
Resource Management Using Untrusted Auctioneers in a Grid Economy

Kris Bubendorfer and Wayne Thomson
School of Mathematics, Statistics and Computer Science,

Victoria University of Wellington, New Zealand.
kris@mcs.vuw.ac.nz, wayne.thomson@mcs.vuw.ac.nz

Abstract

The CORA (Coallocative, Oversubscribing Resource Al-
location) architecture is an auction based resource reser-
vation system that makes combinatorial allocations of re-
sources to clients. The focus of this paper is on the use of
cryptographic tools in CORA to remove the need for trust
in the resource auctioneer. One of the nice properties of
this approach is that the auctioneers can be drawn from an
arbitrary pool of untrusted peers, without the need to estab-
lish pre-existing trust or restrict the role of auctioneer to a
trusted system service. This approach results in more flexi-
bility in the design of large economic systems, with the po-
tential for wide distribution of load amongst many auction-
eers. In addition, only the winners of the auction and the
prices they pay are revealed while all other bid values are
kept secret. It is our belief that future growth or commer-
cialisation of large scale Grid systems requires the provi-
sion of such mechanisms to share the wide pool of Grid bro-
kered resources such as computers, software, licences and
peripherals amongst many users and organisations. This
paper encapsulates an overview of our design, our experi-
ences of implementing two different secure auction proto-
cols and the performances that we have achieved.

1 Introduction

One of the vital components of any Grid computing in-
frastructure is the resource broker. A Grid resource broker
is effectively an arbiter for access to a Grid’s computational
resources and therefore its performance and functionality
has a wide ranging influence on the utilisation and perfor-
mance of the Grid. As the size of a Grid network increases,
the resource broker becomes a choke point and ultimately
limits the performance of, or access to, the full computa-
tional power of the Grid. Indeed if one were to envision a
truly global Grid, then such an enterprise must potentially
permit any arbitrary combination of resources and users to
interact. Market based mechanisms, such as auctions, have

often [3, 6, 7] been promoted as a solution for scalable re-
source economies because they are naturally decentralised,
efficient and produce optimal allocations. Another advan-
tage of such market based mechanisms is that they are a nat-
ural fit with the UCP (Utility Computing Providers) [10, 17]
scenario and efforts towards Grid commercialisation [9, 13].
When the resources being allocated are spread across var-
ied administrative domains and ownership, the allocations
of the resource allocator (in our case auctioneer) must pro-
vide confidence in the outcome, yet disclose as little private
valuation information as possible - especially in a competi-
tive economic environment. Thus the role of the auctioneer
must be carefully scrutinised.

In general, existing Grid resource allocations and asso-
ciated trust models are based on the knowledge that people
have about each other and their organisations. This model
suits the scientific establishment well, where there are a
small number of large well known organisations, individ-
ually possessing large collections of computing resources.
However, this model is ultimately limited in scalability by
its reliance on the friend of a friend chain for access to re-
sources. There are also no standard mechanisms to deal
with intentional or unintentional misuse of the Grid.

In the CORA (Coallocative, Oversubscribing Resource
Allocation) [1, 4] project, we are investigating an economic
management model based upon Vickrey auctions for re-
source reservation. The primary focus of the CORA archi-
tecture is to achieve higher resource utilisation [2] through
controlled oversubscription of resources to auctions than is
normally achieved in conventional resource auctions. Cen-
tral to user acceptance of a market based resource reserva-
tion system such as CORA is belief in its security. The se-
curity requirements for CORA go beyond the usual need for
confidentiality, availability, integrity and access control by
including a requirement for trustworthy auctions. A trust-
worthy auction process is central to the proper allocation
of resources. For example, what happens if the auction-
eer chooses the winner because the auctioneer’s integrity
has been subverted, or the auctioneer uses bids to collect
sensitive information for a competing bidder. The simplest

but least flexible approach is to simply trust nominated auc-
tioneers, but this blackbox approach restricts who can host
an auction thereby limiting the scalability of the underlying
Grid system.

