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ABSTRACT
In the effort to reach beyond 3G, researchers have been ac-
tively looking at utilizing new models for network based
services. Small mobile, pervasive and ubiquitous devices
will benefit from networked services and computation pro-
vided by utility computing providers and the virtual orga-
nizations that lease resources from them. As an additional
factor, we believe that it is critical that the mobile, perva-
sive or ubiquitous devices be able to dynamically manipulate
their resource specifications when obtaining services and re-
sources from the utility computing and communication net-
work. This requires a simple, manipulatable, and prefer-
ably modular resource specification structure. This paper
presents the Resource Description Graph (RDG). The RDG
is used to represent available and required resources for hosts
and applications in a directed acyclic graph. The RDG has
many desirable properties including inherent security, ex-
pressiveness, modularity, and composition. We show that
the computational time to match RDG resource specifica-
tions, thirty resource types and constraints, is less than 1ms
— demonstrating that the RDG is a practical approach to
resource specification with a low computational overhead.
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1. INTRODUCTION
The early innovators in the fields of pervasive [1] and ubiq-

uitous [14] computing envisioned a world of small lightweight
wearable computing devices, that perform many heavyweight
functions, such as realtime language translation or crime
scene fingerprint matching. The underlying computing power
and information resources required to perform these tasks
were to be provided by a computing utility, somewhat akin
to a power or water utility, rather than by the device itself.
The computing utility would enable the device to be flexible,
by offering access to many services, whilst being lighter, with
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smaller power and storage requirements. However, the ideal
of a computing utility has not yet arrived, firstly the devices
themselves are now considerably more powerful themselves,
and capable of immense functionality even when operating
without network connectivity. Secondly, through data ser-
vices such as GPRS, full internet connectivity can be pro-
vided separately to the provision of computation. A signifi-
cant non technological hurdle is that of social acceptance.

Nonetheless, in the efforts to reach beyond 3G, researchers
have been actively looking at utilizing new models for net-
work based services. One such model is the internet Vir-
tual Organization (iVO), where the iVO creates services on
demand utilizing resources leased dynamically from Utility
Computing Providers (UCP) [12]. The basic UCP model
is further extended by including the leasing of communica-
tions services, resulting in Utility Computing Communica-
tions Providers (UC2P).

One currently evolving model of utility computing is based
on grid computing [7], and the GRASP [6] project is explor-
ing the grid paradigm based around the Application Service
Provider model. However the UC2P infrastructure, as en-
visaged, demands the NGG - Next Generation Grid which
needs to encompass more resources and provide greater flex-
ibility in terms of mobility, resource allocation and economy
based resource allocation than the current Grid implemen-
tations.

The predominant Grid toolkit is Globus [10], which has
come some way to providing an NGG through the Open
Grid Service Architecture (OGSA) and enabling web ser-
vices though the Open Grid Service Infrastructure, Web
Service Resource Framework (OGSI, WSRF). However its
communication services model does not encompass the po-
tential services that could be required in a general purpose
UC2P scenario, and its resource allocation does not provide
for speedy resource allocation and agile pricing mechanisms,
which are required in iVO operations.

Within a large scale distributed systems, such as UC2P
systems, efficient negotiation for and allocation of resources
plays an important role in the performance of the system.
Recently much emphasis has been placed on the computa-
tional advantages of large scale grid systems which provide
mechanisms to share a wide pool of resources such as com-
puters, software, and peripherals amongst many users and
organizations [8]. Describing the resources offered by the
distributed system and requested by the participating par-
ties is vital in ensuring efficient allocation of the resources,
providing quality of service (QoS) guarantees and therefore
maximizing the overall performance of the system. However,



an important aspect of a resource specification mechanism
is finding an algorithm to quickly and efficiently match re-
quested resources to distributed system components. For
example, the XML encoded resource specifications that fea-
ture in the later Globus RSL standards are encumbered by
the processing overheads incurred by parsing the XML. This
is a minor inconvenience when considering the large rela-
tively static scientific computations that were envisioned by
the designers, where processing may occur over days, if not
months. However, when we change the model to include
iVOs that alter their configurations dynamically depending
on client demands, and the overhead of communicating the
specifications over wireless links to pervasive and ubiquitous
devices with limited computation, power and connectivity
— the issue of encoding of resource specifications becomes a
significant bottleneck in UC2P systems. WirelessXML min-
imises transmission overheads, but does not minimise pro-
cessing overheads.

