
Verifying Digital Provenance in Web Services

Ben Palmer, Kris Bubendorfer, and Ian Welch
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

Email: {ben,kris,ian}@ecs.vuw.ac.nz

Abstract—Web services often combine or ”mashup” a col-
lection of heterogeneous data sources. Service providers take
data from various sources, including other service providers,
and perform some computation or combination of the results
and present it to the user. This paper is concerned with the
provenance of data provided by web services. Provenance for
services includes where the information that is provided by
the service originated and who has operated on it. We use a
provenance tag that is passed along with the result of the service
and contains enough information to recreate a provenance
graph. We consider the methods a malicious participant could
use to try and fake this provenance information and provide
a threat model and security analysis to show our protocol
prevents these attacks. We also discuss exclusion attacks where
a service provider tries to exclude some input from the
provenance information provided.

Keywords-Provenance; Verification; Web Services

I. I NTRODUCTION

Web services provide new mechanisms for users to ac-
cess services. In web services, service providers collate
and present information from a collection of heterogeneous
data sources. These sources can include databases, web
applications, and other service providers.

The basic model for web services is shown in Figure 1.
Consider an example of a web service that lets users display
their photos along with a map showing the location the photo
was taken. The service provider may be using a storage
provider and a mapping provider. So in this example, the
service provider is providing a service to the user that is a
combination of the service providers own algorithms and the
functionality provided by two external service providers.

A service may use information from several different
service providers. Depending on the reputation of the service
provider being used, customers may have differing expecta-
tions of the quality of the data as well as the amount they
are willing to pay for the service. A service provider that is
using a premium service will want to be able to charge more
for this service. However, a malicious service provider could
claim to be using a premium service when they have not
actually purchased them and are using free services provided
by a different service provider.

In this paper, we consider the concept of provenance
for web services. The provenance of the data from the
service provider includes the origin of the data, as well as

Service Provider

Customer

Customer

Service Provider

Service Provider

Service Provider

Service Provider

Figure 1. Web Services Model

information on any modifications that have been done to
the data. In the ideal model, the customer would be able
to check the provenance of all data that it receives from
the service provider. The provenance of the data from the
service provider includes the origin of the data, as well as
information on any modifications that have been done to the
data. As a web service provides an ongoing series of data
provided to a customer, the provenance for a web service
needs to be continually checked. The service provider may
dynamically change the source of data when providing a
web service and this change needs to be reflected in the
provenance information. Provenance is a well established
research area and we use the model of provenance developed
by the Open Provenance Model [1]. We then create a pro-
tocol that can provide this provenance information correctly
in the presence of malicious parties.

II. RELATED WORK

Provenance of data has been an active research area for
some time with previous work concentrating on individual
domains [2] and high level solutions intended to be able
provide provenance in multiple domains [1], [3]. However,
in our work we concentrate on security for provenance
information in web services.

A good high level view of the security issues when pro-
viding provenance information in a distributed environment
is presented by Tan et al [4]. The authors present a list of
security issues and provide some initial ideas on solving
these problems. To address the issue of trustworthiness
of participants that are creating and providing provenance

information for data they suggest using digital signatures
and a reputation based system.

Access control for provenance stores is addressed in a
number of works [4], [5], [6]. In these works the problem
of securing access to provenance information is addressed.
A provenance store is a database of provenance information
that can be queried to provide provenance information for
artifacts. We do not consider access control for provenance
information but it would be possible to apply similar tech-
niques to our solution.

The open provenance model is applied to distributed
systems in work by Groth et al [7]. They apply the open
provenance model to distributed systems but do not consider
attacks from active adversaries on provenance information.

Hasan et al have constructed a protocol for securely
collecting provenance information from distributed sources
with very similar goals to our work [8], [9]. They consider
a very similar domain model to the one we have chosen.
They also implement the provenance information as a chain
of provenance records in the same way we do. Our approach
differs to theirs in the exact representation of the provenance
information that is passed along the chain. We also do not
focus on confidentiality of provenance records as they do,
although we could apply the same techniques to our work
as they do to provide confidentiality. The main differences
in our work are that we discuss how to prevent exclusion
attacks on provenance information provided by honest par-
ticipants and make use of the open provenance model.