Rather than nominating a trusted auctioneer, in CORA
we are applying cryptographic algorithms to establish trust-
worthy auctions that preserve privacy and to detect malfea-
sance. One of the significant advantages of this approach is
that the auctioneers can be drawn from an arbitrary pool of
untrusted peers, without the need to establish pre-existing
trust or restrict the role of auctioneer to a trusted system
service. Thus trust is no longer seated in the resource bro-
kers, but is derived from the cryptographic confidence em-
bodied in the trustworthy auction algorithms. While there
is considerable overhead introduced by the cryptographic
processing, this overall approach results in more flexibility
in the design of large systems – with the potential for wide
distribution of resource broking load amongst many peers.

Many of the lessons we have learnt in developing CORA
are applicable to the wider Grid community. In this pa-
per we firstly give an overview of trust in electronic auc-
tions, secondly we present the two cryptographic techniques
(based on homomorphic encryption [30] and an adaption
of Shamir’s polynomials [28]) that we have implemented,
and lastly we provide our performance measurements for
the two techniques.

2 Background

The focus of this paper is on the use of cryptographic
tools in CORA to remove the need for trust in the resource
auctioneer. However, the background as to why we need
to establish this trust is also important. Auctions are an ef-
ficient solution to the challenge of distributed resource al-
location in both economic [3, 6, 7] and non-economic [21]
resource allocation systems. Many computational auctions
adopt the 2nd price Vickrey auction protocol, i.e., the win-
ner pays the price established by the second highest bid.
This protocol is popular as the 2nd price mechanism results
in truthful bids [32], where the bid valuations reflect the
true worth to the bidder. It also has properties such as low
messaging overhead and efficiency of allocations.

When it comes to computational auctions the problem is
that most existing resource auction systems [6] focus on a
single representative resource. Indeed, it may not be possi-
ble to achieve QoS goals with single representative resource
as the basis for resource allocations. While the results of
single resource auctions are easy to compute, this represen-
tation is not realistic as execution resources form an indi-
visible set, related and conditional upon the availability of
each other. Piecewise negotiation for individual resources
will not often provide a usable result, let alone optimal allo-
cation. Game theorists term this as the combinatorial allo-

cation problem (CAP), in which a set of components have
a synergistic value that exceeds the sum of the individual
parts. Because of synergistic combinations and possible
substitutions, bidders have preferences not just for partic-
ular resources, but for collections of resources.

The Generalised Vickrey Auction (GVA) [20] extends
the original Vickrey auction protocol to address the CAP.
Solving a single GVA auction is NP-hard [26], and for this
reason there are a number of optimised variations [23, 24],
and approximations [14, 18] that reduce the computation
time. As there is no ’second-price’ in a combinatorial auc-
tion the price paid by the winner is their bid less a discount.
The discount is calculated by removing the winner from
the auction and recomputing the result. The difference be-
tween the two values is the winner’s discount. This discount
mechanism is equivalent to the 2nd price mechanism in a
non-combinatorial auction and therefore retains the desir-
able dominant strategy of truthful bidding in private value
(when a good is for consumption rather than resale) auc-
tions, that is, bidding your true value will always give the
best return regardless of other bidders strategies.

Besides the CAP, there are other problems that need to be
faced when using auction protocols for distributed resource
allocations. In particular all of the known auction proto-
cols have limitations in practice, and an exhaustive analy-
sis of these protocol considerations is detailed in [27]. In
the Vickrey auction for instance, a compromised auctioneer
can undetectably issue false bids to inflate the value of the
second bid or reduce the winner’s discount. Likewise, the
values of past bids can be collected and either used in fu-
ture auctions, or passed on to colluding bidders – “Even if
current information can be safeguarded, records of past be-
haviour can be extremely valuable, since historical data can
be used to estimate willingness to pay.” [31]. The crypto-
graphic auction algorithms in this paper focus on the Vick-
rey auction protocol and solves the problem of the lying
auctioneer and the potential for a corrupt auctioneer to re-
veal the bid values. This is achieved by hiding the informa-
tion from the auctioneers in such a way that the winners and
the prices can still be determined.

