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Abstract

Auctions have been proposed for allocating computation resources for Cloud computing. However, many secu-
rity issues exist with electronic auctions including insider trading, private information revelation, bid filtering, and
auctioneers lying about auction results for their own profit. Privacy preserving auction protocols use cryptographic
methods to keep losing bid values secret but many have no means of verifying their black box behaviour. This paper
presents a protocol that allows participants to verify that an auction has run correctly without revealing bid values of
other participants while increasing the robustness of the auction protocol.
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1. Introduction

Online auctions are a high profile method for consumer goods to be traded, for example consider the worldwide
reach of eBay. However, its not just consumer goods that are being traded using online auctions. Recently, Amazon
has followed the scientific community [1] in offering auctions as a means to allocate computational resources such as
CPUs, memory and bandwidth [2] from the Elastic Computing Cloud. In the future, we expect that auctions will play
an increasingly important role as a key way to allocate computational resources. However, there are two issues that
must be addressed to make this vision a reality. The first is the use of an appropriate auction model for allocation of
computation resources, and the second is addressing security concerns.

A combinatorial auction differs from a normal auction by permitting bidders to express a preference for more than
a single good. An arbitrary collection of items defined by the bidder can have a combined value greater than the sum
of the individual items. Bids can be made that are conditional upon obtaining the entire set of desired items. As a
simple example, consider a real estate auction, where three adjacent lots (A,B and C) are up for sale. The developer
of a retail centre needs a minimum of 2 adjacent lots. If this was treated as 3 separate auctions, the value of lot B
(to the developer) would be greater than A or C as winning A or C without B would have no value. The various
bidder strategies in this auction are complex, involve risk, and are dependent on the order of the auctions due to the
dependencies between the lots. The inability of the single good auction to express such dependencies can lead to sub
optimal allocations. A combinatorial auction permits bidders to express these dependencies and thereby enables the
auction to result in optimal allocations of goods to bidders.
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Assuming the use of an appropriate auction model, the other main issue is security. Research into auction se-
curity has traditionally focused upon preserving the privacy of bidding information from as many parties as possi-
ble including the auctioneer. For example, the privacy preserving combinatorial auction protocol from Yokoo and
Suzuki [3]1 hides the value of losing bids from auctioneers to prevent them from using this information to their ad-
vantage. However, existing protocols for privacy-preserving combinatorial auctions do not prevent other attacks such
as misrepresentation of bids, removal or filtering of valid bids, or otherwise unfair manipulation of auctions.

This paper outlines how we have addressed these attacks by extending a privacy preserving combinatorial auction
protocol to allow the conduct of the auction to be verified while preserving the secrecy of bids. This can be achieved
by the use of zero knowledge proofs2 to verify the actions taken by auctioneers while calculating the result of the
auction. Furthermore, we have implemented this protocol and evaluated its efficiency and sensitivity to parameters
such as encryption key length and number of goods.

2. Related Work

Naor, Pinkas, and Sumner developed a verifiable privacy preserving auction protocol using garbled circuits [4].
An auction issuer creates a garbled circuit that an auctioneer uses to conduct a privacy preserving auction. Privacy is
preserved as long as the two parties do not collude. Bidders can verify their bids were counted and the auctioneer can
use cut and choose verification to ensure the garbled circuit sent to it by the auction issuer is correct. Combinatorial
auctions can be executed by the garbled auction protocol as long as there is a circuit able to compute the result of
combinatorial auctions.

An auction scheme without third party servers that can perform a GVA has also been suggested by Yokoo and
Suzuki [5]. They use the bidders to perform calculations based on the assumption that a bidder would have no
incentive to be an active adversary against another bidders values. However, if a group of bidders is colluding this
assumption is not true.

Lipmaa, Asokan, and Niemi have developed an auction scheme that partitions information between two parties so
that one party working alone cannot subvert the auction [6]. A series of novel range proofs verify the auction, but the
protocol does not support a GVA or combinatorial auction.

Kikuchi designed a verifiable single good auction protocol [7]. It makes use of verifiable secret sharing to allow
bidders to verify auctioneer’s calculations, and auctioneers to verify the bidder’s encrypted bid values. However, it did
not support combinatorial auctions and an extension by Yokoo and Suzuki [8] to accommodate combinatorial auctions
did not include verification.

