
Experiences in the Design and Implementation of a
Social Cloud for Volunteer Computing

Ryan Chard
School of Engineering and

Computer Science
Victoria University of Wellington

Wellington, New Zealand
Email: ryan@ecs.vuw.ac.nz

Kris Bubendorfer
School of Engineering and

Computer Science
Victoria University of Wellington

Wellington, New Zealand
Email: Kris.Bubendorfer@ecs.vuw.ac.nz

Kyle Chard
Computation Institute,

University of Chicago and
Argonne National Laboratory,

Chicago, IL, USA.
E-mail: kyle@ci.uchicago.edu

Abstract—Volunteer computing provides an alternative com-

puting paradigm for establishing the resources required to

support large scale scientific computing. The model is particularly

well suited for projects that have high popularity and little

available computing infrastructure. The premise of volunteer

computing platforms is the contribution of computing resources

by individuals for little to no gain. It is therefore difficult to

attract and retain contributors to projects. The Social Cloud for

Volunteer Computing aims to exploit social engineering principles

and the ubiquity of social networks to increase the outreach of

volunteer computing, by providing an integrated volunteer com-

puting application and creating gamification algorithms based

on social principles to encourage contribution. In this paper

we present the development of a production SoCVC, detailing

the architecture, implementation and performance of the SoCVC

Facebook application and show that the approach proposed could

have a high impact on volunteer computing projects.

I. INTRODUCTION

Scientific computing projects are increasingly typified by
a requirement for big data and high performance compu-
tation, the scale of which exceeds the resources available
to many researchers. To perform large scale computations,
researchers often purchase, assemble, or rent computation
resources (clusters, grids, clouds, or supercomputers), for the
duration of a particular project. However, this is potentially an
expensive, and infrastructure intensive approach available only
to large research groups. One alternative is the use of volunteer
computing platforms, such as Berkley Open Infrastructure
for Network Computing (BOINC) [1], to provide a low-
cost model for resourcing large scale projects by leveraging
resources contributed by the public. In this model the resources
available to a given project is a function of the number of
volunteers contributing at any point in time, it is therefore vital
for the success of a project to attract and retain contributors.

In our prior work we proposed a novel resource sharing
framework based on the relationships encoded in a social
network – called a Social Cloud [2], [3]. A Social Cloud
supports heterogeneous (virtualized) resource sharing between
”friends” in a social network. The social network provides
both an inferred network of trust (based on pre-existing
relationships) and implicit social incentives for appropriate
sharing. The Social Cloud model can also be leveraged to
support a more immersive form of volunteer computing [4],

incorporating attributes of social networks, such as the intuitive
integrated application interface, potential peer-based advertis-
ing mechanisms, and gamification (using mechanisms found
in games to promote desired behaviours in non-game contexts)
opportunities amongst friends. This results in an increased
contribution of resources to worthwhile research and/or public
good projects.

In this paper we present and discuss our experiences im-
plementing and deploying a ’first’ production version of a
Social Cloud for Volunteer Computing (SoCVC). We also
highlight the benefits that can be obtained, both for users and
projects, by exploiting a social fabric for volunteer computing.
We believe this approach will increase the total capacity
provided through volunteer computing platforms by using
existing social networks as 1) a medium for interacting with
volunteer computing projects, 2) a basis for leveraging social
incentives to encourage contribution, and 3) an opportunity for
projects to advertise, solicit and maintain contribution. The
overarching goal of this work is to increase participation in
volunteer computing projects by exploiting social incentives
and the ubiquitous nature of social networks. Specifically,
in this paper we describe the implementation of a produc-
tion Facebook application that delivers a BOINC compliant
account manager. This allows users to contribute resources
to the BOINC platform while utilizing incentives based on
relationships encoded in Facebook.

II. VOLUNTEER COMPUTING - BACKGROUND

Since its introduction in 1996 volunteer computing has
gathered a large number of users who have collectively
contributed significant computing resources to a wide range
of projects. Amongst the most well-established projects are
SETI@Home [5] and Folding@Home [6] which search for
extraterrestrial intelligence and simulate protein folding re-
spectively. To reduce the overhead of project development,
BOINC was developed as a generic volunteer computing
platform. BOINC has since become the predominant volunteer
platform on which many of the leading volunteer projects are
built, including SETI@Home.