3 Establishing Trust in Auctions

Until recently there was little recourse but to design auc-
tion based allocation systems with an auctioneer as a trusted
service. However, this approach tends to centralise designs
and lacks openness, transparency and verifiability. Recently
there have been significant research efforts to determine if
an auctioneer is acting in a trustworthy manner or to even
remove the need for the auctioneer to be trusted at all. Es-
sentially trust in an auction can be established in one of four
ways:

1. Pre-existing trust (i.e., system components)

2. Reputation services (i.e., perceived trust)

3. Bid-encryption schemes (i.e., procedural trust)

4. Threshold schemes (i.e., distributed trust)

Reputation services rate the performance of an auction-
eer based on reports from the participants after the auc-
tion [8]. Trust can be delegated [15] to bootstrap new auc-
tioneers into the system. However, the problem of initial
trust remains, as does the problem of verification – how do
participants verify the auction process without revealing po-
tentially sensitive valuation information? For example, zero
knowledge proofs can be used to allow the auctioneer to
prove that it correctly calculated the winner without reveal-
ing bid values [19].

Bid encryption schemes dispense with the need to ini-
tially trust an auctioneer, indeed, the issue of whether an
auctioneer is trustworthy is no longer relevant. Here, cryp-
tographic protocols are used that make it impossible (or ex-
cessively expensive) for an auctioneer to learn anything use-
ful from, or to manipulate the outcome of, an auction. For
example, Noar [22] proposed a general method for comput-
ing any auction protocol securely including combinatorial
auctions using a method known as garbled circuits.

Threshold schemes are based upon secret sharing [28].
These schemes allow trust to be placed in a set of auction-
eers rather than a single auctioneer. As long as a certain
number (a quorum) of auctioneers are not corrupt and exe-
cute the auction protocol correctly, a minority of malicious
auctioneers cannot subvert the protocol and manipulate the
auction. For example, the bids could be encrypted using
public key cryptography and require cooperation of mul-
tiple auctioneers to decrypt the bids so the winner can be
computed [12]. The requirement for cooperation of a min-
imum number of correct auctioneers prevents the auction
being manipulated and prevents the auctioneers from learn-
ing bid values during execution of the protocol.

4 A Trustworthy Auctioneer

We have implemented two different threshold bid-
encryption schemes for CORA. The first is based on the se-
cure 1st price homomorphic auction scheme by Yokoo and
Suzuki [33] which is used to encrypt the bids while allow-
ing their use in winner determination. Distributed decryp-
tion is used to prevent malicious auctioneers learning any
bids [25]. Our initial experiences working with this proto-
col were reported in [5]. This scheme was later revised by
Suzuki and Yokoo [30] as a 2nd price auction by computing
the discount in a matrix. This implementation is not very ef-
ficient and we have since extended this 2nd price scheme to
compute the discount more efficiently utilising the dynamic
programming technique from [33]. The implementation has
also been extended to determine the prices as well as the

winners. The results that we are presenting in this paper in-
clude our new efficient discount computation, and show that
the subsequent performance improvement is considerable.

The second scheme is based on a modification of
Shamir’s [28] secret sharing polynomials using the degree
of the polynomial rather than the constant to encode the
secret [16]. This scheme is then extended in [29] for 1st
price combinatorial auctions. The key to both schemes is in
the representation of the bid values. As we have published
our early work on the homomorphic scheme in [5], we will
dedicate more explanation in this paper to the polynomial
scheme.

4.1 Homomorphic Representation

The SGVA protocol represents values as vectors com-
posed of elements encrypted using a homomorphic crypto-
graphic scheme, and defines operations that allow addition
and comparison without revealing the values themselves.
Each element in the vector is either the encryption of the
value one or a common public value chosen by the auction-
eers. The value encoded in the vector is equal to the number
of encrypted common public values. Note that each element
may represent a unit larger than 1. For example, an auction
with a vector of size 10 could have bids $1 to $10 or $10
to $100 using a $1 or $10 unit value respectively. A bid-
der’s weight collection is the set of all its vectors for each
possible combination of goods in the auction.

Addition of two vectors depends upon the use of a ho-
momorphic cryptographic scheme that allows addition of
encrypted values without needing to decrypt the values.
Our implementation uses the Elgamal public key encryption
scheme [11] and allows two vectors to be added together by
componentwise multiplication of their vector elements. Be-
sides adding two vectors representing bid values we also
need to add constants. An efficient approach is to left shift
vector components as many times as the value of the con-
stant. Addition of a random constant is used to hide in-
dividual bid values while allowing auctioneers to calculate
the maximum bid value from the collection of bids.

