
A Budget-Aware algorithm for Scheduling Scientific
Workflows in Cloud

Vahid Arabnejad, Kris Bubendorfer and Bryan Ng
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

Email: {vahid, kris and bryan.Ng}@ecs.vuw.ac.nz

Abstract—Commercial clouds are quickly becoming the goto
platform for hosting on-demand and dynamically scalable ser-
vices for scientific analyses and computation. Dynamic provi-
sioning of resources is a critical element when utilising the
cloud for executing large-scale and complex scientific analyses. In
particular, hosting and managing data intensive applications on
the cloud raises new challenges in terms of workflow scheduling.
In this paper, we introduce a new Budget Aware Trickling
(BAT) algorithm that addresses eScience workflow scheduling
in the cloud. Our main focus in this paper is on data intensive
applications that appear in scientific domains dealing with a large
amount of data. The BAT algorithm builds upon the concept of
Constrained Critical Paths (CCP) to execute a set of tasks on
the same instance to lower the cost of communication and data
movement between instances. Our BAT algorithm distributes
budget based on the dependency structure inherent in workflows
and we show that it yields 30% reduction in makespan while
maintaining consistent success rate.

I. INTRODUCTION

The scale and scope of cloud enabled scientific research
is increasing dramatically due to the cloud offering pay-
per-use high performance computing facilities. Such cloud
enabled research often produces a vast amount of data that
requires large scale computing resources for execution. Data
intensive computing is defined as production, manipulation
and analysis of data from mega bytes to peta bytes [1].
Data intensive applications in different domains from science
to social networking, produce large scale data that need to
be analyzed and processed with parallel processing and dis-
tributed techniques. Data operations consist loading input files,
data processing, distribution and aggregation, and execution is
typically modelled and characterized by workflows.

Scientific workflows are one of the key technologies in the
development of data intensive scientific experiments. Scientific
workflows vary in size from a couple of tasks to millions of
tasks with heterogeneous characteristics in terms of resource
demands and dependencies. The cloud provides on demand
pay-per-use provisioning of a range of instance types, no
matter where the services or requestor are hosted. Advantages
and benefits of using cloud computing have resulted in a move
towards the hosting of e-Science applications on the cloud [2].

Once a scientific experiment is defined by a workflow,
it needs to be executed – which requires resources to be
requested from and provisioned by the cloud. This is es-
sentially a problem of ensuring an appropriate set of in-
stances is provisioned and then scheduling tasks to those
instances. This is a combinatorial problem involving multiple

constraint satisfaction and is NP-complete. In addition to the
heterogeneous task execution requirements, dependencies and
instance types, other constraints that are generally considered
significant in scientific domains are execution time and cost.
The resource provisioning phase determines the amount and
type of resources required and requests the resources for
workflow execution. Resource allocation is defined as the
assignment of reserved resources to tasks in the workflow.
The scheduling phase then maps the workflow tasks to the
provisioned resources.

The financial cost and total execution time of a workflow
depends on the number and types of instances requested during
resource provisioning. The cost plays a significant role in a
cloud environment as users wish to minimise costs, as grant
budgets are finite. In this paper we will focus on the issue of
scheduling budget constrained workflows on commercial pay-
per-use clouds while trading off cost and time. In essence, the
goal is how to best spend the budget for the best performance.

The main contribution of this paper is the development and
evaluation of our novel, budget constrained scheduling algo-
rithm – Budget Aware Trickling (BAT). The BAT algorithm
manages the scheduling of workloads on dynamically provi-
sioned cloud resources and achieves a reduction in makespan,
most significantly, when the budget is limited. In particular we
consider:
• Budget distribution: distributing budget based on the

dependency structure embedded in a workflow.
• Trickling: trickling unspent budget (residuals) down to

unscheduled tasks to better utilize the budget.
• Task selection: selecting Constrained Critical Paths (CCP)

to execute a set of tasks on the same instance with the
goal of reducing communication cost between instances.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of existing approaches to scheduling
workflows. In Section III, we define the workflow scheduling
problem and describe our system model. In Section IV, we
present our workflow scheduling algorithm. In Section V
and VI, we outline our CloudSim-based simulation followed
by results and performance evaluation. Finally, we summarize
our work in Section VII.