In the BOINC model users install and configure a BOINC
client on their resources, they then create accounts with

978-1-4673-4466-1/12/$31.00 ©2012 IEEE

each project they wish to contribute to. To ease the task
of contributing to multiple projects, users can use an Ac-
count Manager (AM) as a proxy to multiple projects. AMs
simplify the perceived, and often real, difficulties of joining
and contributing resources to projects by providing a single
interface through which users can add, remove and modify
resource shares across many projects. After selecting projects,
users allocate resource shares (percentage of allocation) for
each project. Using an AM, a user’s BOINC client connects
directly to an AM, rather than an individual project server, to
retrieve project information and resource shares. The client
then connects to each individual project server to request
workloads and upload results.

III. VOLUNTEER COMPUTING - THE BARRIERS

The major reasons for user contribution in volunteer com-
puting systems can be loosely categorized into benefits related
to the project (e.g. potential impact of the science, probability
of success, and trust in the project) and personal benefits
(e.g. a sense of community, competition, personal interest and
even interesting visualizations)1. In general, users of volunteer
computing platforms are thought to be motived by altruism,
that is, they are willing to donate resources for little to no
gain simply because they have spare resources or a project
is seen to be a good cause. However, many are additionally
compelled by a sense of competition between one another
with respect to contribution levels. The majority of volunteer
projects have attempted to exploit this notion of competition
by utilizing gamification techniques such as the introduction
of leaderboards.

From the point of view of the user, the technical limitations
that make it difficult for the ’non expert general public’
to contribute to projects are significant. For example, users
have to discover and choose projects themselves, they are
required to set up and manage client software to contribute
to projects, and they have to create and manage accounts with
multiple different projects, either through AMs or project sites
themselves. From the view of the researchers, many small
scale projects find it difficult to obtain access to sufficient
resources, and while volunteer computing provides a cheap
(or even free) alternative to harness large scale resources, it
is still difficult to gain, and retain, a significant user base. In
many ways this problem relates to issues advertising projects
to appropriate (interested) users, simplifying the contribution
model, and providing incentives to continue contribution. The
difficulty motivating users can be seen in the current volunteer
computing landscape as there are a few large, high profile
projects and many less well known, small projects with only
a few contributing users. The expense in engineering a BOINC
application is considerable and it can be difficult to justify this
cost for new, or less popular projects.

Lastly, volunteer computing is inherently a best effort
computation paradigm that is, results are computed out of
order as resources permit. In addition, volunteers are generally

1http://www.boinc-wiki.info/How to decide on Resource Share

anonymous and unaccountable which makes the results un-
trustworthy – particularly when leaderboards and competition
are introduced, which by its nature introduces cheating incen-
tives. BOINC overcomes the problem of errors and cheating
by adding redundancy to the results returned by contributors,
however this adds significant overhead to the system and
reduces effective computational power.

IV. A SOCIAL CLOUD FOR VOLUNTEER COMPUTING
THE BENEFITS

There are three key ways in which the Social Cloud can
benefit both users and researchers in volunteer computing plat-
forms. Firstly, the integration of volunteer computing within
the social network platform gives users a single place to install,
configure and manage their contributions. The social network
provides a single user identity (and password) and a web site
that users frequently visit. It also provides a familiar web
application in which users can discover and interact with the
volunteer computing application. Secondly the pre-existing so-
cial framework provides a structured way to advertise projects,
for example supporting implicit advertising channels such as
social feeds. The social network also provides a huge user base
through which the application will be exposed, this in turn
will provide increased publicity for projects, better matching
between projects and users (based on profiles and friend’s
preferences), and lower barriers for projects to increase their
reach. Lastly, social engineering and gamification algorithms
can be used, in particular, social engineering algorithms [4]
can identify important nodes (people) in a social network and
use these nodes to help increase and maintain participation
through connected friends. Trust can be inferred from these
social relationships, and gamification techniques will foster
competition (and cooperation) between friends in the network
that extend beyond the current model of global leaderboards.

V. RELATED WORK

Social networking concepts have long been exploited in
scientific projects. In many cases, web-based science por-
tals leverage social networking principles to link researchers,
developers and users in an effort to facilitate collaboration,
MyExperiment.org [7] and nanoHub [8] are two such ex-
amples. Other scientific projects use social network pages,
and sometimes even applications, as a means of publicizing
and gathering support for their science, for example CERN’s
Facebook page2 and PolarGrid’s Facebook application [9].
These projects however, are generally aimed only at increasing
publicity by trying to get people to ”like” the research page,
install the application, or contribute to the community, they do
not utilize the network as a platform to harness resources nor
do they exploit social engineering algorithms to motivate par-
ticipation. More widely, social networks have also been used
in crowdsourcing applications as a mechanism of distributing
manual problem solving tasks to a wide group of users.

