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Abstract—Scientific research is increasingly reliant on big
compute and big data, the fusion of which is known as data
intensive science. Large scale scientific analyses are typically
represented as workflows which are the typical model for charac-
terizing e-science experiments in distributed systems. Workflows
with a large number of tasks are distributed in parallel across
computing resources to speed up analyses. The provision of
compute capabilities is undergoing a rapid migration from
dedicated infrastructure to the cloud. This migration is fuelled
by dynamic infrastructure scalability with changes in demand.
Cloud instances incur different costs and execution time with
different configurations. A key concern for workflow scheduling
is to make an appropriate trade-off between these two factors. In
this paper, we introduce the Budget Distribution with Trickling
(BDT) algorithm that presents new notions for distributing
budget based on the dependency structure inherent in workflows.
In addition we propose several new strategies for sharing or
distributing the budget, and propose trickling to redistribute
unspent budget down to other levels. Our results show that
biasing the budget distribution to the earlier computation within
a workflow will generally produce a lower makespan within
budget.

I. INTRODUCTION

Basic research, and consequently scientific discovery, are in
the midst of a disruptive transformation. Research is increas-
ingly reliant on big compute and big data, the fusion of which
is known as data intensive science. The execution of analytics
on big data over large compute, is most commonly modelled
and managed in workflows [1]. Scientific workflows vary in
size from a couple of tasks to thousands or million of tasks.
Workflows with a large number of tasks are distributed in
parallel across computing resources. The provision of compute
capabilities is undergoing a rapid migration from dedicated
infrastructure to the cloud [2]. Cloud computing enables
significant computational leverage to be applied to many real
world problems, be they industrial, medical or scientific.

While cloud platforms provide enormous elastic computing
capacity, they also pose unique multi-objective scheduling
challenges with respect to cost, time and data movement.
Efficiently managing pay-per-use heterogeneous cloud infras-
tructure for large data and compute within research budgets
is a challenge that is, or soon will be, faced in almost every
research domain.

The financial cost and total execution time of a workflow
depends on the number and types of instances requested
during resource provisioning. The cost plays a significant
role in a cloud environment as users wish to minimise costs

and providers maximise profits. Most cloud providers, like
Amazon, charge users for a minimum period of time - even if
the instance is only used for a shorter period.

In this paper we will focus on the issue of scheduling bud-
get constrained workflows on commercial pay-per-use clouds
while trading off cost and time. One problem in scheduling
budget constrained workflow is how to spend that budget for
the best performance. This is essentially a budget assign-
ment problem (BAP), and in existing workflow scheduling
approaches [3], [4] is shared proportionally based on a subset
of the execution characteristic(s) of the task (or cluster of data
related tasks) being scheduled, such as, execution time, CPU
requirements or memory requirements.

The novelty of our work is that we look at distributing
budget based on the dependency structure embedded in the
workflow. Essentially we transform the workflow into in-
ternally dependency free “bags of tasks” (called levels [5])
and we then distribute the workflow budget over these levels
using six strategies. Three of these strategies are designed
explicitly for our means of budget distribution and therefore
also represent novel work. We ensure that any budget share
that is unused by the level to which it is allocated is trickled
down to the next level. For the remainder of this paper we will
refer to our approach as Budget Distribution with Trickling
(BDT).

Based on our results we suggest two hypotheses worthy of
further consideration:
Hypothesis 1 The earliest tasks in the workflow are the most
critical when constructing a schedule.

Hypothesis 2 Assigning a higher budget to the earliest tasks
in a workflow generally leads to a lower makespan.

The rest of the paper is organised as follows: In Section II,
we formalize the workflow and system models. In Section III,
we present the BDT building blocks, strategies and algorithm.
In Section IV, we describe the evaluation method using
CloudSim, followed by results and performance evaluation. In
section V we present the related work, and finally, we conclude
this paper in Section VI.

