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Abstract—Commercial clouds have increasingly become a vi-
able platform for hosting scientific analyses and computation due
to their elasticity, recent introduction of specialist hardware, and
pay-as-you-go cost model. This computing paradigm therefore
presents a low capital and low barrier alternative to operating
dedicated eScience infrastructure. Indeed, commercial clouds
now enable universal access to capabilities previously available
to only large well funded research groups. While the potential
benefits of cloud computing are clear, there are still significant
technical hurdles associated with obtaining the best execution
efficiency whilst trading off cost. Large scale scientific analyses
are typically represented as workflows, in order to manage
multiple tools and data sets. Mapping workflow tasks on to a set
of provisioned instances is an example of the general scheduling
problem and is NP-complete. In this case, the mapping includes
elasticity, where as part of the mapping process additional
instances may be provisioned. In this paper we present a
new algorithm, Proportional Deadline Constrained (PDC), that
addresses eScience workflow scheduling in the cloud. PDC’s
aim is to minimize costs while meeting deadline constraints. To
validate the PDC algorithm, we constructed a CloudSim testbed
and compared PDC with two other similar algorithms over three
workflows. Our results demonstrate that overall PDC achieves
generally lower costs for a given deadline, but more significantly,
is usually able to construct a viable schedule with tight deadlines
where the other algorithms studied cannot.

I. INTRODUCTION

Workflows are the most widely adopted tool for mod-
elling and managing complex distributed scientific applica-
tions. Cloud resources are available in a range of capacities,
configurations, localities, availability zones, and may include
specialist hardware such as GPUs. Amazon EC2 users, for
example, are charged based on the number of hours provi-
sioned, instance type selected and whether the instance is:
On-Demand, Reserved, Dedicated or a Spot instance.

Access to such pay-per-use commercial elastic computing
capacity has resulted in a move towards the hosting of e-
Science applications on commercial clouds – eighty cloud-
based science gateways and workflow systems were identified
in Lifka et al. [1]. In terms of larger scale e-Science, the
Globus Galaxies platform [2] is used by more than 300
researchers across 30 institutions. However, the use of com-
mercial clouds does not inevitably result in cost-effective or
timely scientific computing.

When combined with the NP-complete task scheduling [3]
- even small provisioning inefficiencies, including failure to
meet workflow dependencies on time, exceeding charging

intervals, and selecting the wrong instance type for a task,
can result in significant monetary costs [4] [5].

To address these issues, we present the Proportional Dead-
line Constrained (PDC) algorithm for scheduling eScience
workflows on commercial clouds. The PDC algorithm focuses
on deadline constraints while minimizing costs. The PDC
algorithm consists of four stages: (i) workflow levelling to
extract the maximum inherent parallelism of workflow; (ii)
proportional deadline distribution to appropriately partition
the user deadline over the levels defined in the first stage;
(iii) task selection to prioritise ready tasks; and (iv) instance
selection to determine the best instance choice based on the
execution estimates calculated in the distribution stage. This
final step focuses on finding the best tradeoff of cost vs time,
and includes both re-use of pre-provisioned instances and
the creation of new instances on demand. We then compare
the PDC algorithm in a CloudSim simulation with two other
workflow scheduling algorithms, IC-PCP [6] and GAIN [7].
Overall, in comparison with the other algorithms, PDC is
shown to achieve lower costs and increase the workflow
task scheduling success rate leading to more viable workflow
schedules.

The rest of this paper is structured as follows. In Section II
we address related work, giving an overview of the approaches
to scheduling workflows. We follow this with Section III
defining the elements of workflow scheduling and then in
Section IV we present the PDC algorithm. We outline our
CloudSim simulation and the parameters of our experiments in
Section V, and present our experimental results in Section VI.
Finally we summarise our contributions and conclusions in
Section VII.