Winner computation requires comparing bid values, but
comparison of two vectors cannot be done directly because,
due to randomisability, two vectors representing the same
value will contain different component values. Therefore
the SGVA protocol performs comparison as a two-step pro-
cess. In step 1, all the values to be compared are multiplied
together to find the largest. In step 2, the result is decrypted
one element at a time from left to right until we find an ele-
ment equal to one. The position of this element (or properly
the element one to its left) is the greatest price from the col-
lection of vectors. This reveals the maximum value without
revealing individual values.

4.2 Polynomial Representation

As was stated earlier, the polynomial representation en-
codes the bid values in the degree of a polynomial. Un-
fortunately a good description of the polynomial 1st price
auction is lacking in the literature, hence we include here
our interpretation of the scheme. The protocol is described
in detail in the following five steps.

Step 1: An auction initiator publishes an initial graph of
the auction and each auctioneer publishes a unique resolv-
ing value. The initial auction graph contains a node for each
combination of goods with edges between nodes which can
be bid on. A constant value c is published for weight res-
olution and a threshold value t is published that is used to
prevent interference from less than t corrupt auctioneers.

Example: Ten evaluators {e1, e2, . . . e9, e10} publish re-
solve values {1, 2, 3, . . .8, 10}. The auction initiator pub-
lishes an auction graph containing the three available com-
binations ({g1}, {g2}, {g1, g2}) of 2 goods (Fig. 1).

{g2} {g1}

{g1} {g2}

{}

{g2}

{g1}

{g1,g2} 0

1

2

3

c = 100
t = 1

{g1,g2}

Figure 1. An initial graph for two resources.

Step 2: Bidders calculate their valuations by iterating
through each edge in the published graph. The valuation
is added to a threshold modifier t(|j − i|) to form the final
weight w. A bid is created for each auctioneer by generating
a random polynomial of degree w and constant 0 and solved
using the auctioneer’s resolve value. The solved value s is
then sent with the node identifiers to the auctioneer. As each
auctioneer receives bids, a new edge is created on their local
copy of the graph from j to i with weight s.

Example: Evaluations and bid weights for two bidders
b0 and b1 are given in table 1. The polynomials used in
this example have coefficients of one, which compromises
security but makes the examples simpler. b0 generates a
set of polynomials corresponding to the weights including
x7 +x6 +x5 +x4 +x3 +x2 +x and x2 +x for edges (3, 0)
and (1, 0) respectively. The resolved polynomials sent to
evaluators for both bidders are shown in table 2.

Step 3: Each evaluator computes their share of the op-
timal value of the auction, which is the sum of bidder valu-

Edge Goods b0 b1

valuation w valuation w
(n3, n2) {g1} 1 2 1 2
(n1, n0) {g1} 1 2 1 2
(n3, n1) {g2} 2 4 1 3
(n2, n0) {g2} 2 4 1 3
(n3, n0) {g1, g2} 4 7 2 5

Table 1. Bidder evaluations for two resources.

Evaluator (3, 2) (3, 1) (2, 0) (1, 0) (3, 0)
b0

e1 2 4 4 2 7
e2 6 30 30 6 254
.
e9 90 7380 7380 90 5380839
e10 110 11110 11110 110 11111110

b1

e1 2 3 3 2 5
e2 6 14 14 6 62
.
e9 90 819 819 90 66429
e10 110 1110 1110 110 111110

Table 2. Bids created by b0 and b1.

ations on the greatest path through their graph. Two prop-
erties of polynomials make this possible [29]: the degree of
the sum of two polynomials is equal to the larger of the two
and the degree of the multiplicative sum of two polynomi-
als is equal to the sum of the degrees. Therefore the cost
of a path is discovered by multiplying its bids together, and
the greatest cost path is found by adding alternative paths
together.

The most efficient way of calculating a share is to iter-
atively calculate the cost of each node from root node 0.
The node cost f(x) is the sum of the cost of all alternative
paths to node 0 from node x. The cost of a path from node
x through x − 1 where the nodes are connected by at least
one edge is f(x − 1) multiplied by the sum of the cost of
all alternative edges between the nodes. Note that f(0) is
always set as 1.

