running with 1GB of memory. The time taken
to retrieve entries is proportional to the number of registered
services and also the number of services returned in the query.
Assuming on average 130 friends per user, and the fact not
all of these friends would be involved in a Social Cloud, this
performance is acceptable - selecting 100 of 2000 registered
entries takes approximately 2s.

0

0.5

1

1.5

2

2.5

3

3.5

20 40 60 80 100 120 140 160 180 200

Ti
m
e
  (
s)

Number  of  entries  returned  by  select

2000 1600 1800 1400 1200

1000 800 600 400 200

Fig. 10. Time to select a subset of the registered service metadata from
MDS with increasing number of total registrations

B. Auction Allocation
The auction mechanism relies on a collection of Web

services representing the parties involved in the marketplace.
The prototype uses a single Auction Manager (AM) to conduct



the auction and a single Contract Manager to create SLAs as
a result of the auction. Each storage service is represented by
a Bidding Agent which consults local policies to determine a
price based on pre-defined metrics. The major point of stress in
this system is the AM as it is responsible for creating an auc-
tion, advertising the auction to suitable bidders, soliciting bids,
and determining the result of the auction. Contract creation is
much simpler as it only involves creation of a WS-Agreement
and one call to the winning bidder to verify the agreement.
The performance of the AM is dependent on the number of
concurrent auctions and the number of bids being placed in
each auction. Fig. 11 shows the system throughput with an
increasing number of bidders in each auction. The number of
auctions per minute is calculated based on the time taken for
500 auctions to complete, this time is measured on the client
side. The time starts when the client submits the first task (of
500) through to the creation of the final agreement. Bidders
are hosted in a virtualized environment containing 5, 3.0 GHz
Core 2 Duo machines with 4GB RAM. Fig. 11 represents the
worst case situation when all auctions are started immediately;
auctions close as soon as all bidders have bid. In a typical
scenario auctions are created with a predefined deadline and
users expect some latency between submission and agreement
creation. Additionally in a storage context one would expect
relatively long term stable reservations which implies users
would not conduct auctions frequently. These results show
that even with 50 bidders a small scale AM can complete 65
auctions per minute which, under our assumptions, would be
capable of supporting a large scale Social Storage cloud. This
number could easily be increased by adding additional AMs
to the system, which would be run independently on dedicated
hosts.

0

20

40

60

80

100

120

140

160

180

200

10 20 30 40 50

A
u
ct
io
n
s  
p
e
r  
m
in
u
te

Number  of  Bidders

Fig. 11. Auction throughput. Number of auctions completed per minute for
an increasing number of bidders.

C. Application Page Load Time
The Social Cloud Facebook application is made up of

several different web pages, each page makes multiple Web
services requests to generate page content. To measure the cost
of this infrastructure we can compare average page loading
times between the Social Cloud pages and simple HTML

pages without Social Cloud Web service calls. In our testbed
the application is hosted in a Tomcat 6 container running on a
single server (Windows Vista, 2.2 GHz Dual Core processor,
2 GB memory) Each request is submitted from a separate
machine (with the same specifications) also located locally
and page load time is measured using Mozilla Firebug.4

Fig. 12 shows the time taken to load various pages in
the application. Each page queries the appropriate Social
Cloud services and renders a page displaying the results.
Two additional sample pages (Control JSP/HTML and simple
JSP/FBML) are included to compare load times with the
Social Cloud application pages. The bars show the time taken
to load the main page content and the additional overhead
of other requests for Facebook related content. The main
request includes the application page content as well as some
Facebook content such as the navigation bar, header, and
advertising. All results are measured using caching so as to
replicate normal user experience

Fig. 12 shows there is considerable time taken to load a sim-
ple page in a Facebook application hosted in our environment.
Over 3 seconds is required to load a “hello world” HTML/JSP
page containing only a few lines of code that display one line
if the user is logged in (a single session variable check). The
Simple FBML page is designed to analyze the cost of FBML
parsing, in this page a single line of FBML is rendered if the
user is logged in. This page is only slightly slower than the
plain HTML page due to the additional Facebook parsing. The
time taken to render these pages is based on the cost of routing
requests through the Facebook server, and latency between the
client, Facebook server, and application server.

The time taken to load the Social Cloud pages is a little
more than the plain HTML pages due to the extra time taken
to make Web Service requests for information. Posted Price
(PP) Listing and Storage Summary are the least expensive
operations as they only make a single Web service call to
retrieve a list of registered providers and a list of used
storage services respectively. The Posted Price (PP) creation
page takes over 4 seconds on average to load, due to the
time taken to create a WS-Agreement, register it with the
banking service, and then create the storage instance. Listing
auctions and creating auctions take the longest time as they
involve multiple interactions with Social Cloud services. The
auction marketplace pages are slow due to the complexity of
generating the pages.

The substantial page load time in the initial prototype
greatly effects user experience. However, most of this overhead
is due to the routing and parsing process required to generate
a Facebook page in our environment. The obvious solution
to this problem is to reduce the frequency of page loading
and make asynchronous direct calls for content using Ajax.
Fig. 13 shows the loading times for each of the main pages
when converted to Ajax calls. The initial page load is also
shown as it has increased from the previous results due to the
additional time taken to parse and load Javascript. This graph

4http://getfirebug.com/ – last accessed April. 2010



0

1

2

3

4

5

6

7
Ti
m
e  
(s
)

Overhead
Page  Get

Fig. 12. Page load time for various Social Cloud pages showing both the
main page Get and also the overhead of additional requests.

shows that the time taken to perform operations is greatly
decreased, for example listing the posted price offerings takes
approximately 1 second using Ajax whereas previously it took
4 seconds to load a new page without Ajax.