Finally, Brandt presented a bidder resolved single good auction protocol [9] where bidders use zero knowledge
proofs to verify the auction result. The trust is distributed amongst the bidders, and is privacy preserving as long as at
least one bidder is honest. This protocol has been extended to support combinatorial auctions [10], but the extension
is not verifiable.

In summary, although some auction protocols use zero knowledge proofs to verify the auction result [9], we
have found no auction protocol that is privacy preserving, verifiable, and able to compute the result of combinatorial
auctions.

Zero Knowledge Proofs. Zero knowledge proofs (ZKPs) were first introduced by Goldwasser, Micali, and Rack-
off [11] and are used to prove the validity of some assertion, without revealing any information other than the validity
of the assertion.

Figure 1 illustrates a zero knowledge proof known as Ali Baba’s cave. The prover Alice wants to convince the
verifier Bob that she knows the secret password to open a locked door between R and S. To prove this while not
revealing the secret password used, Alice and Bob conduct the following steps: (1) Bob waits at P while Alice goes
to either R or S (commitment); (2) Bob goes to Q so that Alice may not move from (R) to (S) other than by the locked
door (which she needs to know the secret to pass through) without him knowing; (3) Bob chooses either the top (R)

1For the remainder of this paper we refer to the auction protocol from Yokoo and Suzuki as the homomorphic auction protocol.
2Our verification protocol uses zero knowledge proofs of knowledge which we refer to throughout this paper as zero knowledge proofs or ZKP

for brevity.
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Figure 1: Ali Baba’s Cave

or bottom (S) tunnel; (4) Bob challenges Alice to come out of the tunnel of his choice (challenge). Alice can only exit
the correct tunnel 100% of the time if she knows the password; (5) If Alice does not know the secret words, there is a
50% chance she will come out from the wrong tunnel (response). Bob can then repeat steps 1-5 as many times as he
wants to convince himself that Alice knows the secret word, but Bob will never learn the secret word himself.

3. The Homomorphic Auction Protocol

Central to our protocol is the existing homomorphic auction protocol. Figure 2 shows the main parties in the
homomorphic auction protocol. There is a seller, bidders, and a group of auctioneers who execute the auction. The
seller first arranges a group of auctioneers to compute the result of the auction. The seller then advertises the details
of the auction to any interested bidders. Bidders then publish encrypted bids and the auctioneers calculate the result
of the auction.

Auctioneers

Bidder

Bidder

Bidder

Seller

1

3

3

3

2

2

2

Figure 2: Parties in the Homomorphic Auction Protocol

The homomorphic auction protocol uses El-Gamal encryption [12] to provide privacy for the bids. El-Gamal
is a homomorphic cryptosystem with indistinguishable encryption and randomisation. Multiplying two numbers
encrypted using El-Gamal, when decrypted gives the same result as multiplying the unencrypted numbers. If we
have two encryptions3 of values M1 and M2 say E(M1) and E(M2) then E(M1)E(M2) = E(M1M2). Indistinguishable
encryption means that if you encrypt the same value twice using different arguments, it is computationally infeasible to
tell they are the same number without access to the private key for decryption. We now describe the important features
of the homomorphic auction protocol in relation to our verification protocol. More information on the homomorphic
protocol can be found in Yokoo and Suzuki’s paper [3].

3.1. Auction Graphs

Combinatorial auctions can be represented by auction graphs where nodes represent goods, edges between nodes
represent the allocation of a subset of goods, and each complete path through the graph represents an allocation of the
goods.