II. RELATED WORK

In cloud environments, there have been significant research
on QoS constrained workflow scheduling for deadline and
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budget. The main idea of most deadline constrained algo-
rithms is how to distribute the user-defined deadline among
workflow tasks or levels [3]–[6]. There are several recent and
comprehensive surveys [7], [8] on workflow scheduling. We
only include a review of workflow schedulers that take into
account budget constraints in a pay-per-use cloud environment.

The related research in the this area can be categorized into
two main classes: cost optimization and budget constrained.
This classification helps understand the variety of existing in
cloud scheduling algorithms by exposing its strategies and
objectives.

A. Cost optimization

In [9], Li et al. presented an extension of the HEFT [10]
algorithm called the Cost Conscious Scheduling Heuristic
(CCSH). The CCSH algorithm, first constructs a priority list of
tasks and then assigns the task with the highest priority value
to the most cost-efficient virtual machine (VM). However, only
one VM type and one pricing model is considered.

A security-aware and budget-aware workflow scheduling
scheme is presented in [11] while trying to minimize the
workflow execution time. However, in their presented algo-
rithms, they do not control the budget if in any steps the
algorithm exceeds the user-defined budget. For this purpose,
we categorize [11] in the cost optimization category.

A cost efficient task scheduling heuristic is presented
in [12]. However, the cost model that is considered in this
paper is based on the number of used CPU cycles. The
total cost in this model is the sum of the costs of all tasks.
This model is not consistent with most cloud providers, like
Amazon, that charge users for a minimum period of time, even
if the instance is only used for a fraction of the minimum
period.

B. Budget Constrained

The closest work to ours appears in [13] and [14] whereby
Zheng et al. put forward the concept Budget constrained
Heterogeneous Earliest Finish Time (BHEFT) which is an
extension of HEFT algorithm [10]. In BHEFT, a current task
budget (CTB) factor is introduced to distribute spare budget
among unscheduled tasks. Their budget distribution is different
from ours as the task budget and spare budget are calculated
task by task. The task selection part in [14] is one by one based
on upward ranking [10]. In our case, a group of tasks, termed
as Constrained Critical Path (CCP) is selected to lower the
cost of communication and data movement. Moreover, their
work is set within the context of a Grid environment which
is not directly applicable to cloud environments. Workflow
scheduling in cloud differs from grid primarily in the elastic
resource provisioning and pay-per-use charging model.

Scheduling Bags of tasks under budget constraints in cloud
was presented in [15]. One of the assumptions in [15] is that
tasks are preemptive which means they can be interrupted,
delayed and then re-triggered sometime later. Our model is
different from [15] in such a way, we have non-preemptive

dependent tasks in our workflow model, a less forgiving
constraint.

In [16], Zeng et al. presented a budget-aware backtracking
algorithm for executing large scale many task workflows,
referred to as ScaleStar. The cost model considered in [16]
is based on the use of fractional resources. However, in most
of the cloud providers, like Amazon EC2, it is more realistic
to consider costs based on a longer interval for example 60 or
90 minutes.

A budget constrained auto scaling multiple workflows in
cloud is considered in [17] by Mao et al. Their work is
different from ours in the way that they consider available
budget in the form of dollar per time units. The same
authors go on to propose two new auto scaling techniques
in [18] to solve the budget constrained scheduling for a
workload consisting multiple workflows. In this work, budget
is distributed to different workflows proportionally based on
assigned priorities.

The authors in [19] and [20] presented an algorithm with
budget constraints called minimum end-to-end delay under
cost constraint (MED-CC). Firstly, each task in a workflow is
assigned to an instance. In the next step, all critical tasks are
considered for rescheduling with the proposed Critical Greedy
algorithm. The algorithm in [20] was chosen in order to eval-
uate the performance of our BAT algorithm by comparison.

III. PROBLEM SETUP

This section is broken down into three parts to facilitate the
explanation on the problem setup, namely: (i) the workflow
model (ii) definitions of variables and (iii) cloud service model.