Zhang et al have applied similar techniques as the work
by Hasen et al to databases [10]. They have a more complex
data model and support non linear provenance objects. They
do not include exclusion attacks in their threat model.

While the open provenance model has been applied to
distributed systems in previous work, no work looks at the
application of the open provenance model in the presence
of active adversaries. We also provide a more in depth
discussion on methods to prevent exclusion attacks than
previous work.

III. D OMAIN MODEL

We define two roles that a participant in a web service can
take: service providers and users. A participant may change
roles, for example, a user may become a service provider by
taking the service provided to it and combining it with some
other service or computation to produce a new service.

• Service Providers. Service Providers make use of a
heterogeneous collection of data sources to provide a
service. A service provider is uniquely identified by a
Uniform Resource Identifier (URI).

• Users. Users are the end user of the service provided
by a service provider.

The Open Provenance Model group have defined a set of
terms for describing the provenance of items [1]. We make

Service
Provider 1

Service
Provider 2

GenerateGenerate

A1 A2

A3

Transform
Combine

wascontrolledby(SP)

wasgeneratedby(Generate)

wascontrolledby(SP)

wasgeneratedby(Generate)

wascontrolledby(SP)

wasderivedfrom

wasgeneratedby(TransformCombine)
usedby(Transform

Com
bine) us

edby(
Tra

nsfo
rm

Com
bine)

wasderivedfrom

Service
Provider 3

Figure 2. Web Services Open Provenance Model

use of these terms to define our model of provenance for
web services. In particular we use the following terms:

• Artifact: An immutable piece of state. In our model an
artifact is the result of a service. Artifacts are created
by service providers, passed to other service providers
or customers.

• Process: An action or series of actions performed on or
caused by an artifact. In our model a process is either
Generate where a service provider generates some data
or TransformCombine where a service provider takes
some artifacts and performs some actions on them to
create a new artifact.

• Agents: A contextual entity controlling a process. In
our model all agents are service providers as users do
not create provenance information.

The Open Provenance Model also defines some actions,
most of which are parametrised by the role of the process
or agent that is performing the action. We make use of the
following actions:

• wascontrolledby(Role): A process is controlled by an
agent. The Role parameter is the role the agent is taking
in the protocol. We define the roles as SP for service
providers.

• wasgeneratedby(Role): An artifact is generated by a
process. The Role parameter is the process that is
generating the artifact, in our model this is Generate
or TransformCombine.

• usedby(Role): An artifact is used by a process. The
Role parameter is the process that uses the artifact, in
our model this is the TransformCombine process.

• wasderivedfrom: Artifacts can be derived from other
artifacts. There is no role associated with this action.

In the Open Provenance Model provenance is shown in
a provenance graph which is a directed graph where agents
are shown as octagons, processes as rectangles, and artifacts
as circles. Directed edges in the graph represent an action
with the source of the action being the end point of the
arrow and the start of the arrow showing the result of the
action. Figure 2 shows a provenance graph for a service
with two service providers acting as input to a third service
provider. In this work, we construct a protocol to generate
and verify this provenance information in the presence of
untrusted service providers.

IV. T HREAT MODEL

We have grouped the ways a malicious service provider
could try and defraud a user with incorrect provenance
information in to the following categories:

1) Fabrication. The adversary tries to create provenance
information for an honest participant in the protocol
when it has never obtained the service from the
participant.

2) Cloning. The adversary tries to provide multiple users
the same provenance information they have obtained
from an honest participant in the protocol.

3) Network Sniffing. The adversary replays legitimate
provenance information it has seen on the network
(possibly intended for a different service provider).

4) Exclusion. The adversary tries to provide information
to a user from an honest participant in the protocol
without providing provenance information.