3We use the notation of E(M) to denote an encryption of the value M



B. P. Palmer / Procedia Computer Science 00 (2010) 1–10 4

Node 1
{G1,G2,G3}

Node 7
{}

Node 2
{G2,G3}

Node 3
{G1,G3}

Node 5
{G2,G3}

Node 6
{G3}

G1

Bidd
er 

1: 
$4

Bidd
er 

2: 
$5

G2,G3
Bidder 1: $2

Bidder 2: $8

G1,G2,G3
Bidder 1: $20
Bidder 2: $16

G2

Bidder 1: $6

Bidder 2: $5
G1,G3Bidder 1: $4Bidder 2: $7

Node 4
{G1,G2}

G3Bidder 1: $1Bidder 2: $7

G1,G2

Bidder 1: $16

Bidder 2: $8 

G1

Bidder 1: $4

Bidder 2: $5

G2
Bidder 1: $6
Bidder 2: $5

G3
Bi

dd
er 

1: 
$1

Bid
de

r 2
: $

7

Figure 3: Example Auction Graph

Figure 3 provides an example auction graph for three goods G1, G2, G3 with two bidders. Each edge is labelled
for the subset of goods it represents along with the bids of the two bidders for that allocation. A complete path through
the graph is an allocation of goods and the auctioneer needs to find the optimal path through the graph to compute the
auction. An optimal path is a complete path where there are no other paths that provide greater value. The optimal
path is shown in this graph as the thinner line. The optimal allocation for this auction is to allocate G3 to bidder 2 for
$7 and G1,G2 to bidder 1 for $16 for a total of $23. There may be more than one optimal path in a graph, but there
should be no other paths that have a greater value.

3.2. Bid Vectors

Bids are represented in a bid vector form where an item in the bid vector is either an encryption of Z or 1. From the
left, the number of Zs before the first 1 indicates the value of the bid vector so, for example, (E(Z), E(Z), E(1), E(1), E(1))
is a bid vector of length 5 with value 2.

3.3. Randomising

A bid vector can be randomised by multiplying the items in the bid vector by an encryption of 1. As the encryption
used is homomorphic, the equation E(M1)E(M2) = E(M1M2) holds and the multiplication of the items in the bid
vector by an encryption of 1 does not change the value of the bid vector. If the Decisional Diffie-Hellman (DDH)
problem is infeasible, one cannot determine whether a ciphertext is a randomised ciphertext of the original or not.

3.4. Shift and Randomise

An encrypted bid vector can have a constant c added to it without revealing the original encrypted value by using
an operation called shift and randomise. Figure 4 shows the process for shifting and randomising a bid vector. First,
the bid vector right by c and adding encryptions of Z to the spaces created. Then the whole bid vector is randomised
by multiplying every item by indistinguishable encryptions of 1. Due to the randomisation, no information about the
original bid vector value or the constant c can be obtained from the final bid vector. The maximum bid for the auction
should be chosen to prevent overflow when adding a constant.

3.5. Finding the Maximum Bid

To find the maximum bid in a set of bid vectors, the bid vectors are multiplied together and decrypted from right to
left to find the first item that does not decrypt to 1. Figure 5 shows an example where the maximum bid is Bid 3 with
the value 4. As the decryption is performed from right to left and stops when the first Z value is found, no information
about losing bids is revealed.
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Bid 1: E(Z),E(Z),E(Z),E(1),E(1),E(1)
B id 2: E(Z),E(Z),E(1),E(1),E(1),E(1)
B id 3: E(Z),E(Z),E(Z),E(Z),E(1),E(1)

Product: E(Z3),E(Z3),E(Z2),E(Z),E(1),E(1) Auctioneers

Figure 5: finding the Maximum Bid

3.6. Threshold Encryption

The homomorphic auction protocol can be executed with variable numbers of auctioneers. A single auctioneer
can be used to execute the whole auction, but in this case if the auctioneer is malicious they can decrypt all the bids
using their private key. A separate auctioneer can be allocated to each node in the auction graph with a unique private
and public key. This means that a malicious auctioneer is only able to decrypt all the bids on the incoming edges of
the node they are allocated to. A third option is to allocate a group of auctioneers to each node in the auction graph
with a single public key and shared private keys using Shamir’s secret sharing scheme [13]. In this case, unless the
threshold value of auctioneers is corrupt, no information on the losing bids can be found out other than what needs to
be known to execute the protocol. This paper uses a group of auctioneers allocated to each node in the graph using a
(t, n) secret sharing scheme to allocate a unique private key to each auctioneer. At least t auctioneers are required to
decrypt an encrypted item in a bid vector. When the auctioneers are required to decrypt an item, when computing the
maximum bid for a link for example, at least t auctioneers are required to publish their shares of the decryption to the
other auctioneers.