As an additional factor, we believe that it is critical that
the mobile, pervasive or ubiquitous devices be able to dy-
namically manipulate their resource specifications when ob-
taining services from the UC2P network. This requires a
simple, manipulatable, and preferably modular resource spec-
ification structure. There is little emphasis on resource spec-
ification performance analysis in the Globus literature, es-
pecially with respect to generating and processing real-time
resource specifications within distributed systems.

This paper presents an efficient resource specification mech-
anism called the Resource Description Graph (RDG). The
RDG is a single rooted directed acyclic graph (DAG) that
is passed between hosts in a simple textual format. The
RDG is able to encode resource constraints and availability
for a host thorough a sequence of edges. Similarly an ap-
plication can provide an RDG to a host or group of hosts
which represents a valid combination of resources required
for the application to run. This specification consists of
a sequence of edges terminating at a vertex marked as an
accept state. There may be many resource combinations
leading to a single accept state representing a set of com-
promises or alternatives from the view of the application
requesting the resources. The RDG has several advantages;
in particular expressiveness and versatility; for example, it
can be decomposed into subgraphs as processes split or mi-
grate between hosts and can also express mobile object ag-
gregation. The performance results presented in this paper
demonstrate that this RDG based system has rapid specifi-
cation and processing capabilities that can provide fast allo-
cation of resources and thus enable rapid negotiated mobile
object migration.

The purpose of this paper is to demonstrate that a re-
source specification can be encoded and processed in a for-
mat that is compact, modular and most importantly can be
constructed and matched – with the limited computational
power available from small mobile, pervasive or ubiquitous
devices.

1.1 Origins
The RDG was developed as the vehicle for communicat-

ing resource requirements within a mobile object middle-
ware architecture called NOMAD (Negotiated Object Mi-
gration Access and Delivery) [2, 3]. Like the Grid, typified
by the Globus initiative [8], NOMAD is a distributed com-
putational system, which consists of a collection of loosely

coupled cooperating virtual machines (depots) that are ca-
pable of hosting distributed applications. Nomad utilizes an
economic resource management model, of which details can
be found in [4].

Figure 1: Internet Virtual Organization Supported
in NOMAD

NOMAD offers support for iVO applications made with
mobile objects that can migrate as required, Figure 1. A
federation is a meta depot, permitting a resource provider
to construct manageable resource clusters from a set of de-
pots. Figure 1 illustrates an example from cellular network-
ing where mobile devices and their users can obtain ser-
vices from a local service gateway to optimize performance,
see [12]. In such example applications the resource specifica-
tion needs to provide versatile and extensible specification of
required resources and any alternatives; this is accomplished
through the RDG.

1.2 Related Work
The majority of recent related resource specification work

is in the area of grid systems. Network resource specification
work is encompassed within the grid grid resource specifi-
cation. Two resource specification schemes are mentioned
here specifically: Condor classAd language and the Globus
Resource Specification Language (RSL). Condor is a high
throughput computing environment where idle resources on
a network are discovered and allocated to applications. It
was conceived as a cycle stealing scheduler which pays par-
ticular emphasis to the computer owners rights. Condor uses
the classified advertisement language (classAd) to describe
jobs, workstations, and other resources [13]. The classAd
language is a symmetric, semi structured declarative lan-
guage designed to allow easy matching of resources and re-
quests in order to correctly execute jobs on the Grid. A
classAd is a mapping from attribute names to expressions
and two classAds match if each has attribute requirements
that evaluate as true. As with the RDG, customer agents use
the classAd to request resources and a machine (a resource)
can use a classAd to advertise its resources. Matching is
performed by the Condor central manager to determine the
compatibility of jobs and workstations. The classAd lan-
guage is available as a stand alone package for other appli-
cations and currently it has a native and an XML form [13].