The service providers are untrusted and may be active
adversaries, attempting to create false provenance data, or
modify and delete true provenance data. If a service provider
is honest and correctly provides provenance information,
then it should not be possible for an adversary to fabricate,
clone, network sniff, or exclude the honest service providers
provenance information. A service provider may also pro-
vide incorrect provenance information to try and discredit
another service provider.

While a service provider should provide provenance in-
formation for every step in the chain to the user, if a set
of service providers on the chain colludes together they can
make it appear as though they are acting as one service
provider. We do not consider this an attack on our protocol
as the group is colluding and essentially acting as one party.

V. PROVENANCE CHAINS

Each time information is created or used by a service
provider a provenance tag is created and passed along with
the result. The tag is created by the source of the provenance
information and signed using the secret key of the source.
The tag should contain enough information to recreate the
provenance information as set out in the model in Section III.

A tag is a tuple:tag = {A,B,C,D,E}sksource
. The

definitions of the parameters in the tag are:

U ser

Service
Provider

Service
Provider 2

1) request, seria l

2) request, seria l 3) {U R ISP 2,U R ISP ,seria l,H (data1),G enera te }skSP2

4) {U R ISP 2,U R ISP ,seria l,H (data1),G enera te }skSP2

5) {U R ISP ,user,seria l,H (data2),T ransform C om bine}skSP

Figure 3. Provenance Chains

• A = source: the Uniform Resource Identifier (URI) of
the source of this provenance tag.

• B = destination: the Uniform Resource Identifier
(URI) of the destination of this provenance tag.

• C = serial: The randomly chosen serial number of
this service request. This is created by the user and
sent along with the request for service.

• D = H(data): A hash of the service result that is
associated with this provenance tag.

• E = action: What process was performed on this tag,
either Generate or TransformCombine.

The tags are signed using the secret key of the source.
We use the notation of{A}skB

to denote the messageA
signed using the keyskB . We assume that all public keys
for service providers are well known or discoverable from
a certificate authority.

Figure 3 shows the process for passing tags between a
user and two service providers.

1) The user randomly generates a serial number for this
request and sends the request for service to its service
provider (Service Provider) along with the serial num-
ber. The serial number is to prevent service providers
from being able to replay provenance information.

2) The service provider (Service Provider) generates the
request for service from the second service provider
(Service Provider 2) and sends it along with the
serial number to the second service provider (Service
Provider 2). The service provider (Service Provider)
will send a request to every service provider it uses as
input in this step, we have only shown one for clarity.

3) The second service provider (Service Provider 2)
generates a provenance tag to return to the first service
provider. The tag contains the source and destination,
the serial number, a hash of the data returned, and
the action taken (Generate). The tag is then signed
using the secret key of the service providerskSP2

and returned to the first service provider.
4) The service provider (Service Provider) sends the

customer the tag from the second service provider.
5) The service provider creates a provenance tag to send

to the customer. The tag contains the source and desti-
nation, the serial number, a hash of the data to return to
the customer, and the action (TransformCombine). The
service provider then returns this tag to the customer.

The customer will check that all provenance information
contains the correct serial number, a tag from all registered
inputs, and an unbroken chain of provenance information.

VI. A NALYSIS

We now analyse our protocol for providing provenance
for web services compared to our requirements we have
discussed in Section III and Section IV. We start by check-
ing that the protocol meets completeness requirements and
contains enough provenance information to recreate the
provenance graph for a service. We then complete a security
analysis to check that incorrect provenance information can
be detected in the presence of malicious service providers.

A. Completeness

A protocol that has complete provenance information
should allow the creation of a provenance graph from the
provenance information provided by the protocol. To show
completeness we consider the relationships shown in the
open provenance model and how the provenance tags show
these relationships.

• Artifact: identified by the hash value of the artifact in
the provenance tag.

• Process: identified by the process name (either Generate
or TransformCombine) in the provenance tag.