3.7. The Auction Algorithm

Figure 6 shows the entire homomorphic auction protocol. The first step is for the seller to advertise the details of
the auction and arrange the group of auctioneers to execute the auction. In the second step, the auctioneers chosen to
execute the auction publish the public keys for each link in the auction graph and the bidders who are interested in the
auction register to bid. The third step involves the bidders creating and encrypting their bid vectors for each link in
the auction graph and publishing these encrypted bids to the auctioneers. In the fourth step each group of auctioneers
allocated to each node in the auction graph finds the maximum bid for their node (using the process in Section 5) in
the graph and adds this value to each bid on each outgoing link from their node (using the process in Section 3.4).

4. Verification Protocol

We use two well known ZKPs to build our protocol: proof of equality of discrete logarithms [14] and proof
that an encrypted item decrypts to one of two values [15]. We use the Fiat-Shamir heuristic [16] and the SHA512
hash function to make the proofs non-interactive ZKPs in the random oracle model. Non-interactive proofs allow
auctioneers to publish the proofs once and removes the need to interact with other auctioneers that are verifying the
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Figure 6: Auction Algorithm

result. A public bulletin board is also available that is readable by either auctioneers or bidders, but can only be written
to by auctioneers.

At critical steps in the auction protocol, auctioneers publish a non-interactive ZKP to the other auctioneers that this
has been done correctly. If one of the auctioneers finds that another auctioneers in the auction protocol has failed to
provide a valid ZKP for a certain action, the auctioneer publishes that information to the bulletin board. A malicious
auctioneer could claim that a correct auctioneer has behaved incorrectly when it has not. To prevent this, at least a
threshold number of auctioneers is required to claim that an auctioneer has deviated from the auction protocol. This
threshold value is the same value used in the threshold encryption of the homomorphic auction protocol as described
in Section 3.6. Therefore losing bid values are kept secret and bidders can have confidence that the auction protocol
executed correctly providing at least the threshold number of auctioneers are honest and indicate that the auction has
executed correctly. In the case of at least the threshold number of auctioneers indicating that one of the actions taken
by one of the auctioneers has failed the verification, the auction protocol can either continue ignoring any values
returned by the offending auctioneer, or the auction result can be invalidated and the auction restarted.

Threat Model. The provers and verifiers in the verification protocol are assumed to be polynomially-bounded active
adversaries that may try and prove incorrect assertions. It is assumed that any number of polynomially-bounded active
adversaries may be colluding together to disrupt the verification protocol as long as there are less than the quorum or
threshold value t used in the (t, n) threshold scheme. Different parties may collude, so a bidder and an auctioneer may
collude together.

Verifiable Threshold El-Gamal Decryption. Threshold El-Gamal encryption ensures that a single auctioneer cannot
decrypt all the bids for a link in the auction graph. Threshold El-Gamal uses a group of n auctioneers where the secret
key x is shared using Shamir’s secret sharing scheme x → (x1, ..., xn) [13] and requires the co-operation of at least t

auctioneers to decrypt an encrypted value. Verifiable threshold El-Gamal uses ZKP of equality of logarithms to detect
when an auctioneer publishes an incorrect decryption share with high probability. As long as less than t participants of
the secret sharing scheme are malicious, the decryption can be carried out correctly even in the presence of malicious
participants.

Verifying Valid Bid Vectors. Bids are represented in a bid vector form where an item in the bid vector is either an
encryption of 1 or the publicly known value Z. From the left, the number of Zs before the first 1 indicates the value
of the bid vector so, for example, (E(Z), E(Z), E(1), E(1), E(1)) is a bid vector of length 5 with value 2. A bid vector
should contain no gaps where an encrypted 1 is between two encrypted Z values. An example of a bid vector with a
gap is bidgap = E(Z), E(Z), E(1), E(Z), E(1).