II. RELATED WORK

Task scheduling is an NP-complete problem, and many
algorithms, including those based on heuristic, search-based,
and meta-heuristic strategies have been proposed for efficient
resource scheduling. In such systems tasks are either consid-
ered independent (bag of tasks) or dependent (workflows) [8],
[9], [10], [11]. The task of allocating work to resources can be
separated into two stages, the first being scheduling, the second
provisioning. Algorithms such as GAIN [7] can be classified
as pure scheduling, while systems such as DRIVE [12] focus
on provisioning. The majority of Cloud scheduling systems
necessarily include both scheduling and provisioning stages.
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The two most significant classes of workflow scheduling
are best effort and QoS constraint scheduling [13]. In best
effort scheduling algorithms, minimizing the makespan is the
common objective while ignoring other important factors such
as cost. Simple heuristics such as Min-Min, Max-Min and Suf-
frage [14] are applied in the workflow scheduling problem to
find the shortest makespan. The Min-Min algorithm calculates
the Minimum Completion Time (MCT) for all resources for
all tasks. The task that will be completed in the minimum of
time is selected and assigned to the corresponding resource.
The Max-Min algorithm is similar to Min-Min, the difference
is that the task which is executed has the overall maximum
completion time.

QoS constrained scheduling attempts to meet user defined
requirements of which deadline and budget are the most
common. Deadline is the maximum amount of time users need
to wait to receive the result of the execution of their request.
Budget is the amount of money the users wish to spend when
using the resources. QoS-constrained workflow scheduling
is closer to real-world scientific (and other) applications in
contrast to best-effort scheduling [9].

Many guided random searches such as Genetic Algo-
rithm(GA) [15][16], Ant Colony Optimization(ACO) [17]
and Particle Swarm Optimization (PSO) [18][19][20] have
been used to tackle the workflow scheduling problem with
multiple constraints. Guided random searches usually produce
acceptable answers in cloud environment. However, they are
usually time-consuming algorithms based on their need for an
initialization phase to reach the final answer.

In terms of budget or cost optimization, researchers have
explored a number of approaches. In [7], two algorithms based
on the local optimization in Grids, LOSS and GAIN, were
proposed. These algorithms attempted to find a schedule to
meet the user-specified budget. Both algorithms start with one
of two different initial assignments:

• Best assignment: a time optimized assignment in which
the execution time is the minimum possible. For example,
the HEFT algorithm [21] is used as an initial assignment
for the LOSS algorithm.

• Cheapest assignment: a cost-optimized assignment
wherein all tasks are assigned to resources having the
least execution cost [7]. For example, GAIN uses the
cheapest assignment as the initial assignment.

Tasks are repeatedly selected for reassignment till the user-
constrained budget is reached. In Bittencourt and Madeira [22]
the authors presented HCOC, the Hybrid Cloud Optimized
Cost scheduling algorithm, that uses a combination of re-
sources from private and public clouds. The initial schedule
starts to execute tasks on resources that belong to a private
cloud – if the initial scheduling cannot meet the user deadline,
additional resources are leased from a public cloud.

In Abrishami et al. [6] the authors proposed the Infrastruc-
ture as a service (Iaas) Cloud Partial Critical Paths (IC-PCP)
algorithm which aims at minimizing the execution cost while
meeting the user defined deadline in cloud. All the tasks in
a partial critical path (PCP) are scheduled to same cheapest

applicable instance that can complete them by the given
deadline. This avoids incurring communication costs for each
PCP. However, the IC-PCP algorithm did not consider the boot
and deployment time of VMs. Calheiros et al. [23] proposed
an Enhanced IC-PCP with Replication (EIPR) that uses the
idle time of provisioned instances and budget surplus to
replicate tasks. The experimental results showed the likelihood
of deadline meeting is increased by using task replication.
However, in EIPR task replication comes at an oportunity cost
to the user - and in this paper we utilise the idle time to reduce
overall costs, while still meeting the deadlines.

In [24], the authors present a mixed integer nonlinear
programming problem to solve the scheduling of large scale
scientific applications on hybrid clouds, where the optimiza-
tion objective is the total cost, with a deadline constraint. Zhu
et al. [25] present a two step heuristic, the High throughput
Workflow scheduling Algorithm with Execution time bound
(HiWAE). Their approach aims to reduce the workflow re-
sponse time and energy consumption simultaneously.

In [26] the Partitioned Balanced Time Scheduling (PBTS)
algorithm aims to minimize the cost of workflow execution
while meeting a user deadline constraint. The PBTS algorithm
estimates the minimum number of instances that require to be
leased in order to minimize the execution cost.

Malawski et al. [27] present three algorithms for scheduling
set of workflows in Iaas cloud. Their algorithms aim to
maximize the number of workflows that can be finished while
meeting given budget and deadline constraints. However, in
both [26][27], the authors consider only one type of VM rather
than the wide variety of types that are currently available. In
this paper we consider multiple instance types.