II. WORKFLOW AND SYSTEM MODELS

A. Workflow Model

A Directed Acyclic Graph (DAG) is the most common
representation of a workflow. A workflow is defined as a
graph G = (T,E) where T = {t0, t1, ..., tn} is a set of tasks
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represented by vertices and E = {ei,j | ti, tj ∈ T} is a set
directed edges denoting data or control dependencies between
tasks.

An edge ei,j ∈ E represents the precedence constraint as
a directed arc between two tasks ti and tj where ti, tj ∈ T .
The edge indicates that task tj can start only after completing
the execution of task ti with all data received from ti and this
implies that task ti is the parent of task tj , and task tj is the
successor or child of task ti. Each task can have one or more
parents or children. Task ti cannot start until all parents have
completed.

B. System Model

Public cloud provides instance types containing various
amounts of CPU, memory, storage and network bandwidth at
different prices. In this paper we use a resource model based
on the Amazon Elastic Compute cloud, where instances are
provisioned on demand. The pricing model is a pay as you
go with minimum hourly billing. Under this pricing model, if
an instance is used for one minute, a user pays for the whole
hour. The costs and instance types used in this paper are given
in Table I, and were accurate in March 2016.

TABLE I: Instance Types

Type ECU Memory(GB) Cost($)

m3.medium 3 3.75 0.067

c4.large 8 3.75 0.105

c3.xlarge 14 7.5 0.21

m4.2xlarge 26 32 0.479

c4.4xlarge 62 30 0.838

c3.8xlarge 108 60 1.68

We assume that cloud vendors provide access to unlimited
number of instances and the instances are heterogeneous (de-
noted by P = {p0, p1 . . . ph}, where h is the index of the
instance type). We also assume that all instances and storage
services are located in the same region and also assume that
the average bandwidth between the instances is essentially
identical.

III. THE BUDGET-AWARE SCHEDULING ALGORITHM

In this section, we describe our budget-aware scheduling
algorithm, Budget Distribution with Trickling (BDT). The
algorithm is divided into four main phases (each of which
relates to a following subsection: III-A- III-D):
(A) Workflow partitioning: The workflow is partitioned into

dependency free bags of tasks, called levels.
(B) Budget Distribution: The user-defined budget is then

allocated to each defined level using one of six different
strategies.

(C) Task Selection: A task is selected based on its priority in
the ready list for execution.

(D) Instance Selection: The instances are chosen to meet the
available budget.

The focus of this paper is on budget distribution, the other
phases are included for completeness.

A. Workflow Partitioning

We aim to maximize task parallelism by arranging tasks in
levels, where within each level no tasks have dependencies on
another in the same level. such that there are no dependencies
between tasks. Each level can therefore be thought of as a bag
of tasks (BoT) containing a set of independent tasks.

There are two main algorithms for allocating tasks to differ-
ent levels, Deadline Bottom Level (DBL) [5] and Deadline Top
Level (DTL) [6]. DBL and DBT categorize tasks in bottom-top
direction and top-bottom direction, respectively. In this paper,
we use the DBL algorithm to partition tasks into different
levels.

We describe the level of task ti as an integer representing
the maximum number of edges in the paths from task ti to
the exit task (see Fig. 1). The level number (denoted by NL)
associates a task to a BoT. For the exit task, the level number
is always 1, and for the other tasks, it is determined by:

NL (ti) = max
tj∈succ(ti)

{NL (tj) + 1} (1)

where succ(ti) denotes the set of immediate successors of
task ti. All tasks are then grouped into Task Level Sets (TLS)
based on their levels.

TLS(`) = {ti|NL (ti) = `} (2)

where ` is an integer denoting the level in [1 . . . NL (tentry)].