• Agent: identified by the source of the provenance tag.
• wascontrolledby(role): is represented by the source of

the provenance tag and the role is identified by the
process name.

• wasgeneratedby(role): is represented by the hash of the
artifact and the role by the process name.

• usedby(role): is represented by the set of tags with the
destination set as the controller for the operation of the
role.

• wasderivedfrom: can be generated using the source
and destination values of the provenance tags and the
hash values of the artifacts. wasderivedfrom may be
over approximated when there are multiple inputs and
outputs for a service provider for a single service
request. In this case, the tags show that the output
artifacts were derived from the input artifacts, but not
what individual input artifacts an output artifact was
derived from.

B. Security Analysis

Service providers may provide incorrect provenance infor-
mation or respond incorrectly to audit requests. We assume
we are using a signature scheme that has provable security
against existential forgeries under adaptive chosen message
attacks in the random oracle model such as PSS RSA [11]

S e rv ic e
P r o v id e r

R e g is t r a t io n
S e rv e r

1) { U R I S P , p k S P ,U R I1 ,… ,U R I N } p k T G C

2) { U R I S P , p k S P ,U R I 1 ,… ,U R I N } s k T G C

Figure 4. Service Provider Registration

or the triplet El-Gamal scheme [12]. If the signature scheme
is secure against existential forgeries, then given a public
key pk it is infeasible to forge a pair(m,σ) where σ is
a valid signature onm using the secret key corresponding
to the public keypk. We assume the serial numbers are
chosen at random from a large set and that the chance of
two users choosing the same serial number is negligible.
We do not consider side channel attacks or the possibility
of an adversary gaining access to the secret key of an honest
participant.

1) Fabrication: If the adversary is able to construct
provenance information from an honest participant in the
protocol that they have never used then they must create a
tag signed using the secret key for the participant. We can
then use this adversary to break the signature scheme. The
adversary is given as input the public key of the participant
pk. The adversary will then produce a valid provenance tag
{tag}sk. We then have a valid message signature pair for
pk, (m = tag, σ = {tag}sk).

2) Cloning: If the adversary is able to clone provenance
information from an honest participant then the adversary
must modify a valid tag signed with a secret key with
a new serial number. If the adversary can complete this
modification, we can use the adversary to break the signature
scheme. The adversary is given as input the public key
of the honest participant and the tag to clone signed with
the secret key,{tagoriginal}sk. The adversary will then
produce a new tag that has a different serial number denoted
{tagnew}sk. We then have a valid message signature pair for
pk, (m = tagnew, σ = {tagnew}sk).

3) Network Sniffing: If the adversary is able to use
network sniffing to claim ownership of some provenance
information then, similar to a cloning attack, the adversary
will have to alter the tag to have the correct serial number.
As shown in Section VI-B2 we can then use this adversary
to break the signature scheme.

VII. PREVENTING EXCLUSION ATTACKS

To prevent exclusion attacks, a service provider registers
the URIs of service providers it uses as input with a third
party called a Registration Server which records these details
and is queried by the customers to discover the provenance
information it should be receiving from the service.

A. Service Provider Registration

Figure 4 shows the process used by a service provider
to register their service with the registration server. The
service provider submits a record with their URIURISP ,

U s e r
R e g is t r a t io n

S e rv e r

1) U R I S P

2) { U R I S P , p k S P ,U R I 1 ,… ,U R I N } s k T G C

Figure 5. Customer Requesting Service Provider Data

User

Service Provider

Registration Server

Request Audit
on serial
number x

Audit x

{x,source,dest}s
k SP

Service Provider
Audit x

{x,false}skSP

Audit x
{x,false}skSP

Audit x

{x,source,dest}sk
SP

true/false

Service Provider

Service Provider

Figure 6. Auditing Registration Information

their public keypkSP and the list of URIs of all service
providers they use as inputsURI1, ..., URIN . The inputs
that a service provider uses may also change over time.
In this case the service provider should be re-register the
service with the new inputs.