2http://www.facebook.com/cern

There are several open source and commercial volunteer
computing platforms and AMs available, for example Fold-
ing@Home [6], Distributed.net [10], Apple’s XGrid [11],
Univa’s Grid MP [12], GridRepublic [13] and BOINCStats
Account Manager (BAM!) [14]. While these platforms provide
credits and leaderboards to incentivize contribution, none of
them explicitly exploit social networking platforms or compli-
cated social engineering algorithms.

The use of social network applications for volunteer com-
puting has also been explored through applications such as
Progress Thru Processors [15] and RenderWeb [16]. Progress
Thru Processors utilizes Facebook to expand the reach of
BOINC projects by advertising projects to users that may
otherwise not be exposed to them. Although the application
has had some success, we believe by fully utilizing the social
aspects available within social networks we can further grow
the number and contribution of users. RenderWeb sources
volunteer resources from social media to create a volunteer
rendering system, functioning within Facebook. Like Render-
Web, our Social Cloud for Volunteer Computing aims to gather
donated resources from within a social network. However, our
solution aims more broadly at the entire project set of BOINC
and includes a strong focus on mechanisms to motivate users
and drive the growth of the application.

VI. ARCHITECTURE

The Social Cloud for Volunteer Computing (SoCVC) lever-
ages the social networking ”App” paradigm to integrate volun-
teer computing management within a social network platform.
The SoCVC uses published Social Network APIs to add
socially-aware functionality to the app (e.g. gathering friends’
information and publishing to feeds) and volunteer computing
platform APIs to act as an intermediary between users and
projects. The high level architecture of the platform is depicted
in Figure 1.

Social Network
Application

Account
Manager

Database

User
Machines

Project Servers

Fig. 1. The architecture for The Social Cloud for Volunteer Computing.

A. Architecture Components
The SoCVC is designed as a social network application

to exploit the integrated look and feel of the social network,

expose the standard app model for discovery and installation,
provide a single location for users to manage and monitor
their contributions, abstract authentication and authorization,
and as a way of accessing social information (e.g. profile and
connections). One major advantage of this approach is that
users have a single identity and a single location to monitor
their contribution over numerous projects. The SoCVC is also
embedded within a web environment with which many users
are familiar and visit often (e.g. over 50% of Facebook Users
log in daily)3, this will ease entry in to volunteer computing
and encourage engagement.

Behind the application is a service-oriented architecture that
manages users, their contributions to projects, and generates
statistics and socially-oriented information (e.g. related to
friends’ contributions). Users, their preferences, and their
contribution statistics are persisted by the SoCVC service. In
order to interact with multiple projects for a single user, the
SoCVC transparently manages user accounts with each project
on behalf of a user. Periodically, project statistics are gathered
for users and their projects. These statistics are stored and
processed to produce statistics for the application on a per-
user, per-friends, or global scale.

The SoCVC acts as an Account Manager and interacts di-
rectly with project servers on behalf of users through published
APIs. The SoCVC also facilitates manipulation and creation
of user accounts, monitoring of contributions, and retrieval of
statistics from each project. The SoCVC service provides an
interface to access individual and aggregated usage statistics
for a particular user, which in turn allows the social network
application to display statistics about users and their friends.

The volunteer computing client (installed on users’ re-
sources) communicates with the SoCVC through a standard-
ized service interface. The protocol requires that the client
and SoCVC authenticate one another before sending the list
of projects, project credentials and resource shares to the
client. The client uses this information to manage contributions
and directly communicate with project servers. The SoCVC
therefore acts only as a proxy to set up the contribution and
is not involved in allocating workload and retrieving results.

B. Social Engineering

We have introduced several novel social algorithms that
are designed to promote contribution and participation. The
specific algorithms are described in detail in [4], and are
summarized here for completeness.

Interest signatures have been developed to assist users when
selecting projects. Interest signatures are generated on a per-
user basis by allowing users to select high level topics that
appeal to them. Project signatures are generated by calculating
the average interest signature for a project from a group of
users. These two signatures (along with the interest signatures
of friends) are then used to match users with specific projects.