B. Budget Distribution

As the principle of distributing budget based on the depen-
dency structure of a workflow (levels) is new – we need to
evaluate the performance of a variety of strategies to gauge the
value of the approach. We start with the most basic strategies,
random and uniform, to provide a baseline comparison. We
then explore more complex strategies - width, which is an
analogue of prior work on proportional schemes, and then the
strategies designed specifically for our BDT approach - height,
area and “All in”.

The most significant differences in each strategy lie in the
calculation of the sub-budget. In some strategies, we have a
Budget Factor (BF) that determines a share of the budget for
each level. Each sub-budget assigned to a level is termed the
level budget.

1) Random: The budget is allocated randomly over the levels
in the workflow

2) Uniform: Each level gets a 1/L share of the budget,
where L is the total number of levels.

3) Height Proportional: Each level gets a share of the user
budget proportional to its distance from the entry node.
The smaller the distance the greater the share.

4) Width Proportional: Each level gets a share of the user
budget proportional to the number of tasks within that
level.
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5) Area Proportional: Combines width and height strategies
to set the budget for each level.

6) All in: Places the entire budget on the entry level and
any remainders are trickled down to later levels. This
is a refined version of Height proportional, that was
formulated as an extreme test of hypotheses 1 and 2,
rather than a realistic suggestion. We did not expect this
strategy to work in the general case, as we anticipated
a reduced success rate. However counterintuitively it
returned the best overall performance.

We now present an example to show how the budget is
distributed among different levels. Random needs no further
explanation, so the example will only detail uniform through
“All in” strategies. Figure 1 shows the structure of a sample
workflow with ten tasks and their dependencies. In this figure,
the left column shows level numbers calculated by equation 1.
The right column is obtained by counting tasks in each level
starts from the exit task. In this example Nmax=5 which is
the maximum level in the workflow. Also, a budget of 165 is
assumed.

(a)

Fig. 1: A Sample Workflow with 10 tasks.

Each strategy distributes the user budget based on the
following basis (see Table II for the complete set of budget
shares):

• Uniform Proportional: Each level gets 165/5 share of
budget as our workflow has five levels.

• Height Proportional: Each level is assigned a weighted
share of budget relative to its height in the workflow.
This is calculated by:

Lweight =

Nmax=5∑
k=1

k = 15.

The Budget Factor (BF) is calculated by:

BF =
budget

Lweight
=

165

15
= 11.

For instance, level 4 consisting task B and C are assigned
a share of the budget equal to 4×BF = 4× 11 = 44.

• Width Proportional: Each level gets a share of budget
depending the number of tasks in corresponding level:

BF =
budget

tasknumbers
=

165

10
= 16.5.

For instance, the budget share assigned to level 4 with
two tasks is 2×BF = 2× 16.5 = 33.

• Area Proportional: In this strategy, the budget share
allocated to each level is a combination of height and
width strategies. Calculated by:

Lweight =

10∑
k=1

k = 55.

The Budget Factor (BF) is calculated by:

BF =
budget

Lweight
=

165

55
= 3

The budget then is distributed based on the sum of
numbers in the right column in Fig. 1. For example, level
3 is allocated the share (4+5+6+7)×BF = 22×3 = 66.

• All in: The total budget is assigned to level 5. After
scheduling all tasks in this level, any spare budget is
trickled to the next level.

TABLE II: Budget distribution for each strategy over each
level for a total budget of 165 in Figure 1.

Budget Distribution Strategy

Uniform Height Width Area ”All in”

Level 5
165

5
= 33 5×BF = 55 1×BF = 16.5 10×BF = 30 165

Level 4
165

5
= 33 4×BF = 44 2×BF = 33 17×BF = 51 0

Level 3
165

5
= 33 3×BF = 33 4×BF = 66 22×BF = 66 0

Level 2
165

5
= 33 2×BF = 22 2×BF = 33 5×BF = 15 0

Level 1
165

5
= 33 1×BF = 11 1×BF = 16.5 1×BF = 3 0

C. Task Selection

In BDT, tasks are executed level by level which means a task
can start execution once all tasks in previous levels have been
scheduled. There are no dependencies between tasks that are
at the same level. Therefore, all of them are ready to execute
and are put to the task ready list. To select a task, at first, all
tasks in the ready list should be prioritized. In this paper, tasks
are prioritized based on their Earliest Start Time (EST).