Currently Globus (the de facto standard for Grid comput-
ing) specifies an XML based language called the Resource
Specification Language (RSL) to describe resource require-
ments [11]. The RSL was changed from the Globus Toolkit
2 to an XML based language in Globus Toolkit 3 to ensure
optimal portability. The RSL is used by Brokers, the Globus
Resource Allocation Manager(GRAM) and the Globus Ar-
chitecture for Reservation and Allocation (GARA) [9], which
is a mechanism designed to enable end-to-end QoS guaran-
tees supporting resource discovery and dynamic (a reserva-
tion for some future time) or immediate reservation. GARA
extended the generic Globus resource management architec-
ture by introducing a generic resource object, which encom-
passes network flows, memory blocks, disk blocks, and other
entities. XML based resource specifications are encumbered
by the processing overheads incurred by parsing the XML
resource specifications, and are probably not suitable for
lightweight, mobile software and devices.

All three resource specification systems, classAd, Globus
RSLv3 and the Nomad RDG are all sufficiently descriptive
and flexible to be used by systems other than those for which
they were developed.

2. RESOURCE DESCRIPTION GRAPH
We propose the Resource Description Graph (RDG) as

an efficient means of representing combinations of resource
requirements for an application and resource availability at
a host. The RDG enables resource allocation across a set
of loosely coupled computational and communication re-
sources.

From the viewpoint of an application, an RDG describes
a group of tasks (encoded as accept states), each with a set
of resource combinations that represent resources required
to satisfy each task. The edges of the RDG encode the re-
sources and the vertices the state. There may be alternative
resource allocations for each task — these represent viable
alternative sets of resources that can be utilized to perform
the required application function. A path from the root to
an accept state is called a sentence, and an accept state may
therefore be traversed via multiple sentences.

Anytime that a set of resources needs to allocated over a
set of providers we face an NP-complete optimization prob-
lem [2]. By constraining the combinations of resources within
the RDG we minimize the NP-complete Combinatorial Al-
location Problem (CAP)1 within a system. In an economic
resource allocation system, such as NOMAD, each sentence
is valued, and the preferred (lowest cost sentence) for each
accept state is chosen.

The resources available at a host are likewise encoded
in an RDG, which we have termed a Resource Profile. A
resource profile does not utilise accept states — but is in-
stead used to record the current availability of resources and
any future resource commitments at a host. The point here
is, that certain resources are only available in set combina-
tions — but with variation in their weightings, e.g. both
disk space and disk IO are required to store data, the exact
weighting between the two resources depends on the appli-
cation. The RDG is a good fit for describing the resource
constraints of both applications and hosts - a handy sit-
uation, as resource allocation is essentially an exercise in
constraint satisfaction.

1To allocate items in order to maximize total utility

2.1 RDG Structure
Figure 2 shows part of a simple content distribution vir-

tual organisation RDG. The iVO RDG specifies a require-
ment for a number of servers with Constant CPU rate (CCU),
memory and disk to perform, say, video stream serving.

210
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3 4 5

Figure 2: Example iVO RDG, double circles indicate
an accept state

It is possible that the iVO could also utilise a slightly dif-
ferent set of resources to provide its services. Figure 3 shows
an RDG that encodes two different sets of resources that can
be used interchangeably by the iVO. A resource provider,
may satisfy either the resource sentence (a) {0,1,2,4,5,6} or
(b) {0,1,3,4,5,6}. The alternative sentence (b), utilizes a
Variable CPU rate (VCU), and so requires additional mem-
ory for caching. The principle here, is that an accept state
relates to a service, and not the resource sentences by which
that service can be provided.
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Figure 3: Alternative iVO RDG, double circles in-
dicate an accept state

Different structures in the graph map to logical combina-
tions of AND (sequences), OR (Branches to separate accept
states) and XOR (branches that terminate in the same ac-
cept state). If an edge belongs to two different sentences
that terminate in different accept states, then the host must
provide multiple units of that resource if it wishes to host
both tasks. However, if the two sentences terminate in the
same accept state, as in figure 3, then only one unit of each
resource is required.

2.2 Edge Expressions
Classes of service such as those used in networking (e.g.

ATM CBR, VBR, ABR, UBR2) are used to represent the ex-
pected behaviour of a resource consumer. Processes do not
usually require constant CPU, Memory, and I/O. For this
reason classes have been defined for CPU, memory, disk, as
well as bandwidth. The defined classes for CPU are Con-
stant, Variable, and Available CPU Utilisation (CCU, VCU,
ACU). The class of service is encoded in the value parame-
ter of the edge, for example, constant CPU bursting of 200
MFLOPS is encoded as {CPU(CCU, 200)} or can repre-
sent non specific values, such as high, medium or low CPU
power. The mappings for determining availability are again
included with the host.

