
Cost-Aware Elastic Cloud Provisioning
for Scientific Workloads

Ryan Chard∗, Kyle Chard†, Kris Bubendorfer∗, Lukasz Lacinski†, Ravi Madduri† and Ian Foster†
∗School of Engineering and Computer Science, Victoria University of Wellington
†Computation Institute, University of Chicago & Argonne National Laboratory

Abstract—Cloud computing provides an efficient model to host
and scale scientific applications. While cloud-based approaches
can reduce costs as users pay only for the resources used,
it is often challenging to scale execution both efficiently and
cost-effectively. We describe here a cost-aware elastic cloud
provisioner designed to elastically provision cloud infrastructure
to execute analyses cost-effectively. The provisioner considers
real-time spot instance prices across availability zones, leverages
application profiles to optimize instance type selection, over-
provisions resources to alleviate bottlenecks caused by oversub-
scribed instance types, and is capable of reverting to on-demand
instances when spot prices exceed thresholds. We evaluate the
usage of our cost-aware provisioner using four production scien-
tific gateways and show that it can produce cost savings of up
to 97.2% when compared to naı̈ve provisioning approaches.

I. INTRODUCTION

Scientific researchers routinely leverage commercial cloud
computing providers as an alternative to using in-house re-
sources [1]. The motivation for so doing is typically the
potential for reduced infrastructure costs and support for
elastic scalability, therefore improving both the scale and speed
of scientific discovery. However, taking advantage of these
features is non-trivial as users must provision resources while
taking into account aspects such as instance types, availability
zones, and pricing models. Naı̈ve provisioning approaches can
result in unnecessarily high costs [2].

We present here a multi-faceted cost-aware elastic resource
provisioner that elastically provisions cloud computing re-
sources. The provisioner monitors jobs queued for execution.
When queue conditions meet predefined conditions, it requests
and configures new cloud instances to execute waiting jobs.
The provisioner is equipped to balance static and dynamic
pricing models, such as on-demand and spot pricing supported
by Amazon Web Services (AWS). On-demand instances are
offered at a static price, whereas spot instances are offered
at a fluctuating price that varies based on real-time demand.
To increase the number of instance types considered the
provisioner matches job requirements with suitable instance
types. Under some situations the provisioner leverages on-
demand instances to increase reliability and to avoid abnor-
mally high spot prices. It also over-provisions instances to
avoid bottlenecks associated with particular instance types; as
this approach can sometimes result in unused instances, it also
dynamically assigns unused instances to waiting jobs.

We have evaluated the provisioner with workloads from
four production Globus Galaxies-based [3] gateways. Globus

Galaxies is a cloud-based platform for creating Software-as-
a-Service gateways. It combines the Galaxy [4] workflow
engine, HTCondor [5] job submission system, Globus data
management [6] capabilities, and AWS Elastic Compute Cloud
(EC2) to provide an integrated analysis platform to researchers
across domains. We evaluate the provisioner by comparing the
total cost of workload execution when different instance and
availability zones are considered. Our results show that cost-
aware provisioning approaches can provide monetary savings
of up to 97.2% when compared to a baseline naı̈ve approach.

The remainder of this paper is organized as follows. We
discuss related work in Section II. In Section III we present the
cost-aware provisioning algorithm. In Section IV we evaluate
the provisioner on real-world scientific analysis workloads.
Finally, we summarize our contributions in Section V.

II. RELATED WORK

Many scientific computing applications leverage cloud re-
sources to host computing applications [7], [8] and serve
science gateways [9] to researchers. The ability of the cloud
to scale elastically to meet the requirements of scientific
research has frequently been demonstrated. However, the need
to provision cost-effectively the required cloud resources is
often overlooked.

Cost-minimization can be crucial to the effective use of
cloud resources. Others have proposed provisioning algorithms
that mix static, dynamic, and priority-based instance selection
and attempt to schedule workloads efficiently over dynam-
ically provisioned resource pools [10]. These investigations
show that significant benefits can be obtained with respect
to utilization, performance, and failure reduction. However,
in contrast to the work presented here, these investigations
focused on a single instance type and constant price model.

Cost-aware approaches have been applied to auto-scaling
schedulers designed to meet dynamic deadlines [11]. Such
approaches have been shown to provide both cost savings and
improved resource utilization. Similarly, cost-aware scheduling
approaches can provide improved reliability when deploying
applications across clusters composed of spot instances [12].