Figure 7 shows the process used to verify that the bids are valid while not revealing their value. First the bidders
submit their encrypted bids to the auctioneer in an alternate bid vector along with ZKPs that every item in the alternate
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bid vector is an encryption of a 1 or a Z [15]. Every item i in the alternate bid vector alt for a value v is calculated
with the formula:

alti =

�
E(Z) if i = v

E(1) otherwise

The auctioneers then check the ZKPs that every item is an encryption of a 1 or a Z. The third step is for the
auctioneers to decrypt the product of all the items in the bids vector. The auctioneers publish their shares of the
decryption of the product along with ZKPs that their shares are correctly computed. The auctioneers then verify that
the product of the items was correctly computed and that the product of the items decrypts to Z. Finally the alternate
bid vector is integrated [17] to convert it to the standard form of the bid vector used in the homomorphic auction
protocol. To integrate a bid vector one of the auctioneers computes the following function on the items of the alternate
bid vector alt of length l starting with the item l and going down to item 1:

bidi =

�
alti if i = l

alti ∗ bidi+1 otherwise

Auctioneers

Bidder

Bid: E(1),E(1),E(Z),E(1),E(1),E(1)

Zero Knowledge Proof 
decrypts to 1 or Z

 Product Bid Items = 
E(1)*E(1)*E(Z)*E(1)*E(1)*E(1) 

= E(Z)

E(1),E(1),E(Z),E(1),E(1),E(1)

E(Z),E(Z),E(Z),E(1),E(1),E(1)

1

2

3

4
Integrate

Figure 7: Verifying Valid Bid Vectors

Verifying Maximum Bids. To calculate the maximum bid for a link of the auction graph, the product of all the incom-
ing bid vectors is taken. This product vector is then decrypted from right to left to find the first value in the product
vector that does not decrypt to 1. Figure 8 illustrates the process. Each auctioneer in the group publishes proofs that
their share of the decryption has been correctly calculated using a proof of equality of discrete logarithms.

Bid 1: E(Z),E(Z),E(Z),E(1),E(1),E(1)
Bid 2: E(Z),E(Z),E(1),E(1),E(1),E(1)
Bid 3: E(Z),E(Z),E(Z),E(Z),E(1),E(1)

Product: E(Z3),E(Z3),E(Z2),E(Z),E(1),E(1) Auctioneers

Zero Knowledge 
Proofs of correct 

decryption

Figure 8: Verifying Maximum Bid

Verifying Shift and Randomise. To prove in zero knowledge that an auctioneer has correctly added a constant m and
re-randomised a bid vector of length l the auctioneer first calculates m encryptions of Z and publishes ZKPs of equality
of logarithms to prove that these m items are encryptions of Z to the other auctioneers. The auctioneer then shifts the
new bid vector right by m places, adds the m encryptions of Z, and publishes this shifted bid vector to the other
auctioneers. The auctioneer calculates l encryptions of 1 and publishes ZKPs of equality of logarithms to prove that
these l items are encryptions of 1 to the other auctioneers. The auctioneer then publishes the shifted and randomised
bid vector by multiplying the items in the shifted vector by the l encryptions of 1. Figure 9 provides an example of
this process where the auctioneer is adding the constant m = 2 to a bid vector of length l = 5.
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Figure 10: Homomorphic Auction and Verification Protocol Test Setup

5. Algorithmic Complexity

Table 1 presents the upper bound of the complexity of the original homomorphic auction protocol and the verifiable
extension based on the number of modular exponentiations. The verification protocol adds an overhead of 2g(9bl +
2ln + 2bn) + 2bgn exponentiations. While this is a significant overhead, the main influence on the number of modular
exponentiations is still the number of goods in the auction.

Homomorphic Protocol Verifiable Protocol
2g(4bl + ln) + bgn 2g(13bl + 3ln + 2bn) + 3bgn

Table 1: Complexity. g is no of goods, b is no of bidders, l maximum bid for a link

6. Experimental Results

The verification and auction protocols were implemented in Java. Figure 10 shows the testing setup. The auctions
were run on a group of five computers. Each computer hosts from 2 to n bidders. One computer hosts the seller and
the other four host the auctioneers. The first three auctioneers to respond to the sellers request to host an auction will
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Figure 11: No. Bidders vs Auction Time Figure 12: Maximum Bid vs Auction Time