B. Customer Requesting Service Provider Data

Figure 5 shows a user requesting the data on a specific
service provider from the registration server. The user will
not need to perform this action every time it uses the service,
it will only need to periodically check for changes to the
inputs to the service provider.

C. Auditing Registration Information

A service provider may submit incorrect information by
excluding some of the service providers it uses and hiding a
source of data. We include a method for a user to request an
audit for a particular query it has done. The user will submit
the serial number it used in the request to the registration
server which carries out checks to confirm the registration
information provided by the service provider.

Figure 6 shows the process for requesting the audit. The
registration server broadcasts an audit request with the serial
number. Service providers then return a signed message
containing either false and the serial number if they did not
take part in the request, or the source and destination of the
request if they did. These messages are put together by the
registration server to check the information it has registered
for a service provider.

A broadcast request has to be sent to all service providers,
but we do not envisage the users requesting an audit for
every service request. The registration server could also

return a time stamp of the last audit time for the service
provider with the information it returns to the user.

If we assume that the registration server is acting honestly,
then the registration server will send the audit message to all
service providers that have registered. All honest participants
will have registered with the registration server and so will
receive the audit message and respond to it. The registration
server can then check the information that is returned by the
honest participants to confirm the registration information
that has been provided by the service provider.

If we assume that the registration server is not trusted
and may act maliciously, then we need some mechanism to
verify the actions of the registration server. We briefly dis-
cuss two possible mechanisms for implementing a verifiable
registration server: a public bulletin board and the use of a
group of registration servers. The registration server could
publish all its actions to a public bulletin board. Customers
could then check that the audits they requested have been
completed and responders to the audit message can check
that their response is correctly recorded. A second option is
to use a group of registration servers where a threshold value
of the group is required to sign values sent to the customer.
As long as fewer than this threshold value of registration
servers are acting maliciously the customer can be confident
of receiving correct responses to its queries and audits.

A malicious web service can change the serial number
during the service to carry out an exclusion attack. The user
sends a web service request with a serial numberS1 to a
service provider. The service provider then creates a new
web service request with a new serial numberS2 to send to
the service provider. When the audit request is made with
the serial numberS1, the service provider that received the
request with the serial numberS2 will return false.

To prevent this kind of exclusion attack, we need to
prevent or discourage a service provider from being able
to generate a serial number. We let the registration server
generate the serial numbers, so an honest service provider
will only provide the service and provenance information
if the service request has a valid serial number signed by
the registration server and users will need to apply to the
registration server for valid serial numbers.

To discourage dishonest service providers from generating
a serial number we can require a participant that requests a
serial number to solve a computational challenge or captcha.
A user will then need to solve this computational challenge
for every service request they make. This punishes service
providers that try to provide web services that exclude their
input services by the loss of computation that they require to
generate serial numbers. While users will also need complete
the computational challenge, it is reasonable to assume that a
service provider will have many customers and will need to
contribute more computational time for an exclusion attack.

A second option would be to charge a participant that
generates a serial number a micropayment. This will mean

that an honest user will need to pay a micropayment every
time they request a service. Again it is reasonable to assume
that a service provider will need to generate more serial
numbers than the users resulting in a significant financial
penalty. These micropayments can also be used to fund the
resources required for the registration servers.

VIII. P ERFORMANCE

We examine both the computational and communication
complexity of our protocol for providing provenance infor-
mation for service providers. We show the upper bounds for
the complexity. We letm denote the complexity of modular
exponentiation andn denote the complexity of modular
division. We denotea as the number of service providers.
The valuep is a public parameter for the signature scheme
used andtag is the size of the provenance tag. In these
tables we consider the complexity of creating and sending
the provenance tags and not the auditing or checking of
inputs for a service provider or any computational cost of
generating a serial number.

Service User Total
Provider

Computational a(m+ n) 3ma a(4m+ n)
Communication a(tag + 3p) a2(tag + 3p)

Table I
COMPLEXITY

Table I shows the computational and communication com-
plexity of our protocol. Service providers have to construct
one signature on their provenance tag per output value. If the
service provider checks the provenance information provided
to it it will have the combined complexity of the user and
the service provider. This complexity scales linearly withthe
number of service providers.