Identification of important nodes in a graph has long been a
crucial part of social network analysis. In volunteer computing

3http://newsroom.fb.com/Key-Facts/Statistics-8b.aspx

projects, the largest contributors to a given project are clearly
important nodes. In the SoCVC we term the largest contributor
amongst a group of friends the project champion. The SoCVC
can leverage project champions to motivate others to contribute
more and to act as a contact point for technical assistance.

The connections between friends represent an important
measure of a user’s importance within a social network. To
measure a user’s social importance, the SoCVC calculates a
social score for each user. The social score rewards users that
promote the application and recruit friends to the platform.
Within a group of friends, users with high social scores are
termed Social anchors as they are directly responsible for the
growth of the SoCVC.

Finally, Compute magnates are the users that provide, in
total, the most computational value to the volunteer computing
platform by encouraging others to participate. The purpose
of this title is to acknowledge the efforts made to grow the
contributions through the SoCVC by the top users, both within
a group of friends and globally.

C. Interactions
All usage of the SoCVC requires users to authenticate with

the social network by logging in using their standard platform
credentials. Once authenticated, users are able to discover
the SoCVC application through advertisements, referrals from
friends (through messages and feeds), or searching for the
app in the app list. The user is then able to install the
application within their environment and can set permissions
describing what access rights the application has (e.g. access
to profile information or the ability to publish to news feeds).
As a separate, out of band process, the volunteer computing
middleware must be configured on every contributed resource
in order to execute the work supplied by the project.

After installing the application and the client, the user is able
to select projects and configure their individual contribution
through the SoCVC application. The user is given complete
freedom to select projects themselves, however suggestions
are also provided based on their friends’ selections, infor-
mation gathered from their profile, and answers to questions
posed during application installation. After selecting appro-
priate projects, the user is able to allocate a percentage of
their total resources towards each project (a resource share)
which is enforced by the SoCVC service. Users can return
to the application at any time to manage and monitor their
contribution, and manage preferences, modify resource shares,
delete projects and monitor their usage statistics.

Usage statistics are computed periodically by the SoCVC
on a global, local and friend basis. These statistics are used
to feed social engineering and gamification algorithms, such
as identifying important nodes amongst a group of friends
and computing friend-based leaderboards. Depending on user
preferences statistics and milestones will also be published in
news feeds, status updates, and through the application.

VII. IMPLEMENTATION

The production implementation of the SoCVC, as shown in
Figure 2, relies on the leading social network and volunteer

computing platforms: Facebook and BOINC respectively. The
implementation is composed of three distinct modules; the
core Social Cloud, the BOINC Account Manager, and the
Facebook application. Each of these modules provides unique
functionality which, when combined, creates an integrated
socially-oriented volunteer computing platform that reduces
the complexity for users to contribute to BOINC and leverages
social engineering algorithms to encourage contribution.

WebRPC

WebRPC
Social
Cloud

Account
Manager

Web Interface

Data Model

SoCVC

Graph API

Fig. 2. SoCVC implementation. Users interact with the Facebook SoCVC
App, social information is obtained through the Facebook Graph API. The
SoCVC communicates with BOINC project servers using the WebRPC API
and users’ BOINC clients through the Account Manager API.

A. Facebook Application Paradigm
Facebook exposes access to its social graph through a

simple RESTful interface called the Graph API. The Graph
API includes methods to access objects in the graph and all
the relationships between them, for example applications can
access friends, events, groups, applications, profile informa-
tion, and photos. In addition the same API allows information
to be pushed to the social graph if user’s permissions permit
it, for example applications can write to news feeds and set
statuses. Data sent and retrieved from the API is represented in
a simple JSON format which is easily consumable in a variety
of programming languages.

The Facebook Graph API uses OAuth 2.0 for authorization,
thereby allowing users to set fine grained permissions over
what access rights an application acting on behalf of the
user has. Every Facebook application is identified by an
Application ID and Key that is claimed when the application
is first configured. These credentials are used to identify the
application when accessing the Graph API. When a user
installs the application, they are directed to the Facebook
OAuth Dialog, the application includes its application ID to
identify itself, a redirect URL to determine where to return
to, and a list of permissions requested (e.g. access to streams
or profile information). The user is then able to approve the
request using the standard Facebook UI. If the user authorizes
the application they will be returned to the redirect URL (in the
application), Facebook also sends a signed request parameter
that includes the user’s id and an OAuth Token which must
be used on all subsequent Graph API requests.