III. COST-AWARE PROVISIONING

Our cost-aware provisioner monitors a job queue and creates
new EC2 instances to satisfy workload requirements. Where
possible the provisioner uses application profiles that describe
compute, disk, and memory requirements of jobs to restrict

2015 IEEE 8th International Conference on Cloud Computing

2159-6190/15 $31.00 © 2015 IEEE

DOI 10.1109/CLOUD.2015.130

971

the set of possible instance types. It uses the EC2 APIs to
monitor real-time spot instance prices, and makes selection and
allocation decisions based on predefined policies. Algorithm 1
outlines the algorithm used to provision resources.

Algorithm 1 EC2 Instance Provisioning
1: timeout = /* configurable */
2: threshold = /* configurable */
3: while true do
4: /* periodically run */
5: idleJobs = jobs in HTCondor queue
6: for job in idleJobs do
7: if job not yet allocated then
8: if job queue time > timeout then
9: launch on-demand instance

10: cancel or migrate outstanding spot requests for job
11: else
12: eligibleIns = instance types that meet job profile
13: for instance in eligibleIns do
14: onDemandP = on-demand price for instance
15: minZoneSpotP = min zone spot price for instance
16: if minZoneSpotP > threshold × onDemandP then
17: instancePrice = onDemandP
18: else
19: instancePrice = minZoneSpotP
20: end if
21: end for
22: sort eligibleIns by instancePrice
23: select instance with lowest instancePrice
24: launch instance
25: end if
26: else
27: cancel or migrate outstanding spot requests for job
28: end if
29: end for
30: end while

A. Selecting suitable instance types
Cloud providers offer a variety of different instance types,

each designed to meet the computational requirements of
different applications. For example, Amazon EC2 offers 28
different instance types, each at a different price. Scientific
applications also vary with respect to their compute, mem-
ory, disk, and I/O requirements. For example, analysis of
applications included in four Globus Galaxies gateways shows
that different applications can require between 4 to 32 CPUs,
and from small to large memory and disk. Thus, not all
applications can execute on all instance types; furthermore,
each individual application makes the most cost-effective use
of a specific instance when it requirements are aligned with
that specific instance’s capabilities.

In order to match applications with appropriate instance
types we first define application profiles. We use HTCon-
dor as our scheduler, and thus we can use ClassAds to
express application requirements [13]. To do so, we extracted
job execution information from workflow logs and manually
constructed basic application profiles for almost 50 of the
most frequently used applications. The provisioner uses these
profiles to filter the list of possible instance types to only
those that are suitable for the given application (Line 12).

The provisioner is currently able to evaluate 14 different EC2
instance types based on application CPU, disk, and memory
requirements. If no profiles are available for an application, we
use instead a default instance type that is capable of satisfying
the requirements of any Globus Galaxies application.

B. Comparing across instance types and availability zones

AWS, like many cloud providers, offers several acquisition
and pricing models with different service levels. On-demand
instances are offered at a static advertized hourly rate and
are guaranteed to be available for the duration of the lease.
Spot instances are offered at a fluctuating price based on
real-time demand. A user bids the maximum price that they
are prepared to pay for an instance. An instance is supplied
immediately, at an initial price equal to the spot price, if the
spot price is less than the bid price. The user is then charged
for the instance, while it is running, at a rate per unit time
determined by the fluctuating spot price, except that if that
price exceeds the bid price, the instance is terminated. Within a
particular Amazon EC2 region instances are offered in several
availability zones—distinct locations engineered to be isolated
from one another. Instance prices may differ significantly
between availability zones based on supply and demand.

Our cost-aware provisioner uses AWS APIs to retrieve real-
time spot and on-demand instance prices across availability
zones. After filtering the list for suitable instance types (Line
12), the provisioner determines the current price for each
instance type in each availability zone (Line 15). It orders
instance types by cost and requests the cheapest instance
(Line 22-24). It may therefore select a faster instance than
is necessary if the cost is lower than the best match. As
some applications are more sensitive to termination (e.g., long-
running applications) the provisioner can be pre-configured
with default bidding policies that determine what acquisition
model to use: on-demand, spot, or a combination of both.

C. Over-provisioning instance requests

Spot instances are inherently unreliable as the market price
varies with demand and provisioned instances are terminated if
the spot price exceeds the bid price. High degrees of contention
for a particular instance type can rapidly raise the spot price
of that instance type, in one or more availability zones. Often,
such contention also results in significant delays in provision-
ing new instances. To reduce the affect of high contention the
provisioner is equipped to over-provision instance requests by
attempting to request more instances than are required (Line
7). The provisioner monitors outstanding instance requests and
when one is satisfied unneeded requests are either terminated
or migrated to another waiting job (Lines 10 and 27). Over-
provisioning improves the overall throughput of the gateway
by reducing the risk of having to wait extended periods of
time for requests to be satisfied.