Figure 13: Key Size vs Auction Time Figure 14: No. Goods vs Auction Time

run the auction protocol for this auction. A subsequent auction may utilise a different partition of the auctioneers. The
bid values were chosen to show the upper bounds of the protocol. Due to the fact that the auctioneers decrypt the bid
vectors from right to left when working out the maximum bid, the bids were chosen to be randomly either one or two.
This means that the auctioneers will have to do more work than if the bids were higher values. In our tests we used a
(2, 3) threshold scheme for the encryption. The default values for the parameters were ten bidders, a maximum price
of sixteen, three goods, and a key size of 128. All tests record the total auction time. This includes the time taken by
bidders to encrypt and submit bids as well as the time taken by the auctioneers to calculate the result of the auction,
publish ZKPs that their actions are correct, and verify the proofs of the other auctioneers.

Figure 11 shows a linear increase in the number of bidders causing linear growth in the time taken to compute the
auction. The verifiable auction protocol adds a significant overhead which is due mainly to the extra proofs that must
be generated by every bidder to prove that their bid is valid.

Figure 12 shows a linear increase in the maximum bid resulting in an exponential growth of the time taken to
compute the auction result. This is true for both the homomorphic auction protocol and the verifiable auction protocol.

Figure 13 shows the time taken to compute the auction increasing exponentially as the key size is increased
linearly. This is due to the extra computation requirements of operating on the larger encrypted values. The homo-
morphic auction protocol does not seem to increase when using a key size from 128 bits to 384 bits and only seems
to experience exponential growth for key sizes greater than 384. This may be due to a minimum overhead being
created by the communication costs of the protocol that influence the time taken to compute the auction more than the
computational requirements of computing with larger numbers up to a key size of 384. This is also reflected in the
verifiable auction protocol where the exponential growth seems to happen for key sizes greater than 256. As there is
more computation done on the larger numbers in the verifiable auction protocol it would have an effect on the auction
time for smaller key sizes than the homomorphic auction protocol.

Figure 14 shows the effect of increasing the number of goods on the auction time. Both the homomorphic auction
protocol and the verifiable auction protocol have exponential growth in auction time as goods are increased. Increasing
the number of goods in a combinatorial auction results in an exponential increase in the number of possible allocations.
This is known as the combinatorial auction problem (CAP) which is NP complete and exponential. Although a straight
line in this graph would be expected as the goods increase, the extra increase could be added due to some inefficiency
in the implementation such as an inefficient graph creation algorithm that results in extra time taken for each good
added. There is no result for the verifiable auction protocol for five goods, as the Java version used was restricted to
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a maximum of 734MB of memory per process and the auctioneers for the verifiable auction protocol require more
memory.

We have stated that our motivation for using a privacy preserving verifiable auction protocol is to allocate com-
putation resources in a cloud computing environment. While the results of these experiments show that the time
taken to complete a verifiable auction would add a large overhead to the resource allocation if done on a task by
task basis, we envisage these auctions being used in a multi-level scheduling architecture. A light weight scheduler
such as Falkon [18] would be used to allocate tasks while combinatorial auctions are used by a provisioner to reserve
large amounts of resources. In this scenario the provisioner would be taking part in high value auctions where the
verification of the auction result provides confidence for resource providers that the auction result has been computed
correctly.

It is interesting to note that the experimental results we have taken agree with the algorithmic complexity. The
verification protocol does add a significant overhead to the homomorphic auction protocol.

7. Conclusion

We have added verification to an existing privacy preserving combinatorial auction protocol. Provided less than
a threshold of auctioneers are malicious, losing bid values are kept secret and auction participants can have confi-
dence in the auction result. With the addition of verification, the auction protocol is a privacy preserving, verifiable,
combinatorial auction protocol. While the verification protocol adds an overhead to the auction protocol, it increases
confidence in the auction result and can improve the robustness of the protocol by detecting and removing invalid
bids or malicious auctioneers. While the algorithm is NP complete, experimental results have shown useful auctions
with three goods, fifty bidders, 128 bit key size, and sixteen possible bid values are computed in approximately three
minutes. While this may be too expensive for resource allocation for individual tasks, we can envisage a verifiable
privacy preserving combinatorial auction protocol being used by a provisioner to reserve large blocks of resources to
be allocated to tasks by a light weight scheduler.
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