Facebook applications are hosted independently on external
servers and are not hosted within the Facebook infrastructure.
A canvas URL is created for the application within Facebook,
this URL is mapped to the application’s callback URL which
is hosted remotely. When a page is requested by a user via
the Facebook Canvas URL the Facebook server forwards the
request to the defined callback URL. The application creates
a page based on the request and returns it to Facebook.

B. Core Social Cloud
The core Social Cloud application is responsible for man-

aging users’ contributions to projects by interacting with the
other components of the architecture. The core application is
designed around a Model View Controller (MVC) architecture,
where the model wraps a MySQL database, the controller is a
PHP-based web application and the view is the HTML-based
Facebook application.

The controller responds to events from the view and per-
forms actions on behalf of users. It also exposes an Account
Manager interface to allow BOINC clients to connect directly
to the SoCVC. The application exposes a PHP-based service
interface through which the Facebook application commu-
nicates with the controller. All information regarding users,
projects, and statistics is stored in a database which is accessed
by the controller through a data access model. When Facebook
users install the application, the controller stores information
about the user, their preferences (e.g. publication options) and
the social network. The controller then acts as a gateway for
coordinating contribution, retrieving statistics, and calculating
the social algorithms.

The main role of the Social Cloud application is to manage
users’ contributions to projects. To do this the application com-
municates directly with BOINC project servers via the pub-
lished BOINC WebRPC APIs. These APIs describe essential
functionality and standardized interfaces that project servers
must maintain in order for third parties to manage accounts
and to retrieve statistics. The API includes functionality such
as the ability to create user accounts, manage user preferences
and retrieve contribution statistics. Through these APIs, the
application is able to significantly reduce the complexity of
users interacting with multiple BOINC projects. When a user
adds a new project to their resource share, the Social Cloud
application transparently creates an account on the appropriate
project server. It also manages all existing accounts for users
at each of their desired projects while providing a single sign
on and a single unified view to end users.

The Social Cloud application is also responsible for moni-
toring and gathering information regarding user’s contributions
to each of the registered BOINC project servers. As there
is no efficient subscription or notification interface exposed
by project servers, the application relies on asynchronous
Cron jobs to periodically contact each BOINC project, es-
tablish whether the project is currently running, and request
contribution statistics for each user using the project. These
statistics are then stored in the database for each user and are
returned to the interface when requested. In order to provide

a scalable and responsive architecture, calculations relating to
these statistics, such as determining average contribution and
running social engineering algorithms, are also executed at
predetermined, low usage times, rather than on a per-request
basis. The subsequent results are cached in the database and
are returned to the interface when requested.

The controller also exposes a plug-in API through which
various social engineering algorithms, such as those discussed
in Section VI-B, can be implemented. This API provides
the ability for algorithms to access information related to
a user, their friends, and their contributions, and to store
the results (e.g. metrics and rankings) through the extensible
data model. The stored results are made accessible to the
UI through the core application service. The algorithms run
asynchronously within the same application scope, so as not
to release potentially sensitive information.

C. Data Model
The SoCVC is responsible for storing a large amount of

state related to users, projects, contributions, statistics, and the
results of social engineering algorithms. We have designed
a set of data models to store and access both information
and policies. The data model layer abstracts all interactions
with the respective data representation (i.e. database tables),
establishing a fully encapsulated implementation which can
quickly be developed upon while also allowing for trivial
change of data storage mechanism. The data access layer is a
PHP based model that acts as a proxy to abstract interactions
with the MySQL database. The model also provides an au-
ditable interface to monitor and log all communications with
the database. The application relies on the MySQL database to
store all information regarding users, friends, projects and their
associated accounts, preferences, and contribution statistics.

D. Account Manager
The AM module of the SoCVC exposes an interface that

conforms to the BOINC Account Manager API. This interface
enables users’ BOINC Clients, running on remote heteroge-
neous resources, to connect, authenticate and retrieve the user’s
selected projects, their delegated user credentials, and their
preferences that have been assigned through the Facebook
application interface, such as their resource share.

A user’s client application must first authenticate with the
SoCVC AM before retrieving project specific information.
The protocol begins with the client requesting a description
of the Account Manager. The response includes the name of
the AM, a minimum password length, and an empty <ac-
count manager> tag that signifies that the project operates
as an AM rather than a BOINC project. After validating the
response, the client submits a HTTP POST request which
includes authentication details and any locally configured
preferences, which are subsequently stored by the AM.