III. PROBLEM DEFINITION

A workflow is represented as a weighted Direct Acyclic
Graph (DAG) G = (T,E), where T is the set of tasks and E
is the set of dependencies between tasks. ei,j ∈ E represents
the precedence constraint as directed arcs between ti and tj ,
ti, tj ∈ T which indicates that task tj can start only after
completing the execution of task ti. Task ti is named the
predecessor or parent of task tj , and task tj is the successor
or child of task ti.

Each task can have one or more parents or children. In
the DAG, a task without any parents is called an entry task,
and a task without any children is called an exit task. It
is possible to have more than one entry or exit task, as in
Fig.1(a). In order to ensure the DAG has only one input and
one output, two dummy tasks that have zero execution cost are
added to the DAG (Fig.1(b)). The overall completion time of
a whole workflow is called the schedule length or makespan.
Scheduling is successful if the makespan is less than the user
defined deadline.

The target cloud platform is composed of a set of instances
with different characteristics. Accordingly, our environment
is a heterogeneous system. A Cloud provider offers a set of
computing units and storage services with different character-
istics such as different CPU types, different memory size and
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(a) A sample DAG with 8
tasks

(b) A DAG with 2 dummy
tasks

Fig. 1: Example workflow structure.

different prices.

IV. THE PDC ALGORITHM

In this section we present our new algorithm, Proportional
Deadline Constrained (PDC). The PDC algorithm produces
a deadline constrained schedule that minimize the financial
cost of execution and has a generally lower failure rate in
constructing schedules for tighter deadlines. PDC consists of
four parts:

1) Workflow Levelling: Each task is categorised in a level
by analysing its synchronisation requirements to maxi-
mize the achievable parallelism from the workflow. In
this paper, we used the DBL [28] algorithm to group
tasks into different levels.

2) Deadline Distribution: A user-defined deadline (TD) is
divided and distributed between levels – each level gets
its own level deadline. All tasks in the same level, have
the same level-deadline.

3) Task Selection: A task is selected based on its priority
in the ready list for execution.

4) Instance Selection: The best instances are chosen to meet
the deadlines at the minimum cost.

A. Workflow Levelling

All tasks are allocated into different levels to maximize the
parallelism that can be extracted from the workflow while
preserving any dependencies. Essentially workflow levelling
extracts the embedded Bags of Tasks (BoT) from a workflow.
There are no dependencies between tasks that are at the same
level.

The level of task ti is an integer value representing the
maximum number of edges in the paths from task ti to the
exit task, see Fig. 1(b). The level number identifies which BoT
a task belongs to. For the exit task, the level number is always
1, and for the other tasks, it is determined by:

level–number(ti) = max
tj∈≻(ti)

{level–number(tj) + 1} (1)

where ≻ (ti) denotes the set of immediate successors of task
ti. All tasks are then grouped into the same Tasks Level Set
(TLS) based on their level numbers.

TLS(ℓ) = {ti| level–number(ti) = ℓ} (2)

where ℓ indicates the level number which is between
[1 . . . level–number(tentry)].

B. Proportional Deadline Distribution
Once all tasks are assigned to their respective level, this

phase proportionally distributes a share of the user deadline
(TD) across the identified levels. Each sub-deadline assigned
to a level is termed the level deadline (Leveldeadline). We need
to ensure that every task in a level can complete its execution
before any assigned level deadline. Firstly, the initial estimated
deadline for each level (ℓ) is calculated by:

Levelℓdeadline = max
ti∈TLS(ℓ)

{ECT(ti)} (3)

where ECT(ti) denotes the Earliest Completion Time (ECT)
of task ti over all instances and defined as

ECT(ti) = execmin(ti)+ max
tk∈≺(ti)

{
Level

ℓtk
deadline+ci,k

}
(4)

where ≺ (ti) denotes the set of predecessors of task ti,
execmin(ti) denotes the minimum execution time for task
ti, ci,k indicates the average communication transfer time
between task ti and its parent (tk) and ℓtk indicates the level
number of parent ti. As the task, tentry has no predecessors,
its ECT is equal to zero. In equation 3, the maximum ECT
of all tasks in a level is used as the overall estimate for that
level. This is effectively the absolute minimum time that is
required for all tasks in a level to complete their execution in
parallel.