A. Workflow Model

A Directed Acyclic Graph (DAG) is the most common
representation of a workflow [21]. A workflow is defined as a
graph G = (T,E) where T = {t0, t1, ..., tn} is a set of tasks
represented by vertices and E = {ei,j | ti, tj ∈ T} is a set
directed edges denoting data or control dependencies between
tasks ti and tj .

An edge ei,j ∈ E represents the precedence constraint as
a directed arc between two tasks ti and tj where ti, tj ∈ T .
The edge indicates that task tj can start only after completing
the execution of task ti with all data received from ti and this
implies that task ti is the parent of task tj , and task tj is the
successor or child of task ti. Each task can have one or more
parents or children.

B. Definitions

The Earliest Start Time (EST) of a task ti is calculated on
the instance with the shortest execution time and defined as:

EST (i) =


0 , ti = tentry

max
tj∈pred(ti)

{
EST (tj) + wtj + Ci,j

}
,Otherwise,

(1)
where wtj is the execution time of task tj on the fastest
instance type.
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The ECT(ti) denotes the Earliest Completion Time (ECT) of
task ti over all instances and defined as:

ECT(ti) = EST (ti) + wti . (2)

The cost of executing task ti on instance pj is calculated
as:

TaskCost
pj

ti =

⌈
w

pj

ti

Nt

⌉
∗ cj , (3)

where cj is the cost of instance pj for one time interval. The
execution time of task tj on instance pj is denoted by w

pj

ti
and Nt is the number of intervals.

The overall cost of executing all tasks in a workflow is
defined as:

Costo =
∑
ti∈G

TaskCost
pj

ti . (4)

Constrained Critical Path (CCP): A Critical Path (CP)
is the longest path from the entry to exit node of a task
graph [22]. The length of critical path (|CP |) is calculated
as the sum of computation costs and communication costs,
and can be considered as the lower bound for scheduling a
workflow. The set of tasks containing only the tasks ready for
scheduling constitutes a constrained critical path (CCP) [23].
A task is ready when all its parents have been executed and
all data required by the task has been provided.

C. Cloud service model

We assume that cloud vendors provide access to unlimited
number of instances and the instances are heterogeneous (de-
noted by P = {p0, p1 . . . ph}, where h is the index of the
instance type). We also assume that all instances and storage
services are located in the same region and also assume that
the average bandwidth between the instances are identical.

IV. THE BAT ALGORITHM

Our budget-Aware Trickling (BAT) scheduling algorithm
attempts to minimize the execution time while meeting the
budget constraints. The BAT algorithm recognizes the signifi-
cance of levels in task scheduling and thus distributes budget
share based on levels.

The BAT algorithm is divided into four main phases:
(A) Workflow partitioning: The workflow is partitioned into

dependency free bags of tasks, called levels.
(B) Budget Distribution: The user-defined budget is then

allocated to each defined level.
(C) Task Selection: A set of tasks expressed in Constrained

Critical Path (CCP) is selected based on its priority in the
ready list for execution.

(D) Instance Selection: The instances are chosen to meet the
available budget.

A. Workflow partitioning

The workflow partitioning process maximizes task paral-
lelism by arranging tasks in levels, where within each level no
tasks have dependencies on another in the same level. Each
level can therefore be thought of as a bag of tasks (BoT)
containing a set of independent tasks.

We describe the level of a task ti as an integer representing
the maximum number of edges in the paths from task ti to
the exit task. The level number (denoted by NL) associates a
task to a BoT as follows:

NL (ti) = max
tj∈succ(ti)

{NL (tj) + 1}, (5)

where succ(ti) denotes the set of immediate successors of
task ti. We categorize tasks in the bottom-top direction (Level
number 1→ Level number 5 in Fig 1) to allocate all tasks into
different levels. For the exit task, the level number is always
1.

All tasks are then grouped into Task Level Sets (TLS) based
on their levels and this is expressed as:

TLS(`) = {ti|NL (ti) = `}, (6)

where ` is an integer denoting the level in [1 . . . NL (tentry)].