D. Reverting to to on-demand instances

As spot markets are based on demand the price of com-
monly used instance types can sometimes greatly exceed the

972

on-demand price. This situation arises in the case of the
m2.4xlarge and r3.8xlarge instances, which frequently exceed
$6 and $14, respectively, compared to their on-demand prices
of $0.98 and $2.80. In order to mitigate the risks associated
with spot market volatility (i.e., increased costs and delayed
requests), the provisioner is designed to revert to on-demand
instances based on a customizable timeout and threshold
(Lines 8-10). If the request timeout is reached, the provisioner
requests the cheapest on-demand instance that can satisfy the
job’s requirements. Similarly, if spot prices exceed on-demand
prices by the threshold, it will revert to on-demand instances
(Lines 16-17). Thus, the threshold is a proxy for maximum bid
price irrespective of the instance type selected. Importantly, the
provisioner will only revert to on-demand instances after other
instance types and availability zones are considered.

IV. EVALUATION

We used four workflow traces, each from a production
Globus Galaxies gateway, to evaluate the provisioner. To iso-
late the effect of individual provisioning techniques, we further
evaluated the role of varying the scope of the provisioner
search process to either a single instance types or any one of 14
different instance types, and to either a single availability zone
(us-east-1c), or any availability zone that supports the desired
instance type. This gave us four search scopes, as follows:

• Single instance, single availability zone (SI-SAZ): A
single instance type (m2.4xlarge) in a single availability
zone (us-east-1c).

• Multi-instance, single availability zone (MI-SAZ): Any
suitable instance type, in a single availability zone (us-
east-1c).

• Single instance, multi-availability zone (SI-MAZ): A
single instance type (m2.4xlarge), across all availability
zones.

• Multi-instance, multi-availability zone (MI-MAZ):
Any suitable instance type, across all availability zones.

To avoid spot instance termination and establish a worst-
case scenario, we set the spot instance bid price to $6.561 for
each scope. The cost of executing a workload is computed by
calculating the price (using advertized on-demand prices and
historical spot prices) over the period of execution.

A. Workload
To evaluate the provisioner under realistic conditions, we

gathered execution traces from four Globus Galaxies gateways.
These traces include over 12,000 job executions over a 60-day
period. Fig. 1 shows the number of jobs executed each day for
each gateway. The figure highlights the varying and volatile
usage patterns of these gateways, which we view as providing
a good basis for evaluation under various load conditions.

B. Cost
We used the gateway execution traces to compute the

cumulative cost of the four search scopes for each of the four

1$6.56 is the maximum spot price during the period of evaluation.

0

500

1000

1500

5 15 25 35 45 55
Days

Nu
m

be
r o

f J
ob

s

Gateway
1
2
3
4

Fig. 1. The number of jobs executed each day over a 60 day period.

1

10

100

1000

10000

5 15 25 35 45 55
Days

Co
st

 ($
)

Gateway
1
2
3
4

Fig. 2. The cost of the naı̈ve and cost-aware provisioner for each of the
monitored gateways over a 60 day period on a logarithmic scale.

gateways. Fig. 2 shows the cost of using the SI-SAZ approach
(solid line) compared with the MI-MAZ, approach (dotted
line) for each gateway. The figure highlights the significant
cost savings that can be achieved by the provisioner. TABLE I
presents the breakdown of the four provisioning strategies
when applied to each of the gateways. The savings between
the SI-SAZ and MI-MAZ approaches range between 30.9%
and 97.2%, with an average cost reduction of 77.8%.

TABLE I
TOTAL 60 DAY COST COMPARISON BETWEEN GATEWAYS

Gateway SI-SAZ SI-MAZ MI-SAZ MI-MAZ
1 $343.08 $250.87 $237.26 $237.22
2 $29.93 $3.83 $1.92 $1.92
3 $23,720.82 $21,532.29 $670.32 $665.03
4 $183.04 $23.69 $15.30 $18.77
Total $24,276.86 $21,810.67 $924.78 $922.93

Fig. 3 shows the cumulative cost across all four gateways.
Note the significant savings achieved by the MI-SAZ and MI-
MAZ approaches when compared with their single-instance

973

10

100

1000

10000

5 15 25 35 45 55
Days

Co
st

 ($
)

SI-SAZ
SI-MAZ
MI-SAZ
MI-MAZ

Fig. 3. The total cumulative cost of operating four Globus Galaxies gateways
with different provisioner search scopes over a 60 day period on a logarithmic
scale.

alternatives. An overall cost reduction of $23,353, or 96.1%,
is achieved between the SI-SAZ and MI-MAZ scopes. Un-
expectedly, the advantage of considering multiple availability
zones in addition to multiple instances types is relatively
insignificant, with less than $2.00 or 0.01% difference between
the MI-SAZ and MI-MAZ scopes.