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

Ti
m
e  
(s
)

Overhead
Ajax  Load
Page  GET

Fig. 13. Page load time for pages in the Social Cloud Facebook Application
showing the initial page load and the time taken to update the page using
Ajax.

VI. CONCLUSIONS & FUTURE WORK

This paper has presented the architecture and implemen-
tation of a Social Cloud; an amalgamation of Cloud Com-
puting, Volunteer Computing and Social networking. In our
system Facebook users can discover and trade storage services
contributed by their friends, taking advantage of pre-existing
trust relationships. In order to discourage free loading we have
adopted a credit-based trading approach. Users may trade with
a specific member of their Social network using a posted price
market, or participate in an auction-based market.

We have shown empirically that the marketplaces used
for trading and/or reciprocation of services could be hosted
using small scale resources, based upon the observation that
individual social networks are small in size (averaging 130
individuals). In addition, we have shown that even under
load, our system can perform multiple concurrent auctions that
would satisfy the requirements for a moderately sized social

network. Note that this was even the case without deploying
the system upon a dedicated resource infrastructure. Our future
work aims to generalize our approach so that we can capture
additional marketplaces – e.g. Amazon S3 storage could be
included in our open storage market.

REFERENCES

[1] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces:
Achieving quality of service and quality of life in the grid. Scientific
Programming Journal: Special Issue: Dynamic Grids and Worldwide
Computing, 13(4):265–276, 2005.

[2] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli,
Sunil Soman, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus
open-source cloud-computing system. In Proceedings of 9th IEEE
International Symposium on Cluster Computing and the Grid (CCGrid
09), Shanghai, China., 2009.

[3] Nazareno Andrade, Francisco Brasileiro, Miranda Mowbray, and Wal-
fredo Cirne. A reciprocation-based economy for multiple services in a
computational grid. In R. Buyya and K. Bubendorfer, editors, Market
Oriented Grid and Utility Computing, pages 357–370. Wiley Press,
2009.

[4] Amazon. building facebook applications on aws website.
http://aws.amazon.com/solutions/global-solution-providers/facebook/.

[5] Facebook Meets the Virtualized Enterprise, Washington, DC, USA,
2008. IEEE Computer Society.

[6] Zhenhua Guo, Raminderjeet Singh, and Marlon Pierce. Building the
polargrid portal using web 2.0 and opensocial. In GCE ’09: Proceedings
of the 5th Grid Computing Environments Workshop, pages 1–8, New
York, NY, USA, 2009. ACM.

[7] OpenSocial and Gadgets Specification Group. Opensocial specification
v0.9. http://www.opensocial.org/Technical-Resources/opensocial-spec-
v09/OpenSocial-Specification.html, April 2009.

[8] David Recordon and Drummond Reed. Openid 2.0: a platform for user-
centric identity management. In DIM ’06: Proceedings of the second
ACM workshop on Digital identity management, pages 11–16, New
York, NY, USA, 2006. ACM.

[9] Dan Werthimer, Jeff Cobb, Matt Lebofsky, David Anderson, and Eric
Korpela. Seti@home—massively distributed computing for seti. Com-
puting in Science and Engineering, 3(1):78–83, 2001.

[10] M. R. Shirts and V. S. Pande. Screensavers of the world unite! Science,
290:1903–1904, 2000.

[11] A. L. Beberg and V. S. Pande. Storage@home: Petascale distributed
storage. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pages 1–6, 2007.

[12] David P. Anderson. Boinc: A system for public-resource computing and
storage. In GRID ’04: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pages 4–10, Washington, DC, USA,
2004. IEEE Computer Society.

[13] Larry Peterson and Timothy Roscoe. The design principles of planetlab.
SIGOPS Oper. Syst. Rev., 40(1):11–16, 2006.

[14] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource sharing. In the 10th IEEE
Symposium on High Performance Distributed Computing (HPDC), 2001.

[15] K. Chard, W. Tan, J. Boverhof, R. Madduri, and I. Foster. Wrap
Scientific Applications as WSRF Grid Services using gRAVI. In IEEE
7th International Conference on Web Services (ICWS, 2009.

[16] D. Neumann, J. Ster, A. Anandasivam, and N. Borissov. SORMA
- Building an Open Grid Market for Grid Resource Allocation. In
Lecture Notes in Computer Science: The 4th International Workshop on
Grid Economics and Business Models (GECON 2007), pages 194–200,
Rennes, France, 2007.

[17] K. Chard and K. Bubendorfer. Using secure auctions to build a
distributed meta-scheduler for the grid. In R. Buyya and K. Bubendorfer,
editors, Market Oriented Grid and Utility Computing, pages 569–588.
Wiley Press, New York, USA, 2009.

[18] N. Borissov, S. Caton, O. Rana, and A. Levine. Message Protocols for
Provisioning and Usage of Computing Services. In 6th International
Workshop on Grid Economics and Business Models, pages 160–170,
2009.

[19] Anjomshoaa et al. Job Submission Description Language (JSDL)
Specification, Version 1.0. 2005.