B. Budget Distribution

The main idea of budget distribution is simple as distribute
budget among different levels and try to schedule each task
on an instance considering the available sub-budget assigned
to a level. In this paper, we used two strategies to distribute
budget among levels:
• Area: In this strategy, the combination of height and

width for a workflow is considered. This is informed by
the supposition that the structure of a workflow impacts
scheduling. The area strategy takes into account: (i) the
height of the workflow whereby budget distribution in
each level is proportional to its distance from the entry
node (ii) the width of the workflow whereby budget
distribution is proportional to the number of tasks within
that level.

• All in: Places the entire budget on the entry level and any
remainders are trickled down to later levels.

C. Task Selection

Tasks in a workflow are selected for execution based on the
CCP. To find all CCPs in a workflow we use the upward rank
and downward rank introduced in our previous work [6], and
these are defined as follows:
modified upward rank :

Mranku(ti) = wi +
∑

tj∈succ(ti)

(ci,j) + max
tj∈succ(ti)

(ranku(tj))

(7)
modified downward rank :

Mrankd(ti) =
∑

tk∈pred(ti)

(ck,i)+ max
tk∈pred(ti)

(wk + rankd(tk))

(8)
where wi and ci,j are the average execution time and average
communication time of task ti, respectively.

The modified rank aggregates a task’s predecessors’ or
successors’ communication time instead of selecting the max-
imum (as in [10]). With the modified ranks, those tasks with
higher out-degree or in-degree have higher priorities. As a re-
sult, they have a greater chance to execute first and more tasks
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on the next CCP can be considered as ready tasks. All tasks are
first sorted based on the sum of Mrankd(ti) +Mranku(ti)
values. Tasks with highest values are chosen as the first CP.
A more detailed explanation on CCP can be found in our
previous work [6].

D. Instance Selection

In the Instance selection phase we aim to identify the most
appropriate instance to execute CCPs. Note: all tasks in a CCP
are executed in the same instance with the goal of avoiding
communication cost between them. We start by calculating
both the time and the cost of executing each task on each
instance type, given by equations 10 and 11, forming two sets
of Cost and Time (the sets are indexed by pj and (CCPi)).

The cost for executing current CCP, denoted by (CCPi), on
the instance pj is given by C(CCPi, pj). In the equation 10,
subBudgetCCPi is the sum of assigned subBudget of all
tasks in different levels for a CCP which is given by:

subBudgetCCPi
=

∑
ti∈CCPi

ti∈TLS(`)

subBudget(`). (9)

Cost
pj

CCPi
=
subBudgetCCPi

− C(CCPi,pj)

subBudgetCCPi − Cbest
, (10)

where Cbest denotes the minimum cost for executing current
CCP among all instances.

In the Time set, the required time for the current CCP
on instance pj is a function of ECT(CCPi, pj) and this
is expressed in equation 11. The ECT is the earliest time
that a CCP can complete execution on a instance (defined in
equation 2 for a single task). The maximum and minimum
completion time of executing the CCPi among all instances
are ECT(max) and ECT(min), respectively.

Time
pj

CCPi
=

ECT(max)− ECT(CCPi, pj)

ECT(max)− ECT(min)
. (11)

To find the best instance, we use the Time Cost Adjustment
Factor (TCAF) in equation 12.

TCAF
pj

CCPi
=


0 ,Cost

pj

CCPi
= 0

Time
pj

CCPi

Cost
pj

CCPi

,Otherwise.
(12)

The instance with the highest TCAF value is considered
the best candidate to execute the current CCP. There is
a possibility that the total assigned budget for the level `
has already been spent (subBudgetCCPi

=0) while there are
still some unscheduled tasks. If this condition is occurs, the
Cost

pj

CCPi
in equation 10 is zero. Therefore, we can not launch

a new instance as there is no budget left. Note that the value of
equation 12 becomes zero as well. Moreover, if the value of
equation 10 becomes negative, it means the cost of execution
on the selected vm is higher than available subBudgetCCPi

.
When an instance is provisioned, the user is charged for the

entire billing interval even if the task completes before the end
of the interval. One way to reduce the cost of executing tasks is

by using leftover capacity (residuals) in provisioned instances
that have been already paid for. Therefore, if other tasks can
execute on an existing instance with a residual, their execution
costs can be considered zero. Moreover, the utilization of
cloud resources depends on how tasks are placed together.
Instance fragmentation and resource wastage occurs if tasks
are not packed efficiently. The BAT algorithm utilises these
residuals for executing ready tasks, which reduces makespan
at no additional cost.