Example: Evaluator e1 calculates it’s share of the node
costs.

f(1) = 2 + 2 = 4
f(2) = 4 + 3 = 7
f(3) = ((4 + 3) ∗ 4) + ((2 + 2) ∗ 7) + (7 + 5) = 68

Node costs for all evaluators are given in table 3.
Step 4: Binary search is used to discover the optimal

value. As the bids are distributed amongst the evaluators,

{}{g1,g2} 0

{g1}

1

{g2}

2

3

b1,3

b0,4

b0,7

b1,5

b1,2

b0,2

b0,2

b1,2 b1,3

b0,4

Figure 2. Graph maintained by e1 after bids
placed.

Evaluator f(1) f(2) f(3)
e1 4 7 68
e2 12 44 1372
.
e9 180 8199 8398908
e10 220 12220 16599020

Table 3. Node cost for all evaluators.

valuations must be reconstructed by interpolating the shares
published by evaluators. Using Lagrange interpolation a
polynomial can be recovered with a degree equal to the op-
timal value o. However the degree of the polynomial is one
less than the number of shares used, so it is the number of
shares to publish which needs to be discovered. A slightly
modified version of binary search is used to find the cor-
rect number of shares. The initial smallest possible optimal
value u is 0 and the maximum optimal value m is E − 1
which are both used to determine the initial search value. A
recursive binary search calculates the current search value
d = #(m−u)/2$+u and requests d+1 evaluators publish
masked shares. Masks are created by M masking agents
who generate a random polynomial of degree d + 1 and
constant c. If the Lagrange polynomial using d + 1 shares
has a constant equal to M ∗ c, then o ≤ d and m becomes
d − 1. If the constant is not equal to m ∗ c the o > d and
u becomes d + 1. The result is o = d where o ≤ d and
o > d − 1.

Example: The minimum optimal value is set at 0, the
maximum at 9 and so initially d = 4. Masks are sent to
five evaluators from the mask publishers. The masks are
polynomials of degree 4 and coefficient 1 (for simplicity)
which are resolved with the respective evaluator’s resolve

value. Each of the ten available mask publishers generate
the masking polynomial x4 + x3 + x2 + x and send masks
104, 130, 220, 440, 880 to e1, e2, e3, e4, e5. The evaluators
add the total masking value to their share of the optimal
value and publish it. The published shares are:

e1 (1, 1108)
e2 (2, 2672)
e3 (3, 13474)
e4 (4, 61528)
e5 (5, 222560)

The Lagrange polynomial from these five points is
1988x4−15211x3+46185−60334x2+28480. As the con-
stant is not equal to 100, o > 4. Table 4 shows the binary
search for the optimal value with o = 7.

d Constant
4 28480
7 1000
5 −17720
6 6040

Table 4. Using binary search to find the opti-
mal value.

Step 5: Once the optimal value is discovered an opti-
mal path can be traced to discover an optimal allocation of
goods. There can be multiple optimal paths (optimal alloca-
tions), but for the purpose of this scheme it does not matter
which optimal allocation is used. As the cost of an opti-
mal node nx is the greatest path cost from nx to the root
node, the cost of an optimal edge added to the cost f(y) of
connected node y is f(x). Starting with x = N − 1, and
f(N − 1) = o, an optimal edge is found by iteratively eval-
uating the cost of each edge from x added to the cost of the
destination node. Binary search as in step four is used to
check edges from x for f(x). Edge costs will differ from
the actual cost and are modified accordingly by subtracting
the threshold modifier.

Example: The edges from n3 are searched and all but the
edge by b0 on (n3, n0) are not equal to f(3). Once this edge
is found the search ends because the destination is n0. The
actual cost is found as 7− (1 ∗ (3−0)) = 4 and the optimal
allocation is published as b0 wins {g1, g2} for $4.

5 Polynomial Evaluation

In this section, we explore the performance of the poly-
nomial algorithm to determine the sensitivity of the algo-
rithm to the four main variables: the number of bidders,
the threshold parameter, the number of resources being auc-
tioned, and the permitted bid range. The selection of these

values has an impact on the tractability of the polynomial al-
gorithm. Each of the performance results was measured on
a commodity Dell with a 128MB JVM, Java 1.5, 3GHz Pen-
tium 4 with a 1Gbit Ethernet. Other than the variable under
test, the parameters selected for the performance measure-
ments were: ten bidders, three items, max bid of 5, thresh-
old set to 1 and a total of 8 graph nodes.

