Engineering an Autonomic Container for WSRF-based Web Services

Christoph Reich; Matthias Banholzer; Rajkumar Buyya'and Kris Bubendorfer*
*Department of Computer Science
Hochschule Furtwangen University, Germany
reich@hs-furtwangen.de

T Department of Computer Science and Software Engineering
University of Melbourne, Australia
raj@csse.unimelb.edu.au

School of Mathematics, Statistics and Computer Science
Victoria University of Wellington, New Zealand
kris@mcs.vuw.ac.nz

Abstract

This paper presents an autonomic Web Service Re-
source Framework (WSRF) container that enables self-
configuration using IBM’s autonomic computing (AC) ar-
chitecture and resolves Quality of Service (QoS) problems
through service migration. The migration manager bases its
decisions on an overall health status metric (H-metric). The
H-metric characterises the health of a service container. A
unified AC sensor/effector interface, protocol, and metric
summarization allows us to build up a hierarchical WSRF
container structure to create a virtualized WSRF container.

1. Introduction

Service-Oriented Architectures (SOA) feature loosely
coupled services that support the requirements of and in-
stantiate business processes and software systems. Service-
Oriented Architectures are very often realised using various
Web service standards and middleware. The Web Service
Resource Framework (WSRF) [14] standard specified by
OASIS [21] defines a set of standards that allow Web ser-
vices to become stateful. We believe that in the future most
service architectures will follow the WSRF specification, as
it simplifies inter-operability and adds the use of properties.
WSREF functionality with Web Service Distributed Manage-
ment (WSDM) [20] allows managers to enumerate and view
resources, even if they have no other knowledge of them.

The distributed nature of SOA systems makes it nec-
essary to monitor and manage deployed services to meet

Service Level Agreements. For scalability and ease of
human management, we believe that it is essential to
adopt autonomic principles for service containers. These
autonomic containers are then autonomic in respect of
self-configuration, self-optimizing, self-healing, and self-
adapting [15],[16]. As a basis for implementing out AC
service containers we adopt the widely referenced architec-
ture MAPE (Monitor, Analyze, Plan, and Execute) [1] au-
tonomic framework from IBM. The MAPE loop control is
governed by policies stated through SLAs and by perfor-
mance metrics.

Our autonomic service containers incorporate the AC
features of maintaining the given SLA by self-managing dy-
namically the thread pool size (max, min spare, max spare),
cache size, thread priority, and initiating migration to other
containers when the performance cannot be resolved inter-
nally. If the container detects a performance metric viola-
tion (such as a response time that exceeds that permitted
by the SLA), the container requests a service migration. In
general migration addresses the following problems: per-
formance optimization, cost optimization, and fault tol-
erance (high availability or shutdown for system mainte-
nance).

In this work we have made the following contributions:

1. proposed and developed an autonomic container for
hosting WSRF-based Web services,

2. introduced a migration protocol based on the H-metric
and additional information to migrate a service to the
optimal service container

3. designed and implemented innovative components us-



ing a JSR-77 [19] compliant (Geronimo/Tomcat) host-
ing environment and

4. carried out experiments demonstrating value of service
migration.

The rest of the paper is organized as follows: section 2
describes related work, section 3 describes the architecture
of the autonomic WSRF container, section 4 shows the mi-
gration protocol, section 5 presents our results, and finally
section 6 concludes the paper.

2. Related Work

There have been a number of projects focusing on auto-
nomic behaviour for managing web services, in particular
Ecosystem [12] analyses and reconfigures a service-based
system (with MAPE) to satisfy Service Level Agreements
with minimal resource consumption. They conclude that
migration is a heavy-weight exercise and should be avoided
whenever possible and that migrating services to satisfy
the minimal resource consumption can lead to unnecessary
overhead. Like this approach, the principle is to migrate
only when resource bottlenecks occur. The major differ-
ence is the amount of information the migration decision
is using. The Ecosystem gathers lots of information cen-
trally whereas this approach uses the summarised H-metric,
which makes it more scalable. Hao [11] carries out migra-
tion of weblets, specialized Web services, that can be mi-
grated, according to the round trip time, message size, data
location and load of the weblet containers. This work uses
standard stateless Web services or stateful WSRF Web ser-
vices.