After assigning a CCP to an instance that requires
C(CCPi, pj) cost, we update the remaining budget for each
level. Allocating a higher budget to the earliest tasks in a
workflow generally leads to a lower makespan. The pseudo
code presented in algorithm 1 explains how the cost is updated.

Algorithm 1 Update Remaining budget
1: procedure UPDATE BUDGET(CCP, cost)
2: while |CCP | and cost > 0 do
3: ti ←− last task in CCP
4: remove ti from CCP
5: LB ←− subBudget(`)ti∈TLS(`)

6: if LB > cost then
7: LB ←− LB − cost
8: cost←− 0
9: else

10: cost←− cost− LB
11: LB ←− 0
12: end if
13: end while
14: end procedure

An important concept in our algorithm is trickling down
unused budget and this is expressed by equation 13. We define
Spare Level Budget (SLB) as the amount of money remains
after allocating all tasks in the level ` and this is expressed
as:

SLB` = subBudget` −
∑

ti∈TLS(`)

Ci. (13)

The leftover budget is trickled to the next level (`+ 1).

E. An illustrative example:

We now present an example to show how the budget is
distributed among different levels. Figure 1 shows the structure
of a sample workflow with ten tasks and their dependencies.

In this figure, the left column shows level numbers calcu-
lated by equation 5. The right column is obtained by counting
tasks in each level starts from the exit task. In this example
Nmax=5 which is the maximum level in the workflow and a
budget of 165 is assumed.
• Height: Each level is assigned a weighted share of budget

relative to its height in the workflow. This is calculated
by:

Lweight =

Nmax=5∑
k=1

k = 15.
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(a)

Fig. 1: A Sample Workflow with ten tasks.

The Budget Factor (BF) is calculated by:

BF =
budget

Lweight
=

165

15
= 11.

For instance, level 4 consists of tasks B and C are
assigned a share of the budget equal to 4×BF = 4×11 =
44.

• Width Proportional: Each level gets a share of budget
depending the number of tasks in corresponding level:

BF =
budget

tasknumbers
=

165

10
= 16.5.

For instance, the budget share assigned to level 4 with
two tasks is 2×BF = 2× 16.5 = 33.

• Area Proportional: In this strategy, the budget share
allocated to each level is a combination of height and
width strategies. Calculated by:

Lweight =

10∑
k=1

k = 55.

The Budget Factor (BF) is calculated by:

BF =
budget

Lweight
=

165

55
= 3.

The budget then is distributed based on the sum of
numbers in the right column in Fig. 1. For example, level
3 is allocated the share (4+5+6+7)×BF = 22×3 = 66.

• All in: The total budget is assigned to level 5. After
scheduling all tasks in this level, any spare budget is
trickled to the next level.

TABLE I: Budget distribution for each strategy over each level
for a total budget of 165 in Figure 1.

Budget Distribution Strategy

Height Width Area “All in”

Level 5 5×BF = 55 1×BF = 16.5 10×BF = 30 165

Level 4 4×BF = 44 2×BF = 33 17×BF = 51 0

Level 3 3×BF = 33 4×BF = 66 22×BF = 66 0

Level 2 2×BF = 22 2×BF = 33 5×BF = 15 0

Level 1 1×BF = 11 1×BF = 16.5 1×BF = 3 0

V. EVALUATION

Public clouds provide instance types containing different
amounts of CPU, memory, storage and network bandwidth at
different prices. In this paper we use a resource model based
on the Amazon Elastic Compute cloud, where instances are
provisioned on demand. The pricing model is a pay-as-you-
go with minimum hourly billing. Under this pricing model, if
an instance is used for one minute, a user pays for the whole
hour. The costs and instance types used in this paper are given
in Table II, and were accurate in March 2016.