Once the client application is authenticated and the AM has
matched the request to a given user account, the AM responds
with its own public key and a set of BOINC projects associated
with the user. The response may also include preferences,

regarding the AM and BOINC projects, which are then set
by the client before execution of a given task. Each project
element that is returned to the client is required to specify
an authenticator which is used by the project servers to
identify the user following a delegated authentication model.
Authenticators are generated when creating a user account
through a BOINC project’s WebRPC. In order to mitigate the
chance that a client connects to the wrong project server or is
manipulated into performing work for a malicious project, the
URL of the project server is signed by the AM. Rather than
sign URLs when requested, the AM pre-signs URLs for every
project server it interacts with as this significantly reduces
overhead. Preferences defining project execution, such as the
resource share or when to collect more work, are also included
in the response.

In order to sign a project server’s URL, the crypt prog
application has been compiled from the BOINC source code
and is used directly in the SoCVC to generate RSA keys.
Because the BOINC client is given the AM’s public key during
the authentication process, clients are able to evaluate these
signed project URLs using the AM’s public key and a local
crypt prog instance.

Finally, after the client application has authenticated with
the appropriate project server, it is able to directly receive
work units following the standard BOINC protocol. Specific
configuration options defining project execution are passed
by the AM and are stored by the client for the duration of
execution. These preferences include information such as the
specified resource share and when to collect more work.

E. Facebook Application
The final module of the implementation provides a Face-

book Application Interface for users to interact with the
SoCVC. The interface is written in HTML and relies on
JQuery to perform active manipulation of the page. Com-
munication with the SoCVC core uses AJAX to perform
asynchronous requests for structured information that is then
rendered in HTML.

The user interface, as shown in Figure 3 is separated into
five distinct tabs. The home tab provides an overview of a
user’s contribution by showing the projects they currently
contribute to, along with their respective contribution statistics.
The projects tab provides an interface for managing contribu-
tions to BOINC projects, this interface allows discovery and
selection of projects as well as configuration of project shares.
The friends section allows the user to review the performance
and relative standing of their friends with respect to one
or more projects. Settings enables the user to review their
preferences for using the SoCVC. Finally, the help tab is a
source of information to assist users through the process of
installing and getting started with volunteer computing.

F. Production Deployment
The SoCVC has been designed to be hosted on a scalable

virtualized Cloud platform such as Amazon Web Services. The
core components of the architecture are PHP-based and can be

Fig. 3. The interface to The Social Cloud for Volunteer Computing’s
Facebook App. This screen shot shows the projects suggested, based on
interest and project signatures.

hosted in any PHP compliant web server, we use the Apache
HTTP server. Following the MVC paradigm, the controller
and view are stateless and can therefore be replicated across
multiple Cloud instances, if required, load balancers (such as
Amazon’s ELBs) will be used to allocate workload across
this distributed pool of instances. The underlying database
maintains all state and can be hosted on independent resources.
The MySQL-based database model can also be deployed
to Cloud-based elastic database services such as Amazon’s
RDS. During the initial phase of deployment we have adapted
this deployment architecture using dedicated resources hosted
within our institution. We have deployed a single instance of
the Facebook application, core and database on a single host
and will expand the deployment environment to utilize Cloud
based resources as, and when, required.

VIII. RESULTS

A. Database Performance
The database schema provides a fine grained approach to

maintain information about users, projects, statistics and social
networks. To evaluate the design of the data model Figure 4
shows the average time taken to create, load and remove the
various data models used in the SoCVC. The figure shows
a small constant deletion time, this is because the SoCVC
marks accounts as inactive, rather than deleting them, as
we assume that users may leave and later re-join projects.
While this approach could create potential confusion for users
we anticipate using garbage collection techniques to remove
artefacts after a period of time. The figure also depicts a large
discrepancy in the relative time to create a model and store it.
The reason for the additional overhead associated with Project
models is due to an initial validity check of the project URL.

B. Project Delegation
In order to measure the approximate overhead of com-

munication between the SoCVC and individual projects, we
evaluate the time taken to retrieve a response from each of

0

50

100

150

200

250

300

Users User Projects Projects

Remove

Load

Create

Ti
m

e
 (

µ
s)

Models

Fig. 4. The average time required to create, load and remove User,
User Project and Project database models. The time taken to load information
is insignificant compared to the overhead of creating and removing data
models.

the BOINC WebRPC functions used. Figure 5 shows the time
taken for Rosetta@home4 to respond to each WebRPC call.
The figure shows a significant difference in query time for
different requests. While the time taken for individual requests
is small, when subject to scale it will be difficult to retrieve all
information in real time. Instead we have used this information
to calculate the approximate cost of retrieving different types
of information and altered the SoCVC application to cache
frequent and longer running queries. Overhead time is also
used in determining the time required to execute Cron jobs to
update user statistics.