After calculating the estimation deadline value for all levels,
we distribute all user deadline among all tasks non-uniformly
based on the proportion of Levelℓdeadline.

∝deadline=
TD − Level1deadline

Level1deadline
(5)

where Level1deadline is the level that contains the exit task.
Then, add this proportion to each level based on the length

of each level deadline:

Levelℓdeadline = Levelℓdeadline + (∝deadline ∗|Levelℓdeadline|)
(6)

The key point is that the levels with longer tasks gain a
larger share of the user deadline.

C. Task Selection
In each step of our algorithm, those tasks which are ready to

execute are put in the task ready list. A task is ready when all
of its parents have been executed and all its required data has
been provided. These tasks then need to be prioritised for ex-
ecution - for the prioritisation we used Downward Rank [21],
which is widely used for task ranking. Task selection starts
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from the entrynode and is computed recursively by traversing
the DAG to the exit node.

rankd(ti) = max
tk∈≺(ti)

(wk + ck,i + rankd(tk)) (7)

where wi and ci,j are the average execution time and average
communication time of task ti. The downward rank value for
the tentry is equal to zero. rankd(ti) is the longest distance
from the entry node to task ti, excluding the computation
cost of task itself [21]. The Downward Rank is calculated once
based on the different instance types available. Therefore, task
selection with Downward Ranks does not increase the time
complexity of the algorithm.

D. Instance Selection
By the time we perform instance selection, we have already

assigned each task to a level, determined the deadline for each
level, and the priority of each ready task. During instance
selection, we therefore need to trade off execution time and
cost. We start by calculating both the time and the cost of
executing each task on each instance type, given by equations 8
and 9, forming two sets Time and Cost.

Firstly, the time needed for the current task, ti, on the
instance pj is calculated by ECT(ti, pj). The ECT is the
earliest time that a task can finish on an instance which is
defined in equation 4. Using this, we can then compute the
Time set using:

Time
pj

ti =
Level

ℓti
deadline − ECT(ti, pj)

Level
ℓti
deadline − ECT(ti)

(8)

In equation (8), Leveldeadline is the deadline that is assigned
to the level which contains the current task. Also, ECT(ti) is
the minimum execution time among all instances that keeps
our current task on schedule.
Time

pj

ti assesses how much the estimated level deadline
of the current task differs from the earliest completion time
of task on the instance pj . The values of Time set for task ti
are related to instance types, wherein the lower value of Time
set means running on a cheaper instance. The reason is that
ECT(ti, pj) is bigger on an instance with a lower processing
capacity. As a result, in equation (8) the result value will be
smaller. Also, if the value of Time is negative, it means that
the current task on the selected instance will exceed the level
deadline (ECT(ti, pj) > Level

ℓti
deadline).

In the Cost set, Ci refers to the cost of scheduling the
current task ti on instance pj . In equation, (9), the worse cost
(maximum cost) and best cost (minimum cost) of executing the
task ti among all instances are Cworse and Cbest, respectively.

Cost
pj

ti =
Cworse − Ci

Cworse − Cbest
(9)

To find the best instance, we use a Cost Time Trade-off
Factor (CTTF) in equation (10) that considers a trade-off
between cost and time.

CTTF
pj

ti =
Cost

pj

ti

Time
pj

ti

(10)

TABLE I: Instance Types

Type ECU Cores Memory(GB) Cost ($)
m1.small 1 1 1.7 0.06
m1.medium 2 1 3.75 0.12
m1.large 2 2 7.5 0.24
m1.xlarge 2 4 15 0.48
m3.xlarge 3.25 4 15 0.50
m3.2xlarge 3.25 8 30 1

E. The Full PDC Algorithm

The pseudo code for the PDC algorithm in is given in
algorithm 1

Algorithm 1 The PDC Algorithm
1: procedure FIND INSTANCE(DAG, TD)
2: for all task ti ∈ DAG do
3: calculate the level–number(ti) as defined in equa-

tion 1
4: end for
5: categorize tasks on tasks level set as defined in (2)
6: for all levels in DAG do
7: calculate the level deadline as defined in (6)
8: end for
9: if TD < Level1deadline then