2.3 Graph Modularity
The structure of an RDG makes composition and decom-

position relatively straightforward as subgraphs may be re-
moved and manipulated as required. An example would be
2Asynchronous Transfer Mode, Constant Bit Rate, Variable
Bit Rate, Available Bit Rate and Unspecified Bit Rate



an application migrating some part of its functionality to
another host. The application can remove the associated
part of its RDG to create a sub RDG to send with the mi-
grating process. Similarity if the process returns, the RDGs
can be rejoined.

Another advantage is that common shapes of resource re-
quirements (or modules) can be created and used by ap-
plications to quickly characterise a common problem. For
example when expressing a simple computation CPU, Mem-
ory, and disk will all be required. The common modules can
be combined to form a complete RDG for a given application
at a reduced computational cost.

2.4 Resource Matching — Modules
The ease of joining and separating graph components

makes the use of modules a viable option for improving
matching efficiency. The biggest limitation of the RDG is
the potential for inefficiency when graphs become large. One
solution to this is to break large graphs down into smaller
subgraphs. We have identified three orthogonal resource
categories that form natural modules for matching:

• Computational resources may be categorised as per-
formance or availability resources. Performance re-
sources are measurable like CPU, exchanged disk I/O
and exchanged memory I/O, these resources are gen-
erally related to a required application or mobile ob-
ject demand. Availability resources are the amount of
a resource required for execution, e.g. an amount of
memory or number of licenses.

• Network resources include parameters such as, band-
width, jitter, loss rate and locality. Other networking
aspects can also be considered, such as firewalls, provi-
sion of Application Level Gateways, access to certain
network bearers, network load sharing features and re-
dundancy etc.

• Existential resources include the availability of J2ME,
CODECs, particular software libraries, or licenses. Hard-
ware existential resources include properties such as
CPU architecture (e.g. SMP - symmetric multiproces-
sor architecture), printers and other peripherals.

Host resource profiles are decomposed into these modules
and the modules are then compared against an application’s
RDG.

3. EXPERIMENTAL RESULTS
The experiments in this section give the results from two

matching algorithms. The first algorithm called path com-
parison (PC) extracts each path (or sentence) and then com-
pares the individual paths. This simple algorithm results in
multiple comparisons against certain resources. A solution
to this was to utilise the modules outlined in section 2.4 —
giving the module comparison (MC) algorithm. Details of
these algorithms can be found in [5].

The two key variables in matching RDGs are size and
complexity. The following experimental results compare the
matching algorithms over a range of different application
RDGs and host resource profiles each with varying com-
plexity. We have analyzed system traces as a basis for form-
ing typical application RDGs. All tests were averaged over
100,000 trials and run on a Pentium 4 1.8 GHz with 512MB
of RAM using Java 1.4 and Microsoft Windows XP.

3.1 Application Complexity
Application complexity is based on the number of paths

to an accept state and the lengths of these paths. In practice
application RDGs tend to be small with minimal branching,
however we examine the impact of both these aspects on
performance.

The first experiment looks at the impact of the path length
on the computational time. The resource profile used is more
complex than we measured from captured traces [5], it has
at least two paths through every module and has over 20
different resources.

Figure 4 shows the relationship between path length and
computational time. This graph illustrates the improvement
of the MC algorithm over the PC, and provides a feel for the
performance of RDG matching that would be achieved in a
wireless scenario.
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Figure 4: Application path length vs computational
time

The results exhibit a small linear increase with length,
the dominant cost is that of computing the resource profile
paths.

The second factor in RDG complexity is the number of
paths. In this experiment all the paths contain the same six
resources in the same order. The resources in the paths were
chosen to give an equal distribution across all three modules.
Figure 5 shows the performance of the two algorithms as the
number of paths increases.
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tion time



3.2 Host Complexity
Like application complexity, host complexity is effected

by the number of paths and the length of these paths. How-
ever, the paths are typically short, and do not contribute
significantly to the cost of matching (in the region of 20 to
90 microseconds). The final experiment discussed in this
paper, looks at the effect of profile branching on the compu-
tational time of resource profiles. Additional experiments,
results and data are presented in [5].