0

100

200

300

400

500

600

Ti
m

e
(µ

s)

Fig. 5. The average time from Rosetta@home to respond to each WebRPC
function call.

C. Account Manager Performance

The AM performs as an intermediary between the BOINC
clients, running on a user’s machine, and the BOINC project
servers. The key role of the AM is to authenticate a user
and form responses consisting of projects and preferences. As
discussed in Section VII-D, the AM signs project URLs so
that requesting clients can trust the URL is correct. Due to the
substantial overhead associated with encryption, the SoCVC
application pre-computes signed URLs for each project to
optimize response time. Figure 6 shows the average time
taken, with respect to the number of project preferences
being delivered, for the AM to form a response to a client
request. The figure shows that pre-signing URLs offers a

4http://boinc.bakerlab.org/

considerable improvement in the time taken to deliver content
when compared with real-time signing.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Stored Signature

Dynamically Signed

Projects

Ti
m

e
 (

µ
s)

Fig. 6. The time for the Account Manager to create a response for a BOINC
client, with either dynamically signed project server URLs or retrieving stored
signatures.

D. Social Engineering

In order evaluate the effectiveness of the proposed Social
Engineering algorithms discussed in Section VI-B, we have
simulated each of the algorithms using a standard social
network dataset. In this section we focus only on the Compute
Magnate algorithm. The dataset used is part of the social
network and Geospatial benchmark5 created at the University
of Maryland. It was also used in the IEEE Visual Analyt-
ics Science and Technology (VAST) Challenge (2009). The
dataset includes 6000 individuals and 29,888 relationships
between individuals.

Compute Magnates were proposed to motivate existing
contributors to raise the contributions of their friends. In this
simulation we assign a random contribution level to each user
which represents the percentage of their resources that they
contribute to the SoCVC. The initial combined contribution
level is set to the current active contribution rate in BOINC
(12%). In the simulation, active users (those that contribute
more than 25% of their resources) will contact a random
number of their friends in the network to encourage them
to raise their contribution levels. We model contribution and
willingness to increase one’s contribution through a disinterest
factor that decays over time. A user’s propensity to encourage
their friends is related to their current level of contribution
and their disinterest factor, and a user’s probability to increase
their contribution when asked is also related to their disinterest
factor. That is, a large contributor at a given time is considered
to be more likely to encourage their friends to contribute to the
SoCVC, and interested users are more likely to increase their
contribution when asked. The magnitude of increased contri-
bution is inversely proportional to their disinterest factor and
directly proportional to the difference between their current
contribution and their maximum contribution (100%)

5http://hcil.cs.umd.edu/localphp/hcil/vast/archive/task.php?ts id=119

Figure 7 shows the result of simulating a social network
with Compute Magnates over a 1 year period. The figure
depicts the growth of contributions with regard to varying
degrees of disinterest, as modelled by a Poisson distribution
with different � values (5, 10, 15, 20). The figure shows that
with lower disinterest factors (higher interest) that contribution
can be significantly improved, it also highlights the potential
for growth of the SoCVC when social engineering algorithms
are used. Further analysis of the social engineering algorithms
can be found in [17].

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52

A
ve

ra
ge

 U
se

r
C

o
n

tr
ib

u
ti

o
n

 (
%

)

Weeks

λ=5

λ=10

λ=15

λ=20

Fig. 7. Compute magnate simulations showing user contributions with a
disinterest factor modelled with a Poisson distribution using different � values.

IX. CONCLUSION

Volunteer computing provides an unparalleled scientific
resource for many researchers, that is only limited by the
number of volunteers contributing at any point in time. While
there are a large number of active volunteer participants (e.g.
2.5 million BOINC users) this number pales in comparison
to the number of users of social networks (e.g. 550 Million
daily Facebook users). Moreover, attracting participants is just
one of the problems facing volunteer computing projects as
they must also compete to maintain participation and increase
contributions from a static pool of expert contributors.