Other projects have attempted to address scalability is-
sues for, such as [8], which partitions resources into in-
dividual, cluster and grid resources. Dowlatshahi et. al
[7] have developed an architecture that uses a hierarchical
tree structure for participating nodes distant from the In-
ternet backbone, and uses a single peer-to-peer structure
for service discovery at the root layer of the underlying
tree structures. The key characteristics of their architec-
ture are optimal search for both distant and close services,
minimal overhead traffic, scalability, robustness, and easier
QoS support. Mikic-Rakic et. al. [13] present an applied
self-reconfiguration approach to support disconnected oper-
ations by allowing the system to monitor and automatically
redeploy itself.

Berenbrink et. al [6] introduce a game-theoretic mech-
anism which they use to find suitable allocations. Each
task is associated with a “selfish agent”, and requires each
agent to select a resource, with the cost of a resource be-
ing the number of agents to select it. Agents would then
be expected to migrate from overloaded to under loaded re-
sources, until the allocation becomes balanced. This sys-

tem is unlikely to scale well, as the resource discovery is
centralised. The research of Zeid and Gurguis [22] aims at
proving that with autonomic Web services, computing sys-
tems will be able to manage themselves as well as their re-
lationships with each other. To achieve this objective, the
research proposes a system that implements the concept of
autonomic Web services but without service migration.

3. Architecture Overview

This section describes the autonomic WSRF service con-
tainer and the means by which it can virtualise several con-
tainers to one virtual WSRF container (section 3.2).

3.1. Autonomic WSRF Service Container
Architecture

The WSREF services are deployed in Axis2 [3] running
in Tomcat [2] embedded within the Geronimo [4] (see Fig.
1) application server. JSR-77 [19] provided by JMX [18] is
used to monitor the WSREF services inside the service con-
tainer (e.g. request counter, processing time, etc.). Remote
access is provided by a special management Web service
(see Section 3.2 and 4) or by the RMI remote adapter from
JMX, if there are no active firewalls. In general the remote
management interaction is done by the management Web
service. This management Web service contacts MBeans,
JMX’s management beans managed by the MBean server,
to get/set management information, or to define policies,
etc. The MAPE architecture is implemented using GBeans,

Client Virtual WSRFContainer
I SOAP

[

AC Se’nsor/
Effector Service
Container
configure

1

Geronimo

Tomcat

Axis [\use

MBean,

MBean Server

%
of@N

Adapter AC Sensor [ AC Effector
) AC I I
Virtual Sensor Monitor Executer
WSRF —1 RMI Knowledge
Container AC
RMI Effector Analyser | | Plan

Figure 1. WSRF Service Container Architec-
ture

the fundamental entity in Geronimo [10]. GBeans automat-
ically generate MBeans, which are used by the management



Web service. Using GBeans provides access to Geronimo’s
Inversion-of-Control approach [9], wiring MBean connec-
tions at deploy time, having a central repository database,
and the ability to develop custom applications running as
GBeans inside the container.

3.2. Virtual WSRF Service Container Ar-
chitecture

To virtualize several WSRF service containers a con-
tainer with a dispatcher service is needed. The container
that is virtualised is provided by configuration during the
deployment process or later by a SOAP message to the man-
agement Web service. Fig. 2 shows the virtual WSRF ser-
vice container architecture with the dispatcher service and
the management Web service. The architecture is similar to
the WSREF service container (see Section 3.1), except with
a dispatcher service and different policies for the migration
of WSREF services (see Section 4), and a virtualisation com-
ponent to summarise the metrics of all containers.

Client Virtual WSRFContainer
/ I SOAP
Tomcat Servlet Conlainer/ I Virtual

T .
AC Sensor/ Service
Effector Container

Web
Service GBean
l' v A

MBean Server

Axis Muse

WSRF
Dispatcher
Service

MAPE

AC Sensor [ AC Effector

SOAP, RMI SOAP, RMI

Figure 2. The Virtual WSRF Container

The virtualisation shown is a very general approach and
can easily be extended to more complex structures as shown
in Section 5 Figure 4.