It could be argued that it is pointless to prioritize task as all
ready tasks are independent and their parent tasks have been
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(a) a sample workflow
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(b) Gant chart

Fig. 2: Task Selection Example

already scheduled, but this is not the case. Let us trace the
execution of a sample graph shown in Fig. 2. The number
above each edge shows the data transfer time between tasks.
Upon executing tasks A, B and C, all its children are placed in
the ready list for execution. Note that due to execution of task
A and C on the same instance, data is local, and therefore the
transfer time is essentially zero. However, task B must wait to
receive data from its parent (shown in blue intervals). Task D
can start its execution on instance p0 and p1 at time 13 and
9, respectively (shown by l). The earliest time that task E can
start on instance p0 is 13, and on instance p1 is 14. Therefore,
we give a higher priority to task D.

The Earliest Start Time (EST) of a task ti is calculated on
the instance with the shortest execution time and defined as:

EST (i) =

 0 , ti = tentry

max
tj∈pred(ti)

{
EST (tj) + wtj + Ci,j

}
, otherwise,

(3)
where wtj is the execution time of task tj on the fastest
instance type. The amount of data transferred from task ti
to task tj is called communication time (denoted by Ci,j).

Task selection starts from the level that consists tentry. After
executing the first level, all tasks in the next level are put in
the ready list to be scheduled.

D. Instance Selection

The BDT algorithm attempts to minimize the execution time
while meeting the budget. Each level receives a computed
budget share, that is the maximum that is able to be spent
for the tasks within this level. We start by calculating both
the time and the cost of executing each task on each instance
type, given by equations 4 and 5, forming two sets of Cost
and Time.

In the equation 4, subBudget is a share of the budget that
assigned to a level. The cost of scheduling for the current task,
ti, on the instance pj is shown by Ci. The minimum cost of
executing current task among all instances is Cbest.

Cost
pj

ti =
subBudget− Ci

subBudget− Cbest
. (4)

In the Time set, the required time for the current task on
instance pj is a function of ECT(ti, pj) an is expressed in
equation 5. The maximum and minimum completion time of
executing the task ti among all instances are ECT(max) and
ECT(min), respectively.

Time
pj

ti =
ECT(max)− ECT(ti, pj)

ECT(max)− ECT(min)
. (5)

To find the best instance, we use the Time Cost Trade-off
Factor (TCTF) in equation 6.

TCTF
pj

ti =
Time

pj

ti

Cost
pj

ti

. (6)

There is a possibility that the total assigned budget for the
level ` has already been spent (subBudget=0) while there are
still some unscheduled tasks. If this condition is true, it makes
equation 4 zero. Therefore, we can not launch a new instance
as there is no budget left. Note that the value of equation 6
becomes zero as well.

When an instance is provisioned, the user is charged for the
entire billing interval even if the task completes before the end
of the interval. One way to reduce the cost of executing tasks is
by using leftover capacity (residuals) in provisioned instances
that have been already paid for. Therefore, if other tasks can
execute on an existing instance with a residual, their execution
costs can be considered zero. Moreover, the utilization of
cloud resources depends on how tasks are placed together.
Instance fragmentation and resource wastage occurs if tasks
are not packed efficiently. The BDT algorithm utilises these
residuals for executing ready tasks, which reduces makespan
at no additional cost.

An important concept in our algorithm is trickling down
unused budget and this is expressed by equation 7. We define
Spare Budget (SB) as the amount of money remains after
allocating all tasks in the level `. We then add the leftover
to the next level (`+ 1).