5.1 The Number of Bidders

The number of bidders in an auction is one variable that
is outside the control of the auction. However, it is worth
noting that as a minimum, a Vickrey auction needs at least
four bidders to provide an optimal allocation[32].

Figure 3. An increase in the number of bidders
has a linear effect on elapsed auction time.

Figure 3 shows that as the number of bidders increases,
the elapsed auction time experiences linear growth. As each
bidder is added the only impact is that additional edges are
added to the auctioneers’ graphs, the effect is a small linear
time increase.

5.2 The Threshold Parameter

The threshold t controls the tolerance of the scheme to
corrupt auctioneers. As the threshold is increased the im-
pact on the elapsed auction time is exponential, as shown in
figure 4. This is a direct result of storing the secret in the de-
gree of the polynomial and therefore increasing the thresh-
old increases the degree of the polynomial. This increases
the time to perform the Lagrange interpolation due to the
increase in number of shares required to solve polynomials
of increasing degree. Consequently, one of the problems
with this approach is that any increase in t results in a larger
number of auctioneers, which is an undesirable cyclic de-
pendency.

Figure 4. The effect of increasing threshold (t)
on elapsed auction time.

5.3 Maximum Bid

Increasing the size of the maximum bid allows for finer
grained bids to be made, otherwise we must scale the bid-
ders’ valuations within a limited range. A larger bid results
in a polynomial of higher degree. This has similar perfor-
mance implications to increasing the threshold and for the
same reasons. As shown in figure 5 the effect on elapsed
auction time is exponential.

Figure 5. The effect of increasing maximum
bid on elapsed auction time.

5.4 Combinations of Goods

The number of available goods for sale in a combinato-
rial auction is usually the major performance bottleneck. An
auction with two items means there are three possible com-
binations that need to be computed and evaluated, adding a
third item increases the number of combinations to seven.
This growth of combinations is fn = 2n − 1, and solving
such a combinatorial problems is always NP-hard.

Figure 6 compares the overall results of all three of our
implementations. As can be seen, the polynomial imple-
mentation does not perform as well as either the 1st or 2nd

price homomorphic implementations. It is also worth point-
ing out that the 2nd price homomorphic auction performs
better with 5 or more resources than the 1st price homomor-
phic auction - due to our most recent dynamic programming
implementation.

The significance of these results is that they show that
we can compute the combinatorial 2nd price allocations of
up to five goods within a reasonable time – 3.4 seconds for
5 goods or 11 seconds for 6 goods. This gives us a working
baseline on which to apply approximations to the CAP, that
we intend to incorporate into future iterations of our system.

Figure 6. The effect of increasing the number
of resources on winner determination time

6 Conclusions and Future Work

The essential ideal behind all trustworthy auction proto-
cols is to cryptographically hide part of the bid informa-
tion from the auctioneers, while still permitting the auc-
tion protocol to determine the winners and their combina-
torial allocations. This approach removes the need for pre-
existing trust and enables an auction to be held by any adhoc
group of auctioneers who are not individually trusted. One
of the advantages of adopting trustworthy auction protocols
in CORA and other Grid resource management systems is
to provide the potential for scalability through a wide dis-
tribution of auction load amongst many peer auctioneers.
However, these cryptographic approaches are expensive and
when used in combination with combinatorial auctions limit
the number of resources to approximately seven. Nonethe-
less, this is a significant improvement over the use of a sin-
gle representative resource for scheduling decisions.

The results in this paper have focused on the perfor-
mance of the polynomial scheme – while we are able to

extend the polynomial scheme to compute the 2nd price
discount, its 1st price performance indicates that this is
not worthwhile. It has also become clear that the poly-
nomial scheme has a number of disadvantages when com-
pared to the homomorphic schemes. In particular, the num-
ber of auctioneers must increase as the security or the size
of the bids are increased. It is this property that is signifi-
cantly detrimental to its overall performance. However, it
is clear that a trustworthy auction scheme can be imple-
mented within a reasonable performance envelope using the
2nd price homomorphic scheme.