Figure 6 shows the computational time of PC and MC.
It is clear that the MC algorithm outperforms the PC algo-
rithm as the number of branches increases. At 12 paths it
takes over 5ms which is 10 times larger than the MC algo-
rithm.
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3.3 Analysis
The experiments have shown that we can achieve com-

putational times for average sizes of RDGs and Resource
Profiles of less than 1ms. This computational time will be
perfectly acceptable in most real situations, take for exam-
ple a wide area distributed system — the latency required
to transport the RDGs would far exceed the computational
time required to evaluate them.

4. CONCLUSION
Resource specification is a vitally important ingredient in

enabling mobile devices, software and adhoc networks to ob-
tain, exchange or purchase execution and network resources.

This paper presents an efficient resource specification mech-
anism called the Resource Description Graph (RDG). The
RDG is a single rooted directed acyclic graph that is passed
between resource consumers and providers in a simple tex-
tual format. The RDG is able to encode application resource
constraints and host availabilities thorough a sequence of
edges. The RDG is a good resource specification mecha-
nism that is sufficiently flexible for use in supercomputers
and computationally limited devices such as PDAs. The
RDG achieves this flexibility through the use of modules
(subgraphs) to simplify composition and comparison.

Efficient matching was expected to be a major limitation
of the RDG, due to the expense of finding subgraph isomor-
phisms. However, the experimental results presented in this
paper quantify the low cost of matching RDGs. The use

of modules results in excellent computational times of less
than 1ms for realistic RDG examples.

This paper demonstrates that a resource specification can
be encoded and processed in a format that is compact and
modular. Most significantly, RDGs can be constructed and
matched – with the limited computational power available
from small mobile, pervasive or ubiquitous devices.

5. REFERENCES
[1] J. Birnbaum. Towards Pervasive Information Systems.

Distinguished Lecture Series, UVC, December 1994.

[2] K. Bubendorfer. NOMAD: Towards an Architecture
for Mobility in Large Scale Distributed Systems. PhD
thesis, Victoria University of Wellington, 2001.

[3] K. Bubendorfer and J. Hine. NOMAD: Application
Participation in a Global Location Service.
Proceedings of MDM 2003, Lecture Notes in Computer
Science, number 2574, pages 294-306, January 2003.

[4] K. Bubendorfer and J. H. Hine. Resource Discovery
and Negotiation in the NOMAD System. In to appear
in Proceedings of ACSC2005, The Twenty Eigth
Australasian Computer Science Conference,
volume 27, Newcastle, NSW, Australia, January 2005.

[5] K. Chard. Efficient resource descriptions, 2004. Honors
Report, MSCS, Victoria University of Wellington.

[6] T. Dimitrakos, D. M. Randal, F. Yuan, M. Gaeta,
G. Laria, P. Ritrovato, B. Serhan, S. Wesner, and
K. Wulf. An Emerging Architecture Enabling Grid
Based Application Service Provision. In Seventh
International Enterprise Distributed Object Computing
Conference (EDOC’03), pages 240–251, Brisbane,
Queensland, Australia, September 2003.

[7] P. Eerola, B. Konya, O. Smirnova, T. Ekelof,
M. Ellert, J. R. Hansen, J. L. Neilsen, A. Waananen,
A. Konstantantinov, and F. Ould-Saada. Building a
Production Grid in Scandinavia. IEEE Internet
Computing, 7(4):27–35, July-August 2003.

[8] I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan and
Kaufmann, 1999.

[9] I. Foster, C. Kesselman, C. Lee, R. Lindell,
K. Nahrstedt, and A. Roy. A Distributed Resource
Management Architecture that Supports Advance
Reservations and Co-Allocation. In Proceedings of the
International Workshop on Quality of Service, 1999.

[10] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.
Lecture Notes in Computer Science, 2150, 2001.

[11] Globus. The Globus Resource Specification Language
RSL v1.0, 2000.

[12] P. Komisarczuk, K. Bubendorfer, and K. Chard.
Enabling Virtual Organisations in Mobile Networks.
IEE 3G2004 Conference, London, October, 2004.

[13] M. Solomon. The ClassAd Language Reference
Manual Version 2.1, October 2003.

[14] M. Weiser. Some Computer Science Issues in
Ubiquitous Computing. Communications of the ACM,
36(7):74–84, July 1993.