4. Migration of WSRF Services

The approach of this framework is to use service mi-
gration to resolve SLA violations. Migration decisions are
based on measured performance metrics and the any set
policies. A WSREF service is migrated when a SLA viola-
tion is detected. The service moved may or may not be the
service that experiences the SLA violation. This choice de-
pends on the policies defined for the virtual WSRF service
container.

4.1. WSRF Service Performance Metrics

A deployer who wants to deploy a service has to package
the service and describe its SLA to the service container.
The SLA parameters we have considered so far for such
services are: CPU, where the a service has to have a specific
MIPS or completion time; memory, where the service needs
a certain amount of memory; response time, where a service
depends on a certain response time.

In heterogeneous systems it is important that such val-
ues are comparable and thus to this end we have developed
the H-metric, which is a single comparable measure of a
container’s health. For “CPU”, “Memory”, and ‘“Response
Time” special measurement instrumentation has been de-
veloped, to get the minimum metric parameters. The max-
imum metric parameters are determined dynamically from
the other machines in the container network.

4.2. Health Status Metric (H-metric) of a
WSRF Container

The health metric plays an important role during two dis-
tinct phases in the life-cycle of a WSRF container. Firstly
during service deployment when services are assigned to
containers and secondly during maintenance when viola-
tions are detected and services are migrated to other con-
tainers to preserve QoS. A H-metric is a simple approxima-
tion indicating the overall health status of the WSRF con-
tainer, and is weighted to highlight the resource responsible
for the SLA violation. Essentially, each monitored resource
is normalised, then all of the resources are summed and
renormalised. This allows the state of the responding ma-
chine to be summarised in a single comparable number, but
permits the resource of interest to carry more weight when
selecting a destination for migration. The H-metric is spe-
cific to each help request. Two simultaneous requests with
different violating resources, will ideally result in two dif-
ferent H-metrics from the same container. Details on the H-
metric and its computation can be found in Reich et. al [17].

4.3. WSRF Service Migration Management

Initially a WSRF service container tries to manage ev-
erything by itself. When the MAPE components detect a
resource bottleneck, e.g. running out of heap size, the ser-
vice container has to decide by using it’s policies, which of
the services should be moved to somewhere else. Therefore,
the WSREF service container asks the migration manager for
help, given the following information:

e Endpoint Reference (EPR) of the service which has to
be moved

e the container’s health status metric (H-metric; see Sec-
tion 4.2)



e the resource that violated the SLA, e.g. “out of Mem-
ory” and its characteristic H-metric function param-
eters (19, Tgp, etc.) which allow modeling of non-
linear characteristics.

4.4. Migration Protocol

Service Service Service

Migration Container Container Container
Manager Dispatcher A B c

T T T T
| ! | !
i | n

}AA

J migrate service X, H-Mem, H=0.8

] |getH|\2a

EEE—

o
=
H=o.5(33 g_/
ﬂ—del EPR ~—’/I T @’__

6
get Properties’ g
—|

2b

set EPR

undeploy sen/ice

Figure 3. Migration Sequence Diagram

Figure 3 is an example of the migration of a service X
from container B to A. The migration protocol is defined as
follows:

1. The service container B signals to the migrating man-
ager that it has run out of memory and that service X
is the migration candidate.

2. The migrating manager asks all other service contain-
ers (A and C) for the H-metric giving them the infor-
mation that the problem was out of memory’.

3. Each container calculates the H-metric considering the
memory problem and sends back it’s values: Container
A: H = 0.5 and Container B: H = 0.7.

4. Therefore, container A is chosen for migration and the
migration manager informs the dispatch to delete the
EPR for service X. Next the service X is moved from
container B to A.

5. Service X is deployed at container A.

The Properties of service X are retrieved.

S

The Properties to service X at container A are set.
8. The EPR for service X at the dispatcher is configured.