SB = subBudget` −
∑

ti∈TLS(`)

Ci. (7)
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IV. EVALUATION

We use five common scientific workflows: Cybershake,
Montage, LIGO, Epigenomics and SIPHT to evaluate the
performance of our algorithms under realistic load. The
characteristics of which have been analyzed in [7]. We use
CloudSim [8], configured with one data-center and six differ-
ent instance types. The characteristics of these instance types
are based on the EC2 instance configurations presented in Ta-
ble I. The average bandwidth between instances is fixed to 20
MBps, based on the average bandwidth provided by AWS [9].
The processing capacity of an EC2 unit is estimated at one
Million Floating Point Operations Per Second (MFLOPS) [10].

The estimated execution times are scaled by instance type
CPU performance. In an ideal cloud environment, there is
no provisioning delay in resource allocation. However, some
factors such as the time of day, operating system, instance type,
location of the data center, and number of requested resources
at the same time, can cause delays in startup time [11].
Therefore, in our simulation, we adopted a 97-second boot
time based real world measurements of EC2 [11].

To evaluate the budget sensitivity of the BDT algorithm and
associated strategies, we considered different budget ranges
for the scientific datasets from lowest possible through to
sufficient. The lowest possible budget to schedule a workflow
is given by equation 8.

Lowsetcost =
∑
∀ti∈G

Costtipj , (8)

where pj is the cheapest instance. To achieve this, all tasks
are executed on the instance with the lowest cost (the cheapest
instance). This assignment gives us the lowest possible cost
required for executing a workflow, irrespective of finishing
time. Using this lowest cost, we then calculate the mimimal
budget as follows:

budget = α ∗ Lowsetcost 1 < α < 10. (9)

The budget range starts from 1.5 to consider minimum
budget with increasing step length of 0.5. The EC2 instances
charge hourly basis from the time of provisioning, even if the
instance is only used for a fraction of that period. We ran the
simulations with lease times of 15, 30, 45 and 60 minutes to
evaluate the sensitivity of the algorithm to the length of the
lease.

To compare performance with respect to workflow size we
evaluated workflows with 200, 500 and 1000 tasks. However,
as these results did not vary significantly, we present here only
workflows with 1000 tasks. We used the Pegasus workflow
generator [7] to create representative synthetic workflows
with the same structure as real world scientific workflows
(Cybershake, Montage, LIGO and SIPHT). For each work-
flow structure, and each budget range, 100 distinct Pegasus
generated workflows were scheduled in CloudSIM and these
results are detailed in the following section.

(a)

Fig. 3: A simple structure of LIGO with six levels

A. Analysis for LIGO

The Laser Interferometer Gravitational Wave Observa-
tory (LIGO) attempts to detect gravitational waves produced
by various events in the universe as per Einsteins theory of
general relativity [7]. A simple LIGO-like workflow with six
levels is shown in Figure 3.

For a LIGO workflow with 1000 tasks, Table III gives the
levels with the corresponding task’s numbers. We select the
budget range of 5 with the corresponding budget of 7.035 to
evaluate the budget distribution strategies. The share of budget
that each level gets and the spare budget is also given in
Table III. For instance, after scheduling of all tasks in the
first level using the Height Proportional strategy, the spare
budget of 0.15 (indicated in red) is added to assigned budget
of next level (shown in blue) resulting in the total budget of
1.69 for that level (the budget trickling concept). The last row
in Table III shows the makespan that was achieved by each
strategy.

It is also interesting to look at which instance types and how
many of each were provisioned by each strategy, this is given
in Table IV. The most significant observation is that the “All
in” strategy allocates a small number of powerful instances,
reducing the data transfer costs and achieving the lowest
makespan as given in Table III. From users’ perspective,
finding a schedule with a lower makespan for a given budget
is the main concern, while from the providers perspective,
maximizing utilization is the main concern. Very few research
papers report the total number of instances that a workflow
needs when provisioning. Although all BDT strategies meet
the budget (only possible due to trickle down) and find a
schedule, the type and the amount of requested VMs are very
different as shown in Table IV. Launching too many instances
does not lower makespan. Instead, it causes high scheduling
overhead and low instance utilization. Therefore, the budget
distribution strategy has a direct impact on resource utilization
- which is significantly important.