10: terminate
11: end if
12: put tentry on task ready list
13: while there is an unscheduled task in DAG do
14: ti ←− select the task with the highest rank

from ready list
15: for all instances pj ∈ P do
16: calculate the Time set as defined in (8)
17: calculate the Cost set as defined in (9)
18: calculate the CTTF as defined in (10)
19: end for
20: BestInstance ←− choose the Minimum ECT

instance among those that have zero cost for
executing the current tasks

21: if BestInstance is null then
22: BestInstance←− choose the instance that

has the highest CCTF value
23: end if
24: Schedule task t on BestInstance
25: Update the task ready list
26: end while
27: end procedure

With cloud instances, we know the types of instances with
their different characteristics in advance - as this is part of
the pay-per-use cloud model. The characteristics of instances
used in this paper are based on the Amazon EC2 instance
configurations (Table I) – the pricing is from mid-2014.

In addition, when an instance is first provisioned, the
instance is billed on an hourly interval until it is terminated.
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Therefore the first task assigned to an instance in a particular
billing interval is assigned the entire cost of that interval. As
a consequence, if other tasks can be executed during that paid
interval, once the first task has completed, then their individual
execution cost is effectively zero. Therefore, during instance
selection, we first prioritise the reuse of such instances (when
Cost in equation (9) is 1), providing that the level deadline is
not exceeded (when Time in equation (8) is positive). If there
are more than one paid instances, the PDC selects the one that
has the minimum execution time (faster instances). If no such
instances are available, we will attempt to use a provisioned
but as yet unused (in this interval) instance, or as a last resort
provision an entirely new instance.

V. PERFORMANCE EVALUATION

Simulation can be considered the first phase to evaluate
new techniques for workflow scheduling problem. It allows
researchers to test the performance and evaluate the proposed
algorithms free of cost. For this purpose, all three algorithms
are implemented and evaluated in CloudSim [29]. Our sim-
ulation is configured with one data-center and five different
instance types. The characteristics of instances are based on
the Amazon EC2 instance configurations given previously in
(Table I).

The processing capacity of EC2 units is estimated at a
Million Floating Point Operations Per Second (MFLOPS)as
described in [30]. In an ideal cloud environment, there is
no delay in resources allocation between requesting to the
provision of a instance in data-centers. However, some factors
such as the time of day, the operating system type, the instance
type, the location of the data center and the number of
requested resources at the same time, can cause a delay in the
startup time [31]. Therefore, in our simulation, we adopted a
97-second boot time based on the measurements reported in
[31] for the Amazon EC2 cloud.

In order to evaluate the performance of the algorithms with a
realistic load, we use three different well documented scientific
workflows: Cybershake, Montage and LIGO [32]:

• CyberShake: The CyberShake workflow is used by the
Southern California Earthquake Center (SCEC) to char-
acterise earthquake hazards using the Probabilistic Seis-
mic Hazard Analysis (PSHA) technique. The workflow
structure is shown in Fig 2(a).

• Montage: Montage is used to generate the custom mo-
saics of the sky using input images in the Flexible Image
Transport System (FITS) format. The workflow structure
is shown in Fig 2(b).

• LIGO: The Laser Interferometer Gravitational Wave Ob-
servatory (LIGO) attempts to detect gravitational waves
produced by various events in the universe as per Ein-
stein’s theory of general relativity.The workflow structure
is shown in Fig 2(c).

To evaluate the performance sensitivity of algorithms, dif-
ferent deadline intervals are assigned to the scientific datasets.
These intervals consist of a range of tight deadlines through to
to more relaxed ones. To achieve this, the fastest and slowest

possible schedules need to be calculated as the baseline
schedules. If all the communication costs between tasks are
removed and each task is executed on the fastest instance type,
the fastest schedule will be reached. This schedule can be
considered as an approximation of the lowest possible value of
makespan. Another baseline schedule is the slowest schedule,
which is calculated by assigning all tasks on the instance with
the lowest cost – as the cheapest instances are also the slowest.
The slowest schedule is an estimation of the largest value of
makespan. To determine deadline values, we define equation
11 in which the deadline varies from tight to moderate to
relaxed.

deadline = fastest+α ∗ (slowest− fastest)

10
(11)

The deadline factor α has two different sets:
1) α ∈ [0.1, 1]: The first set is considered for very tight

deadline intervals, which starts from 0.1 to 1 with
increasing step length of 0.1. Obviously, if α equals
0, the defined deadline is the fastest schedule and is
unachievable.

2) α ∈ [1, 5]: The second set starts from 1 with step length
of 0.5, ends to 5.