9. The service X is un-deployed from container B.

5. Experimental Evaluation

We have implemented the autonomic container manager
inside Geronimo with GBeans using Java. For implementa-
tion of WSRF-based services we used the libraries (muse-
core, muse-wsrf, muse-util, muse-wsdm, etc.) from Axis2
and Muse. For the migrating manger additional libraries for
remote deploying based on Geronimo are used (geronimo-
kernel, geronimo-util, geronimo-deployment, etc.). The sta-
tus information of the WSRF-based services are retrieved
by using the standard set/get-Property method calls, which
are defined in the WSDL document of the services. The dis-
patcher is implemented as a servlet using the Tomcat servlet
library.

5.1. Experimental Setup

The machines used for the evaluation have been set up
with a Intel Pentium 4 CPU with 2.66G-Hz, 1G-Byte mem-
ory. The measured MIPS value for this class of machines
was: 276984. We used version 1.1.1 of the J2EE applica-
tion server Geronimo [4] with Tomcat [2]. To realise the
WSREF services we installed Axis2 [3] and used Muse 2.0
[5] to generate the subs, skeletons, and java interfaces.

Figure 4 shows the configuration setup of the machines
and measured H-metric values. For the experiments we
used 3 different kind of services with the following metric
values defined:

e CPU-Service: CPU average load: p,in = 0.1,
Pmax = 3.0

e Memory-Service: Memory: ppin, = 10M Byte,
Pmaz = 100MByte, and

e Counter-Service: Response Time for all services:
Pmin = 6MS, Pz = 160ms.

e migrating-Service: Response Time for all services:
Dmin = 6MS, Pmas = 160ms.

e migrating-Service SLA: The migrating service should
be below 140ms average response time.

The parameters for the F},,q¢; functions are chosen for the
linear case to have a better understanding of the simulation
results. Therefore they are for all metric parameters: x19 =
0.1, th = 01, Too = 09, hgo =0.9

5.2. Performance Results

Figure 5 shows the CPU average load and Figure 6 the
health status metric of all 4 machines.

Figure 7 shows the average response time of the mi-
gration candidate service at machine m202 and machine



H netric

0T

resp.tine [nsl

t t
service A ——
service B —

virtual WSRF
m| container m001

-| virtual WSRF

nenory [HB1

i:WWWHWW

container m102

, , , , : , : ,
t t t t t t t t
L]
:SW
z
© 2
1

L L L
[] 20 40 68 80 108 120

tine [secl

L L .
148 160 188

Figure 4. Cascading Service Container Hierarchically

average load

o 20 40 60 80 100120140160 180
time [sec]

Figure 5. CPU average load metric

m101. It can be seen that after about 5s the average re-
sponse time is approaching 90% causing a SLA violation.
Migration is initiated. As the H-metrics of the machines
m201 and m201 are both higher than that of the machine
m202, it is not sensible to migrate the service it to one
of these machines. Therefore the virtual WSRF container
ml102 tries to move the service elsewhere and asks the vir-
tual container m001. The result of this migration can be

seen in Figure 7 at 20s, when the move of the service is
finished.

1

m101 H-met

m201 H-met -
m202 H-met -
m203 H-met

H metric

o 20 40 60 80 100120140160 180
time [sec]

Figure 6. health status metric

6. Conclusion and Future Work

Runtime reconfiguration of a set of WSRF containers
by migrating services is needed to solve resource bottle-
necks that a single WSRF container can not by itself re-
solve. We introduce a single overall health status metric
(H-metric) for the service containers, which we show is
enough to enable the migration manager to make sensible
migration decisions. In the container implementation the
AC sensor/effector interfaces are Web services. The unified
management interface, and the single health status metric
enables the construction of hierarchical virtualised WSRF
container structures.

In our future work we plan to extend the framework so



fesponse fime [ms]

Figure 7. average response time of the

200

" m101 Merge
i m202 Merge
180 i 4

160 | 4
140 | 9
120 | 4
100 i | 4

80 B

40 g

20 4

J " " " " " L L
o 20 40 60 80 100120140160 180
time [sec]

mi-

grating service at m101 and m202

that the WSDM standard can be used at the virtual con-
tainer, permitting the summarisation of the meta informa-
tion from all containers. We also plan to extend the auto-
nomic management of the containers by permitting them to
arrange their own hierarchies and to introduce differentiated
SLAs. We would also like to explore suitable strategies,
driven by business goals and historical demand patterns, for
initial deployment of WSRF-based Web services.