C. Reverting to On-demand Instances

To avoid prolonged job queuing times when spot resources
are not immediately available, the provisioner reverts to using
on-demand instances if a configurable timeout is exceeded.
To assess these capabilities, we projected the cost of using
various timeouts across the four gateways, based on historical
spot instance prices. The results are shown in TABLE II. We
only consider jobs where a new instance is launched.With a
five minute threshold, the total cost increases by over 650%,
or $6959.77. Timeout values of 10, 15, and 20, minutes result
in approximately double the cost.

TABLE II
THE COST OF REVERTING TO ON-DEMAND INSTANCES WITH VARIOUS

TIMEOUT VALUES

Timeout ∞ 5 10 15 20
Cost 922.93 6959.77 2239.87 2001.98 1960.04

V. SUMMARY

Here we presented a cost-aware elastic provisioner that is
capable of elastically provisioning cloud resources on-demand.
The provisioner is designed to monitor a job submission
queue and provision cloud instances based on pre-defined
policies. It is able to select suitable instance types to host a
given application based on application profiles, select the most
cost-effective instance type across availability zones using
on-demand and spot prices, over-provision resources when
instances are highly contested, and revert to stable on-demand

instances when spot instance prices are volatile or requests are
delayed.

We demonstrated, via analysis of four production Globus
Genomics gateways, that our cost-aware provisioner is able
to reduce costs when compared with the existing naı̈ve provi-
sioning approach. Our results show that increasing the search
scope to consider additional instance types and availability
zones results in a 97.2% reduction in costs.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Department
of Energy under contract DE-AC02-06CH11357 and the NIH
under contracts 1U54EB020406-01 Big Data for Discovery
Science Center and R24HL085343 Cardiovascular Research
Grid. We acknowledge generous research credits provided by
Amazon Web Services that helped support our work. We also
appreciate the support of the Globus and Galaxy teams.

REFERENCES

[1] D. Lifka, I. Foster, S. Mehringer, M. Parashar, P. Redfern, C. Stewart,
and S. Tuecke, “XSEDE cloud survey report,” Technical report, National
Science Foundation, USA, Tech. Rep., 2013.

[2] S. Yi, A. Andrzejak, and D. Kondo, “Monetary cost-aware checkpointing
and migration on amazon cloud spot instances,” IEEE Transactions on
Services Computing, vol. 5, no. 4, pp. 512–524, 2012.

[3] R. K. Madduri, K. Chard, R. Chard, L. Lacinski, A. Rodriguez, D. Su-
lakhe, D. Kelly, U. Dave, and I. Foster, “The globus galaxies platform:
Delivering science gateways as a service,” submitted to Concurrency
and Computation: Practice and Experience. 2015.

[4] J. Goecks, A. Nekrutenko, J. Taylor et al., “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences,” Genome Biol, vol. 11, no. 8, p.
R86, 2010.

[5] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of idle
workstations,” in Proceedings of the 8th International Conference on
Distributed Computing Systems. IEEE, 1988, pp. 104–111.

[6] I. Foster, “Globus Online: Accelerating and democratizing science
through cloud-based services,” Internet Computing, IEEE, vol. 15, no. 3,
pp. 70–73, May 2011.

[7] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost of
doing science on the cloud: the montage example,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2008). IEEE Press, 2008, p. 50.

[8] R. Chard, R. K. Madduri, N. T. Karonis, K. Chard, K. L. Duffin, C. E.
Ordoñez, T. D. Uram, J. Fleischauer, I. T. Foster, M. E. Papka, and
J. Winans, “Scalable pCT image reconstruction delivered as a cloud
service,” submitted to IEEE Transactions on Cloud Computing. 2014.

[9] L. K. Zentner, S. M. Clark, P. M. Smith, S. Shivarajapura, V. Farnsworth,
K. P. Madhavan, and G. Klimeck, “Practical considerations in cloud
utilization for the science gateway nanoHUB.org,” in Procceedings of
the 4th IEEE International Conference on Utility and Cloud Computing
(UCC). IEEE, 2011, pp. 287–292.

[10] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-and
deadline-constrained provisioning for scientific workflow ensembles in
iaas clouds,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society Press, 2012, p. 22.

[11] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet ap-
plication deadlines in cloud workflows,” in Proceedings of International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2011, p. 49.

[12] W. Voorsluys and R. Buyya, “Reliable provisioning of spot instances for
compute-intensive applications,” in Proceedings of the 26th International
Conference on Advanced Information Networking and Applications
(AINA). IEEE, 2012, pp. 542–549.

[13] M. Livny, J. Basney, R. Raman, and T. Tannenbaum, “Mechanisms for
high throughput computing,” SPEEDUP journal, vol. 11, no. 1, pp. 36–
40, 1997.

974