Amazon EC2 instances are charged on an hourly interval
from the time of provisioning, even if the instance is only
used for a fraction of that period. Therefore in the experiments
presented in this paper we use a time interval of 60 minutes.
We also ran the experiments with intervals of 5 and 30 minutes
- however these results are not significantly different and for
brevity we omit them from the paper.

In terms of the size of the three workflows, we evaluated the
algorithms with workflows of 50, 100 and 200 tasks. However,
as with the interval size, the results did not vary significantly,
in this case we chose the middle-ground of 100 task workflows
for the results presented in this paper. Finally, each experiment
was repeated 50 times.

VI. EXPERIMENTAL RESULTS

Two state-of-the-art algorithms, IC-PCP [6] and GAIN [7]
were chosen in order to evaluate the performance of our PDC
Algorithm by comparison.

As the GAIN algorithm was originally intended for a grid
environment, we modified the algorithm to better suit the
cloud. GAIN starts with an initial assignment which needs a
minimal amount of money. This initial assignment is called the
cheapest plan because all tasks are scheduled in the cheapest
and slowest instance. The idea of GAIN is to start from the
cheapest plan and try to minimize the makespan by swapping
tasks between different instances until the specified budget is
met. For this purpose, the algorithm uses the equation 12 to
re-assign tasks on different instances.

GAIN Weight(i,m) =
Told − Tnew

Cnew − Cold
(12)

where Told and Cold are the execution time and cost of ti on
the assigned instance by initial assignment, respectively. Tnew
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(a) Cybershake (b) Montage (c) LIGO

Fig. 2: Scientific workflow structure, reproduced from [32]

is the execution time of ti on resource m. Also, Cnew is the
cost of executing ti on resource m. In the original algorithm,
reassignment is repeated till the monetary cost of the found
schedule is less than the defined budget. We modified the re-
assignment condition so that the makespan can also meet the
deadline.

The IC-PCP has two main phases which are deadline distri-
bution and planning. In the first phase, user-defined deadline
is distributed among all tasks. The IC-PCP starts by trying to
find a set of tasks which are in critical path. The path from the
entry node to exit node that has the longest average execution
time is the critical path of the workflow. In critical path, these
tasks are called critical tasks. All critical tasks will be executed
on the same instance to remove the communication costs.
Cost optimization is considered in their algorithm by selecting
the cheapest applicable instance, which is the instance that
all tasks on the path can schedule before their latest finish
time. Recursively, a critical path for the unscheduled task’s
successors on the partial critical path is calculated and the
process is continued until all tasks have been executed.

In related work, much is made of lower execution costs,
however, in some cases, these lower costs include a number
of tasks that were not able to be scheduled, thus potentially
skewing results. We believe that in many cases it is more
important to achieve a viable schedule - even at a slightly
greater financial cost. Therefore, we elected to look at the
Success Rate (SR) of each algorithm – and present those
results in a form that allowed the costs to be simultaneously
appreciated. The success rates for the three algorithms are
presented in Fig. 3 and the associated costs in Figs. 4 and 5.

To compare the monetary cost between the algorithms, we
cannot ignore the effect of failure in meeting the deadline in
the computation of the average cost. To ensure the results are
comparable we introduce the weighted cost:

Weighted Cost =

∑
Cost

SR
(13)

Here
∑

Cost is the sum of the cost for experiments that meet
the deadline.

In these experiments, a failure is when an algorithm cannot
find a makespan that can meet the required deadline. In the
results presented we have selected the most interesting range
for defined deadline from 0.1 to 2. What is significant in these
results is that the structure and execution characteristics of the
workflow appears to have a significant impact on success or
failure – across a range of tight to relaxed deadlines. We intend
to explore this in future work as understanding this aspect may
allow improved algorithms.

The general results show that the PDC algorithm is the most
able algorithm at finding a schedule in all but 2 of the 36
intervals (across the three workflows). Examining Figs. 4 and 5
reveals that in most cases this is accompanied by a moderate
reduction in overall workflow execution cost. On the other
hand, where the costs have increased, the increase is small.

Overall, the GAIN algorithm has the worst success rate
when the deadline is tight. In the first three intervals across
all three workflows, GAIN is unable to schedule any tasks.
However, with more relaxed deadlines, the GAIN algorithm
achieves a 100% success rate - albeit at a significantly higher
cost than PDC or IC-PCP.