In this paper we have presented three key ways in which the
Social Cloud can benefit both contributors and researchers in
volunteer computing platforms. The integration of volunteer
computing within the social network gives users a single
user identity, familiar user interface, and a single application
with which to configure and manage their contributions. In
addition, the existing social network provides a structured way
to advertise projects via channels such as feeds, tweets and so
on. In our model, this infrastructure is also leveraged, using
social engineering and gamification to build community and
competition between users. Finally, existing social networks
provide a huge user base from which the application and
associated projects can recruit.

The Social Cloud for volunteer computing application has
been implemented as an integrated Facebook application to
leverage existing Facebook identities and provide a single
location to interact with one’s contributions. The backend
architecture relies on a distributed service based model which
interacts with Facebook directly to gather social information
and also acts as a BOINC Account Manager to coordinate

project accounts and resource contribution. The results in-
cluded in this paper show the basic performance attributes of
the Social Cloud application, and simulation results outlining
the potential for growth of volunteer computing resources with
the adoption of social algorithms.

Our future work includes the continued development of
the application, and once released publically, an analysis of
usage and further refinement of the social algorithms. In
particular, we hope to use the platform as a unique source of
data to analyze usage and contribution with respect to social
constructs, we will use this information to develop and study
new social engineering algorithms. In terms of the application
itself, our focus will be on dissemination to broaden our user
base. We will then concentrate on optimizing performance in
light of scale.

REFERENCES

[1] D. Anderson, “BOINC: A system for public-resource computing and
storage,” in Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, Nov 2004, pp. 4 – 10.

[2] K. Chard, S. Caton, O. F. Rana, and K. Bubendorfer, “Social cloud:
Cloud computing in social networks,” in Proceedings of the 3rd IEEE In-
ternational Conference on Cloud Computing (CLOUD), Miami, Florida,
July 2010.

[3] K. Chard, K. Bubendorfer, S. Caton, and O. Rana, “Social cloud
computing: A vision for socially motivated resource sharing,” IEEE
Transactions on Services Computing (Preprint), vol. PP, 2012.

[4] K. John, K. Bubendorfer, and K. Chard., “A social cloud for public
eresearch,” in Proceedings of the 7th IEEE International Conference on
eScience, Stockholm, Sweden, Dec 2011, pp. 363–370.

[5] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky,
“SETI@home-massively distributed computing for seti,” Computing in
Science Engineering, vol. 3, no. 1, pp. 78 –83, jan/feb 2001.

[6] A. Beberg, D. Ensign, G. Jayachandran, S. Khaliq, and V. Pande,
“Folding@home: Lessons from eight years of volunteer distributed
computing,” in IEEE International Symposium on Parallel Distributed
Processing, May 2009, pp. 1 –8.

[7] D. D. Roure, C. Goble, and R. Stevens, “The design and realisation
of the myexperiment virtual research environment for social sharing of
workflows,” Future Generation Computer Systems, vol. 25, no. 5, pp.
561–567, 2009.

[8] G. Klimeck, M. McLennan, S. P. Brophy, G. B. Adams III, and
M. S. Lundstrom, “nanohub.org: Advancing education and research in
nanotechnology,” Computing in Science and Engineering, vol. 10, pp.
17–23, Sept 2008.

[9] Z. Guo, R. Singh, and M. Pierce, “Building the polargrid portal using
web 2.0 and opensocial,” in Proceedings of the 5th Grid Computing
Environments Workshop (GCE ’09), Nov 2009.

[10] “Distributed.net,” http://www.distributed.net, 2012.
[11] D. Kramer and M. Maclnnis, “Utilization of a local grid of mac os

x-based computers using xgrid,” in Proceedings of the 13th IEEE
International Symposium on High Performance Distributed Computing,
june 2004, pp. 264 – 265.

[12] J. Venkat, “Grid computing in the enterprise with the ud metaprocessor,”
in Proceedings of the 2nd International Conference on Peer-to-Peer
Computing, 2002.

[13] “Grid republic volunteer computing,” http://www.gridrepublic.org/,
2012.

[14] “Boincstats account manager (bam!),” http://boincstats.com/en/bam/,
2012.

[15] Intel, “Progress thru processors,” http://www.facebook.com/
progressthruprocessors, June 2011.

[16] A. Mcmahon and V. Milenkovic, “Social volunteer computing,” Jorunal
of Systemics, Cybernetics and Informatics, vol. 9, no. 4, pp. 34–38, 2011.

[17] K. John, “The social cloud for public eresearch,” Master’s thesis,
Victoria University of Wellington, 2012.