For the communication complexity, we only consider the
amount of data each party must send as part of the protocol.
The user does not send any data. The communication
complexity scales quadratically with the number of service
providers. This is due to the service providers having to
forward on not only their provenance information but also
all previous provenance information from its inputs.

IX. CONCLUSION

In this paper we have constructed a protocol for providing
provenance information for web services. As web services
increase in popularity and importance for both personal
and commercial use, customers will want to verify the
provenance of data provided by web services. We have
shown that our protocol prevents fabrication, cloning, and
network sniffing attacks. We have also provided a detailed
discussion about preventing exclusion attacks. We use a
third party called a registration server to prevent exclusion
attacks and we also suggest methods to verify the actions

of this third party. We have also shown the computational
and communication complexity of the protocol with the
computational complexity growing linearly with the number
of service providers, and the communication complexity
growing quadratically with the number of service providers.

REFERENCES

[1] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil,
P. Groth, N. Kwasnikowska, S. Miles, P. Missier, J. Myers,
B. Plale, Y. Simmhan, E. Stephan, and J. V. den Bussche,
“The open provenance model core specification (v1.1),”
Future Generation Computer Systems, July 2010. [Online].
Available: http://eprints.ecs.soton.ac.uk/21449/

[2] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data
provenance in e-science,”SIGMOD Rec., vol. 34, pp. 31–36,
September 2005.

[3] P. Groth, S. Miles, and L. Moreau, “A model of process
documentation to determine provenance in mash-ups,”ACM
Trans. Internet Technol., vol. 9, pp. 3:1–3:31, February 2009.

[4] V. Tan, P. T. Groth, S. Miles, S. Jiang, S. Munroe,
S. Tsasakou, and L. Moreau, “Security issues in a soa-based
provenance system,” inIPAW, 2006, pp. 203–211.

[5] U. Braun, A. Shinnar, and M. Seltzer, “Securing provenance,”
in The 3rd USENIX Workshop on Hot Topics in Security, ser.
USENIX HotSec. Berkeley, CA, USA: USENIX Associa-
tion, July 2008, pp. 1–5.

[6] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang, “Sci-
entific workflow provenance querying with security views,” in
Web-Age Information Management, International Conference
on. Los Alamitos, CA, USA: IEEE Computer Society, 2008,
pp. 349–356.

[7] P. Groth and L. Moreau, “Representing distributed systems
using the open provenance model,”Future Gener. Comput.
Syst., vol. 27, pp. 757–765, June 2011.

[8] R. Hasan, R. Sion, and M. Winslett, “The case of the fake
picasso: preventing history forgery with secure provenance,”
in Proccedings of the 7th conference on File and storage
technologies. Berkeley, CA, USA: USENIX Association,
2009, pp. 1–14.

[9] ——, “Preventing history forgery with secure provenance,”
Trans. Storage, vol. 5, pp. 12:1–12:43, December 2009.

[10] J. Zhang, A. Chapman, and K. Lefevre, “Do you know where
your data’s been? — tamper-evident database provenance,”
in Proceedings of the 6th VLDB Workshop on Secure Data
Management, ser. SDM ’09. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 17–32.

[11] M. Bellare and P. Rogaway, “The exact security of digital
signatures-how to sign with rsa and rabin,” inProceedings of
the 15th annual international conference on Theory and ap-
plication of cryptographic techniques, ser. EUROCRYPT’96.
Berlin, Heidelberg: Springer-Verlag, 1996, pp. 399–416.

[12] D. Pointcheval and J. Stern, “Security proofs for signature
schemes,” inEUROCRYPT ’96: Proceedings of the workshop
on the theory and application of cryptographic techniques on
Advances in cryptology. Springer-Verlag, 1996, pp. 387–398.