TABLE II: Instance Types

Type ECU Memory(GB) Cost($)

m3.medium 3 3.75 0.067

c4.large 8 3.75 0.105

c3.xlarge 14 7.5 0.21

m4.2xlarge 26 32 0.479

c4.4xlarge 62 30 0.838

c3.8xlarge 108 60 1.68

Our simulation scenario is configured as a single data-
center with six different instance types. The characteristics
of the instances are based on the Amazon EC2 instance
configurations presented in Table II. The average bandwidth
between instances is fixed to 20 MBps [24]. The processing
capacity of an EC2 unit is estimated at one Million Floating
Point Operations Per Second (MFLOPS) [25]. The estimated
execution times are scaled by instance type CPU performance.

In an ideal cloud environment, there is no provisioning
delay in resource allocation. However, some factors such as
the time of day, operating system, instance type, location of
the data center, and number of requested resources at the
same time, can cause delays in startup time [26]. Therefore,
in our simulation, we adopted a 97-second boot time based on
previous measurements of EC2 [26].

We use three common data intensive scientific workflows:
Cybershake, Montage and LIGO, to evaluate the performance
of our algorithms with a realistic load. The characteristics and
task composition of these workflows have been analyzed in
[27], [28]. We vary the budget from tight to relaxed and record
the both the cost and suceess rate. Additionally, we calculate
the fastest schedule (denoted by FS) as a baseline schedule.
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Effectively, this baseline is the fastest possible execution -
ignoring costs and is computed as:

FS =
∑

ti∈CP

(wj
i ), (14)

where wj
i is the computation cost of task ti on the fastest

instance pj . If all tasks on the CP of a workflow are executed
on the fastest instance type, the fastest schedule will be
achieved.

We define the budget as a function of the fastest schedule
and this budget is expressed in equation 15 in which the budget
varies from tight to relaxed:

budget = α ∗ FS, 1 < α < 6. (15)

The budget factor α starts from 1 to consider very tight budgets
(typically approaches the fastest schedule) and is increased by
one up to a value of 6, which results in relaxed budget.

The Amazon EC2 instances charge on an hourly interval
from the time of provisioning. We configure our simulator to
reflect this charging model and we use a time interval of 60
minutes in our simulations. To compare performance with re-
spect to different workflow sizes we evaluated workflows with
50, 100, 200, 500 and 1000 tasks. However, as these results
did not vary significantly we present here only workflows with
1000 tasks.

We used the Pegasus workflow generator [27] to create rep-
resentative workflows of Cybershake, Montage and LIGO. For
each workflow structure, and each budget factor, 100 distinct
Pegasus generated workflows were scheduled in CloudSIM
and the performance of the scheduling algorithms are detailed
in the following section.

VI. EXPERIMENTAL RESULTS

In this section we compare the performance of both strate-
gies of our BAT algorithm (in conjunction with two strategies
Area and All in) with Critical-Greedy (CG) [20]. The CG
algorithm is one of few works addressing workflow scheduling
with budget constraint and presented in cloud environment.
The makespan and success rates of three data intensive
workflows are presented in Fig. 2. The budget vs. execution
time (makeSpan) performance of each algorithm is the most
significant basis for evaluating their performance. Increasing
the budget allows a scheduler to launch more powerful in-
stances with better storage, CPU, and network performance.
Therefore, its not surprising to see a moderate reduction in
overall workflow execution time as the budget increases.

In terms of makespan, the All in strategy of BAT algorithm
has the best performance in all datasets. The CG algorithm
[20] performs rescheduling and attempts to reassign tasks until
the specified budget is met. This feature of the CG increases
the time complexity of the CG algorithm.

The CG algorithm has the worst performance when budget
is limited. For example, in the first two budget ranges across
all three workflows, CG could only find a schedule with a three
times the makespan. The All in and Area budget distribution

with BAT algorithm have lower overall makespan than CG
while in most cases there is only a small difference between
Area and All in strategy. The results show that the BAT
algorithm outperforms CG in terms of makespan.

Success rate reflects the success of the algorithm in schedul-
ing a workflow to meet the budget. As expected, relaxing the
budget leads to increased success rate. The Area strategy with
BAT algorithm has 100% failure in MONTAGE in the first
interval, which means it cannot find a schedule. The worst
performance in finding a suitable schedule occurs in LIGO -
where the CG algorithm records a 20% to 30% failure rate
over the first three intervals.