7. Acknowledgements

This work is partially supported by Australian Research
Council (ARC) Discovery Project and DEST International
Science Linkage Program grants.

References

(1]

(2]
(3]
(4]
(5]

(6]

An architectural blueprint for autonomic computing.
IBM, 2004. Available at http://www-3.1ibm.com/
autonomic/pdfs/ACwpFinal.pdf.

Apache. Apache tomcat. Home-Page: http://tomcat.
apache.org/.

Apache. Axis2/java. Home-Page: http://ws.apache.
org/axis2/.

Apache. Geronimo. Home-Page: http://geronimo.
apache.org/.
Apache. Muse.
org/muse/.

P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. Goldberg,
Z. Hu, and R. Martin. Distributed selfish load balancing. In
SODA ’06: Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pages 354-363,
New York, NY, USA, 2006. ACM Press.

Home-Page: http://ws.apache.

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]
(20]

(21]
(22]

M. Dowlatshahi, G. MacLarty, and M. Fry. A scalable and
efficient architecture for service discovery. In The 11th IEEE
International Conference on Networks, 2003. ICON2003.,
pages 51 — 56, September 2003.

M. El-Darieby and D. Krishnamurthy. A scalable wide-area
grid resource management framework. In /CNS ’06. Interna-
tional conference on Networking and Services, 2006., pages
76 — 86, Silicon Valley, USA, July 2006. IEEE Computer
Society Press.

M. Fowler. Inversion of control containers and the depen-
dency injection pattern. http://www.martinfowler.
com/articles/injection.html, January 2004.

J. J. Hanson. Manage apache geronimo with jmx. August
2006.

W. Hao, T. Gao, 1.-L. Yen, Y. Chen, and R. Paul. An in-
frastructure for web services migration for real-time appli-
cations. In SOSE ’06: Proceedings of the Second IEEE
International Symposium on Service-Oriented System Engi-
neering (SOSE’06), pages 41-48, Washington, DC, USA,
2006. IEEE Computer Society.

Y. Li, K. Sun, J. Qiu, and Y. Chen. Self-reconfiguration of
service-based systems: A case study for service level agree-
ments and resource optimization. In ICWS ’05: Proceed-
ings of the IEEE International Conference on Web Services
(ICWS’05), pages 266-273, Washington, DC, USA, 2005.
IEEE Computer Society.

M. Mikic-Rakic and N. Medvidovic. Support for discon-
nected operation via architectural self-reconfiguration. In
ICAC ’04: Proceedings of the First International Confer-
ence on Autonomic Computing (ICAC’04), pages 114-121,
Washington, DC, USA, 2004. IEEE Computer Society.
OASIS. Web services resource framework (wsrf) tc. Web
Page.

M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann,
and B. J. Kramer. Service-oriented computing: A research
roadmap. In F. Cubera, B. J. Kramer, and M. P. Papazoglou,
editors, Service Oriented Computing (SOC), number 05462,
2006.

M. Parashar and S. Hariri. Autonomic computing: An
overview. In J.-P. B. et al., editor, Unconventional Program-
ming Paradigms, volume 3566, pages 247-259, Mont Saint-
Michel, France, 2005. Springer Verlag.

C. Reich, K. Bubendorfer, M. Banholzer, and R. Buyya.
A SLA-Oriented WSRF Container Architecture. Techni-
cal Report GRIDS-TR-2007-9, Grid Computing and Dis-
tributed Systems Laboratory, The University of Melbourne,
Australia, May 28 2007.

Sun. Java management extensions  (jmx)
page. Home-Page: http://java.sun.com/
javase/technologies/core/mntr-mgmt/
javamanagement/.

Sun. Jsr-77: J2ee management
http://jcp.org/en/jsr/detail ?2id=77.

Oasis web services distributed management (wsdm) tc.
http://www.oasis-open.org/committees/wsdm.

Oasis. Home-Page: http://www.oasis-open.org/.
A.Zeid and S. Gurguis. Towards autonomic web services. In
The 3rd ACS/IEEE International Conference on Computer
Systems and Applications, page 69, 2005.

specification.