As part of our future work we intend to; utilise approx-
imations to help reduce the overhead incurred when com-
puting the combinatorial allocations; develop a means for
bidders to verify that the auction has produced the expected
results; develop a hybrid feedback system so that only well
behaved and well performing auctioners populate the auc-
tioneer pool; and implement and experiment with other
cryptographic approaches such as garbled circuits.

7 Acknowledgments

This work exists as part of a larger research effort, and
as such includes indirect contributions from a number of
people. In particular Ian Welch has co-supervised research
students and has co-authored related papers.

References

[1] K. Bubendorfer. Improving Resource Utilisation in Market
Oriented Grid Management and Scheduling. In To appear
in proceedings of the 4th Australasian Symposium on Grid
Computing and e-Research (AusGrid 2006), volume 48, Ho-
bart, Tasmania, Australia, January 2006.

[2] K. Bubendorfer. Improving resource utilisation in market
oriented grid management and scheduling. In Proceedings
of the 4th Australasian Symposium on Grid Computing and
e-Research, January 2006.

[3] K. Bubendorfer and J. H. Hine. Resource Discovery and
Negotiation in the NOMAD System. In in Proceedings of
ACSC2005, The Twenty Eigth Australasian Computer Sci-
ence Conference, volume 27, Newcastle, NSW, Australia,
January 2005.

[4] K. Bubendorfer, P. Komisarczuk, K. Chard, and A. De-
sai. Fine Grained Resource Reservation and Management in
Grid Economies. In Proceedings of the 2005 International
Conference on Grid Computing and Applications, pages 31–
38, Las Vegas, Nevada, USA., June 2005.

[5] K. Bubendorfer, I. Welch, and B. Chard. Trustworthy Auc-
tions for Grid-style Economies. In In the proceedings of the
6th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid06), volume 1, pages 386–390, Singa-
pore, May 2006. IEEE.

[6] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Eco-
nomic models for resource management and scheduling in

Grid computing. Concurrency and Computation: Practice
and Experience, 14:1507–1542, 2002.

[7] C.-H. Chien, P. H.-M. Chang, and V.-W. Soo. Market-
Oriented Multiple Resource Scheduling in Grid Comput-
ing Environments. In Proceedings of Advanced Information
Networking and Applications (AINA’05), volume 1, pages
867–872, Taipei,, March 2005.

[8] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati,
and F. Violante. A reputation-based approach for choosing
reliable resources in peer-to-peer networks. In Proceedings
of the 9th ACM conference on Computer and communica-
tions security, pages 207–216, New York, NY, USA, 2002.
ACM Press.

[9] T. Dimitrakos, D. M. Randal, F. Yuan, M. Gaeta, G. Laria,
P. Ritrovato, B. Serhan, S. Wesner, and K. Wulf. An Emerg-
ing Architecture Enabling Grid Based Application Service
Provision. In Seventh International Enterprise Distributed
Object Computing Conference (EDOC’03), pages 240–251,
Brisbane, Queensland, Australia, September 2003.

[10] P. Eerola, B. Konya, O. Smirnova, T. Ekelof, M. Ellert, J. R.
Hansen, J. L. Neilsen, A. Waananen, A. Konstantantinov,
and F. Ould-Saada. Building a Production Grid in Scandi-
navia. IEEE Internet Computing, 7(4):27–35, 2003.

[11] T. Elgamal. A public key cryptosystem and signature
scheme based on discrete logarithms. IEEE Transactions
on Information Theory, 31(4):69–472, July 1985.

[12] M. Franklin and M. Reiter. The Design and Implementation
of a Secure Auction Service. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 2–14, Oakland,
California, USA., 1995. IEEE Computer Society Press.

[13] S. Graupner, V. Kotov, A. Andrzejak, and H. Trinks.
Service-Centric Globally Distributed Computing. IEEE In-
ternet Computing, 7(4):36–43, 2003.

[14] M. M. Halldórsson. Approximations of Weighted Indepen-
dent Set and Hereditary Subset Problems. In Computing
and Combinatorics, 5th Annual International Conference,
COCOON 99, Lecture Notes in Computer Science 1627
Springer, pages 261–270, 1999.