VII. CONCLUSION

In this paper, we introduce the Budget Aware Trickling
(BAT) algorithm for scheduling data intensive workflows in
dynamically provisioned cloud resources. Our algorithm fo-
cuses on distributing budget based on the dependency structure
inherent in workflows. Moreover, the BAT algorithm builds
upon the concept of Constrained Critical Paths (CCP) to
execute a set of tasks on the same instance in order to
lower the cost of communication and data movement between
instances. The makespan and success rates are evaluated for
our algorithm using three data intensive real word workflows.
Assigning more budget to the earliest levels and utilising
the budget trickling mechanism resulted in faster execution
(30% reduction in makespan) and overall a better workflow
scheduling success rate – leading to more viable workflow
schedules at lower cost.

REFERENCES

[1] R. Moore, T. A. Prince, and M. Ellisman, “Data-intensive computing
and digital libraries,” Commun. ACM, vol. 41, no. 11, pp. 56–62, Nov.
1998. [Online]. Available: http://doi.acm.org/10.1145/287831.287840

[2] I. Foster, K. Chard, and S. Tuecke, “The discovery cloud: Accelerating
and democratizing research on a global scale,” in proceedings of the
IEEE International Conference on Cloud Engineering, 2016.

[3] Y. Yuan, X. Li, Q. Wang, and Y. Zhang, “Bottom level based heuristic for
workflow scheduling in grids,” Chinese Journal of Computers-Chinese
Edition-, vol. 31, no. 2, p. 282, 2008.

[4] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of sci-
entific workflow applications on utility grids,” in e-Science and Grid
Computing, 2005. First International Conference on, July 2005, pp. 8
pp.–147.

[5] V. Arabnejad and K. Bubendorfer, “Cost effective and deadline
constrained scientific workflow scheduling for commercial clouds,”
in Network Computing and Applications (NCA), 2015 IEEE 14th
International Symposium on, Sept 2015, pp. 106–113.

[6] V. Arabnejad, K. Bubendorfer, B. Ng, and K. Chard, “A deadline con-
strained critical path heuristic for cost-effectively scheduling workflows,”
in 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC), Dec 2015, pp. 242–250.

[7] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, “Cost-aware challenges
for workflow scheduling approaches in cloud computing environments:
Taxonomy and opportunities,” Future Generation Computer Systems,
2015.

[8] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, “Cost opti-
mization approaches for scientific workflow scheduling in cloud and
grid computing: A review, classifications, and open issues,” Journal of
Systems and Software, vol. 113, pp. 1 – 26, 2016.

[9] J. Li, S. Su, X. Cheng, Q. Huang, and Z. Zhang, “Cost-conscious
scheduling for large graph processing in the cloud,” in High Performance
Computing and Communications (HPCC), 2011 IEEE 13th International
Conference on, Sept 2011, pp. 808–813.

6

http://doi.acm.org/10.1145/287831.287840


500

1000

1500

2000

2500

2 3 4 5 6
Budget Range ($)

M
ak

es
p

an
 (

se
c)

BAT.Area
BAT.Allin
CG

CYBERSHAKE

0

25

50

75

100

2 3 4 5 6
Budget Range ($)

S
u

cc
es

s 
R

at
e 

(%
)

CYBERSHAKE

(a) Budget vs. MakeSpan and Success Rate for Cybershake

1000

2000

3000

4000

2 3 4 5 6
Budget Range ($)

M
ak

es
p

an
 (

se
c)

BAT.Area
BAT.Allin
CG

LIGO

0

25

50

75

100

2 3 4 5 6
Budget Range ($)

S
u

cc
es

s 
R

at
e 

(%
)

LIGO

(b) Budget vs. MakeSpan and Success Rate for LIGO

1000

2000

3000

2 3 4 5 6
Budget Range ($)

M
ak

es
p

an
 (

se
c)

BAT.Area
BAT.Allin
CG

MONTAGE

0

25

50

75

100

2 3 4 5 6
Budget Range ($)

S
u

cc
es

s 
R

at
e 

(%
)

MONTAGE

(c) Budget vs. MakeSpan and Success Rate for MONTAGE

Fig. 2: Performance Comparison of algorithms

7



[10] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 13, no. 3, pp. 260–274,
Mar 2002.