The makespan and success rate of LIGO for four specified
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TABLE III: Example computed budget distribution for each strategy over each level of a LIGO for budget range=5 and
budget=7.035

Budget Distribution Strategy
Uniform Height Width Area ”All in”

Task Numbers sub Budget Spare Budget sub Budget Spare Budget sub Budget Spare Budget sub Budget Spare Budget sub Budget Spare Budget

Level 6 229 1.173 0.01 2.01 0.15 1.61 0.01 2.85 0.01 7.035 0.001

Level 5 229 1.173 0.03 1.675 0.01 1.61 0.03 2.11 0.03 0.001 0.001

Level 4 21 1.173 0.05 1.34 0.03 0.14 0.006 0.15 0.01 0.001 0.001

Level 3 250 1.173 0.01 1 0.02 1.75 0.01 1.39 0.02 0.001 0.001

Level 2 250 1.173 0.03 0.67 0.009 1.75 0.02 0.51 0.06 0.001 0.001

Level 1 21 1.173 0.05 0.335 0.02 0.14 0.02 0.003 0.05 0.001 0.001

Achieved Makespan 938.97 798.71 798.61 682.6 603.93

TABLE IV: VM requested types by different strategies based
on Table III

Budget Distribution Strategy
Vm Type Uniform Height Width Area “All in”

m3.medium 1 1 6 2 0
c4.large 6 3 2 2 1
c3.xlarge 6 3 2 3 1

m4.2xlarge 0 2 2 2 0
c4.4xlarge 6 2 2 2 0
c3.8xlarge 0 2 2 2 4
#VMs 19 13 16 13 6

Total Cost 6.985 7.006 7.026 6.968 7.035

lease times are shown in Fig 4. The “All in” strategy again
performs significantly better than other strategies for each
of the defined budget factors from low to high values. The
random strategy has the worst performance for both makespan
and success rate. Another observation is that the general trend
of all strategies for different instance lease times is largely
similar.

B. Other workflows

The makespan and success rates of other workflows are
presented in Fig. 5. The general trend is that by increasing the
budget, a scheduler can launch more costly services, which in
turn leads to a lower makespan.

In terms of makespan, for almost all workflows, the “All in”
strategy has the best performance including lowest makespan
and highest success rates. An interesting observation is that the
structure and type of workflow appear to have a significant
effect on success rate. For instance in CYBERSHAKE, the
success rates of most of the strategies are generally poor, this
is likely due to it being a data intensive workflow - the “All in”
strategy of few, high power instances miminised the cost of
data movement and produced the best makespan and success
rate.

Overall, a budget bias towards the early tasks (and levels)
of a workflow appears to produce better overall performance.

V. RELATED WORK

Scheduling in cloud environment encounters some chal-
lenges not present in traditional heterogeneous environments
such as the Grid or HPC clusters. The cost model and

resource provisioning in cloud are among the main challenging
differences. For instance, pricing schemes in cloud systems are
based on lease intervals from the time of provisioning, even if
the instance is only used for a fraction of that period. A sig-
nificant number of cost aware workflow scheduling algorithms
in Grid have been proposed such as [4], [12]. However, cost in
Grid is calculated based on the accumulated cost of requested
services [13]. Moreover, workflow scheduling in grid focuses
on minimizing the makespan without considering the cost [14].