[15] L. Kagal, S. Cost, H. Chen, T. Finin, and Y. Peng. An Infras-
tructure for Distributed Trust Management. In Workshop on
Norms and Institutions in Multiagent Systems, Autonomous
Agents, Montreal, Canada., may 2001.

[16] H. Kikuchi. (M + 1)st-Price auction protocol. In FC2001:
Proceedings of the Fifth International Conference on Fi-
nancial Cryptography, volume LNCS 2339, pages 351–363,
Grand Cayman, February 2001.

[17] P. Komisarczuk, K. Bubendorfer, and K. Chard. Enabling
virtual organisations in mobile networks. In IEE 3G2004
Conference, pages 123–127, London, UK, October 2004.

[18] D. Lehmann, L. I. Oćallaghan, and Y. Shoham. Truth revela-
tion in approximately efficient combinatorial auctions. Jour-
nal of the ACM, 49(5):577–602, 2002.

[19] H. Lipmaa, N. Asokan, and V. Niemi. Secure vickrey auc-
tions without threshold trust. In M. Blaze, editor, Financial
Cryptography, volume 2357 of Lecture Notes in Computer
Science, pages 87–101. Springer, 2002.

[20] J. K. MacKie-Mason and H. R. Varian. Generalized Vickrey
Auctions. Working paper, University of Michigan, 1994.

[21] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard.
Enterprise: A Market-like Task Scheduler for Distributed
Computing Environments. In H. B.A, editor, The Ecology
of Computation, pages 177–205. Elsevier Science Publish-
ers (North-Holland), 1988.

[22] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auc-
tions and mechanism design. In EC ’99: Proceedings of the
1st ACM conference on Electronic commerce, pages 129–
139, New York, NY, USA, 1999. ACM Press.

[23] N. Nisan and A. Ronen. Computationally feasible VCG
mechanisms. In Proceedings of the 2nd ACM conference on
Electronic commerce, pages 242–252, New York, NY, USA,
2000. ACM Press.

[24] D. C. Parkes. An Iterative Generalized Vickrey Auction:
Strategy-Proofness without Complete Revelation. In Pro-
ceedings of the AAAI Spring Symposium on Game Theoretic
and Decision Theoretic Agents, CA, USA, Mar. 2001.

[25] K. Peng, C. Boyd, E. Dawson, and K. Viswanathan. Five
sealed-bid auction models. In CRPITS ’03: Proceedings of
the Australasian information security workshop conference
on ACSW frontiers 2003, pages 77–86, Darlinghurst, Aus-
tralia, Australia, 2003. Australian Computer Society, Inc.

[26] M. H. Rothkopf, A. Pekec̆, and R. M. Harstad. Computation-
ally Manageable Combinatorial Auctions. Technical Report
95-09, DIMACS, Center for Discrete Mathematics and The-
oretical Computer Science, Rutgers, USA, Apr. 1995.

[27] T. Sandholm. Limitations of Vickrey Auction in Computa-
tional Multiagent Systems. In In Proceedings of the Second
International Conference on Multiagent Systems (ICMAS-
96), Kyoto, Japan, pages 299–306, December 1996.

[28] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[29] K. Suzuki and M. Yokoo. Secure Combinatorial Auctions by
Dynamic Programming with Polynomial Secret Sharing. In
FC2002: Proceedings of the Sixth International Conference
on Financial Cryptography, volume LNCS 2357, pages 44–
56, Southampton, Bermuda, March 2002.

[30] K. Suzuki and M. Yokoo. Secure generalized vickery auc-
tion using homomorphic encryption. In Financial Cryptog-
raphy, 7th International Conference, FC 2003, volume 2742
of Lecture Notes in Computer Science. Springer, 2003.

[31] H. R. Varian. Economic Mechanism Design for Computer-
ized Agents. In Proceedings of Usenix Workshop on Elec-
tronic Commerce, July 1995.

[32] W. Vickrey. Counterspeculation, Auctions, and Competitive
Sealed Tenders. The Journal of Finance, 16(1):8–37, 1961.

[33] M. Yokoo and K. Suzuki. Secure Multi-agent Dynamic Pro-
gramming based on Homomorphic Encryption and its Ap-
plication to Combinatorial Auctions. In Proceedings of the
first joint International Conference on Autonomous Agents
and Multiagent Systems, Bologna, Italy, July 2002. ACM.