[11] L. Zeng, B. Veeravalli, and X. Li, “Saba: A security-aware and budget-
aware workflow scheduling strategy in clouds,” Journal of Parallel and
Distributed Computing, vol. 75, pp. 141 – 151, 2015.

[12] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and J. Wang, “Cost-
efficient task scheduling for executing large programs in the cloud,”
Parallel Computing, vol. 39, no. 45, pp. 177 – 188, 2013.

[13] W. Zheng and R. Sakellariou, Economics of Grids, Clouds, Systems, and
Services: 8th International Workshop, GECON 2011, Paphos, Cyprus,
December 5, 2011, Revised Selected Papers. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, ch. Budget-Deadline Constrained
Workflow Planning for Admission Control in Market-Oriented Environ-
ments, pp. 105–119.

[14] W. Zheng and R. Sakellariou, “Budget-Deadline Constrained Workflow
Planning for Admission Control,” Journal of Grid Computing, vol. 11,
no. 4, pp. 633–651, 2013.

[15] A. M. Oprescu and T. Kielmann, “Bag-of-tasks scheduling under budget
constraints,” in Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on, Nov 2010, pp. 351–359.

[16] L. Zeng, B. Veeravalli, and X. Li, “Scalestar: Budget conscious schedul-
ing precedence-constrained many-task workflow applications in cloud,”
in Advanced Information Networking and Applications (AINA), 2012
IEEE 26th International Conference on, March 2012, pp. 534–541.

[17] M. Mao and M. Humphrey, “Scaling and scheduling to maximize
application performance within budget constraints in cloud workflows,”
in Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on, May 2013, pp. 67–78.

[18] ——, “Scaling and scheduling to maximize application performance
within budget constraints in cloud workflows,” in Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on, May
2013, pp. 67–78.

[19] X. Lin and C. Q. Wu, “On scientific workflow scheduling in clouds under
budget constraint,” in 2013 42nd International Conference on Parallel
Processing, Oct 2013, pp. 90–99.

[20] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li, “End-to-end delay
minimization for scientific workflows in clouds under budget constraint,”
IEEE Transactions on Cloud Computing, vol. 3, no. 2, pp. 169–181,
April 2015.

[21] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows
for e-Science: Scientific Workflows for Grids. Springer Publishing
Company, Incorporated, 2014.

[22] Y.-K. Kwok and L. Ahmad, “Dynamic critical-path scheduling: An ef-
fective technique for allocating task graphs to multiprocessors,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 7, no. 5, pp. 506–
521, 1996.

[23] M. A. Khan, “Scheduling for heterogeneous systems using constrained
critical paths,” Parallel Computing, vol. 38, no. 4, pp. 175–193, 2012.

[24] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for science grids: a viable solution?” in Proceedings of the 2008
international workshop on Data-aware distributed computing. ACM,
2008, pp. 55–64.

[25] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of ec2 cloud computing services
for scientific computing,” in Cloud Computing, ser. Lecture Notes of
the Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering, D. Avresky, M. Diaz, A. Bode, B. Ciciani,
and E. Dekel, Eds. Springer Berlin Heidelberg, 2010, vol. 34, pp.
115–131.

[26] M. Mao and M. Humphrey, “A performance study on the vm startup
time in the cloud,” in Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing, ser. CLOUD ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 423–430.

[27] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of scientific workflows,” in Workflows in
Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop
on, Nov 2008, pp. 1–10.

[28] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682 – 692, 2013, special Section:
Recent Developments in High Performance Computing and Security.

8


	Introduction
	Related Work
	Cost optimization
	Budget Constrained

	Problem Setup
	Workflow Model
	Definitions
	Cloud service model

	The BAT algorithm
	Workflow partitioning
	Budget Distribution
	Task Selection
	Instance Selection
	An illustrative example:

	Evaluation
	Experimental Results
	Conclusion
	References