The most similar (although not very) related work to BDT
appears in [3] and [15] whereby Zheng et al. proposed Budget
constrained Heterogeneous Earliest Finish Time (BHEFT)
which is an extension of HEFT algorithm [14]. In BHEFT,
a current task budget (CTB) factor is introduced to distribute
spare budget among unscheduled tasks. Their budget distri-
bution is different from ours as the task budget and spare
budget are calculated task by task. Moreover, their work is set
within the context of a Grid environment which is not directly
applicable to cloud environments due to differences in the cost
model.

In cloud environments, most of the research focuses on QoS
constrained workflow scheduling for deadline and budget. The
main idea of most deadline constrained algorithms is how to
distribute the user-defined deadline among workflow tasks or
levels [5], [6], [16], [17]. In this paper, we are focusing on
budget constrained algorithms for cloud environments.

In [18], Zeng et al. presented a budget-aware backtracking
algorithm for executing large scale many task workflows,
referred to as ScaleStar. The authors in [19] and [20] presented
an algorithm with budget constraints called minimum end-to-
end delay under cost constraint (MED-CC). Firstly, each task
in a workflow is assigned to an instance. In the next step, all
critical tasks are considered for rescheduling with the proposed
Critical Greedy algorithm.

The cost model considered in [18]–[20] is based on the use
of fractional resources. For instance, in [20] a base processing
unit which is ten instructions per time unit is set with price at
0.01 per time unit. However, in most of the cloud providers,
like Amazon EC2, users are billed based on a longer interval
like one hour.

In [21], Li et al. presented an extension of the HEFT [14]
algorithm called the Cost Conscious Scheduling Heuristic
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Fig. 4: Makespan and Success rate performance executing LIGO for all strategies for lease time of 15, 30, 45 and 60
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Fig. 5: Makespan and Success rate performance executing of workflows for all strategies for lease time 60
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(CCSH). The CCSH algorithm, first constructs a priority list of
tasks and then assigns the task with the highest priority value
to the most cost-efficient virtual machine (VM). However, only
one VM type and one pricing model is considered.

In [22] two auto scaling techniques to solve the budget
constrained scheduling for a workload consisting multiple
workflows were proposed. In this work, budget is distributed
to different workflows proportionally based on assigned prior-
ities.

Scheduling Bags of tasks under budget constraints in cloud
is presented in [23]. One of the assumptions considered by
authors is tasks are preemptive which mean they can be
interrupted, delayed and then retriggered sometime later. Our
model is different from [23] in such a way, we have non-
preemptive dependent tasks in our workflow model, a less
forgiving constraint.

VI. CONCLUSION

In this paper, we introduced the Budget Distribution with
Trickling (BDT) algorithm that presents new notions for
distributing budget based on the dependency structure inherent
in workflows – levels. In addition we proposed several new
strategies for sharing or distributing budget over these levels.
We also proposed trickling to redistribute unspent budget down
to other levels.

We evaluated the makespan and success rate of six strategies
using five real-world workflows with different lease times
on instances. The width and uniform strategies are largely
analogous to existing budget distribution approaches and these
are outperformed in makespan and success rate by Area and
“All in” BDT strategies. Although, width and uniform also
benefit from trickling and the other innovations built into BDT.
Overall, the strategy that performed the best for all workflows
in terms of both success rate and makespan was “All in”.
This strategy was proposed largely to test the hypothesis
that biasing the budget distribution to the earliest levels was
beneficial in terms of reducing makespan. “All in” took this
to an extreme by assigning the entire budget to the first level
and relying wholly on the trickle down mechanism to distribute
budget to later levels. Counterintuitively, “All in” gave the best
success rates - and the best performance for data intensive
workflows due to the resulting data locality, from fewer more
powerful instances.

The main finding of our research is in the importance of
biasing budget distribution to early levels in a workflow. This
leads to finding a schedule with a lower makespan. From
this we have extrapolated two hypotheses that need further
investigation. In addition, these results suggest that gaining
a better understanding of workflow types (compute and data
intensive) and workflow structure can lead to better budget
distribution and likely scheduling in general.
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