IC-PCP managed fewer failures than PDC in the tightest
two deadlines for the Cybershake workflow. Indeed PDC
experienced a 100% failure in Cybershake when deadline
factor, α, is 0.1. However, this was the exception rather
than the rule, and in general IC-PCP across many intervals
demonstrates some instability. The highest failure for IC-PCP
occurs in Montage, when during the six tight intervals, IC-
PCP can not find a schedule. A possible reason for the failure
to schedule in IC-PCP is that in each step of the algorithm, a
set of tasks on a critical path are selected and scheduled on the
same instance to eliminate the communication cost. However,
it makes it difficult for other parents or children of the executed
task to be scheduled before their latest finish time. In addition
the instance boot time is not considered in IC-PCP.

The results for PDC suggest that it favours computation
intensive workflows such as LIGO in which it met all of the
defined deadlines. IC-PCP and GAIN did not perform as well
with tight deadlines in LIGO. The data intensive workflow
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(a) Cybershake (b) Montage (c) LIGO

Fig. 3: Success Rate of Algorithms

(a) Cybershake (b) Montage (c) LIGO

Fig. 4: Weighted Cost in Tight Deadlines

(a) Cybershake (b) Montage (c) LIGO

Fig. 5: Weighted Cost in Relaxed Deadlines

Cybershake was the worst case for PDC, with failures in
scheduling tasks with tighter deadlines (≤ .3 seconds). IC-
PCP performed better in this period.

In terms out outright cost, there is a significant difference
between GAIN and the other two algorithms over all three
workflows. The GAIN algorithm in each step tries to reassign
tasks until makespan reaches the deadline. As a result, there
is no limitation on the number of instances that the algorithm
can use. In addition, GAIN does not prioritise the use of
existing instances. As a result, more instances are provisioned
by GAIN, which have a direct effect on cost. This is a
direct result of GAIN being originally designed for use in
the Grid, where acquiring additional instances does not have
a significant penalty.

Both PDC and IC-PCP have lower overall costs than GAIN.
While in most cases there is only a small difference between
PDC and IC-PCP in cost, in Cybershake, PDC does achieve
significantly lower costs than IC-PCP for LIGO and most
deadlines for Montage.

In general PDC is able to construct the most viable sched-

ules in the majority of cases, with only significant failure rates
for tight deadlines in Cybershake. In all other situations PDC
comes out ahead of IC-PCP and GAIN. The success results for
GAIN in turn are more stable than IC-PCP which appears to
suffer from significant stability issues, where a more relaxed
deadline can sometimes result in a lower success rate.

VII. CONCLUSION

In this paper we have presented the PDC algorithm for
scheduling eScience workflows on commercial clouds. The
PDC algorithm focuses on deadline constraints while minimiz-
ing costs. The PDC algorithm consists of 4 stages; workflow
levelling to extract the maximum inherent parallelism of of
workflow; proportional deadline distribution to appropriately
partition the user deadline over the levels defined in the first
stage; task selection to prioritise ready tasks; and instance
selection to determine the best instance choice based on the
execution estimates calculated in the distribution stage. This
final step focuses on finding the best tradeoff of cost vs time,
and includes both re-use of pre-provisioned instances and the
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creation of new instances on demand. The novelty in this
work is contained in the proportional deadline distribution and
instance selection.

To evaluate the PDC algorithm we constructed a CloudSim
simulation and implemented the PDC algorithm along with
implementations of GAIN (modified) and IC-PCP in order to
evaluate PDC by comparison. For the simulation we utilised
three well known eScience workflows, Cybershake, Montage
and LIGO and evaluated all three algorithms for cost and
scheduling success rate against a range of deadline constraints.
All three algorithms showed general reductions in cost as
the deadlines were relaxed, however, this was not the always
the case in terms of success rate. In particular IC-PCP was
shown to exhibit instability in scheduling success over a range
of deadlines. Overall PDC is shown to achieve generally
lower costs and increase the workflow task scheduling success
rate leading to more viable workflow schedules. In the small
number of cases where the cost of PDC was bettered by IC-
PCP, the cost difference was small and a reasonable tradeoff
for the generally higher scheduling success rate.

Our results show that cost-aware provisioning, such as PDC,
will result in significant savings for scientists using the cloud,
effecting more science for the available funding.
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