Grid Resource Allocation: Allocation Mechanisms and Utilisation
Patterns

Stefan Krawczyk and Kris Bubendorfer

School of Mathematics, Statistics and Computer Science
Victoria University of Wellington
Kelburn, Wellington, New Zealand
Email: kris@mcs.vuw.ac.nz

Abstract

Grid systems have been put to remarkable use in re-
cent, years. Finding planets, rendering multi-million
dollar movies, and helping to understand disease are
just some of the examples grid systems have been used
for. With business turning to towards using grid sys-
tems and looking to make them global mechanisms
for service delivery, they are nicely poised to be an
exciting future prospect. However the performance
of a grid system is strongly related to how well grid
resource allocation is performed. With many possible
approaches to grid resource allocation we have to ask
the question, what impact does the choice of resource
allocation methodology have on the utilisation and
performance of a Grid system? This paper addresses
this question through the investigation of the charac-
teristic allocation patterns for three different resource
allocation mechanisms and their subsequent effect on
resource utilisation within a simulated Grid system.

1 Introduction

Grid computing has not become an important field of
research in computer science, but also contributes to
the advancement of science in many other fields by
providing access to large scale shared computing re-
sources on which to solve computationally large prob-
lems. The Grid is a distributed computing infras-
tructure(Foster et al. 2001) that takes advantage of
many networked computers to compute large scale
problems. It has been used in high throughput com-
puting e.g. High Energy Physics (HEP? applications,
large-scale resource and data sharing (Earth System
Grid), and on demand computing (Sun Microsystems
2007). It has grown from having a focus on advanced
science and engineering to one that includes the po-
tential for commercialisation by both industry and
individuals (Dimitrakos et al. 2003).

The primary focus of Grid computing is the shar-
ing (Foster et al. 2001) of resources between organi-
sations and individuals. While these resources have
traditionally been resources for computation, other
sharable resources can also include data and services.
For this paper however, our focus is on compute re-
sources and we use the term resource to mean compute
resource. In considering the problem of sharing com-
pute resources, we can observe that there are many
mechanisms for performing the allocation of resources
to compute jobs. One allocation system might choose

Copyright (©2008, Australian Computer Society, Inc. This pa-
per appeared at the 6th Australasian Symposium on Grid Com-
puting and e-Research, Wollongong, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 82, Wayne Kelly and Paul Roe , Ed. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

to allocate its resources based on a set of task ori-
ented policies, another might adopt economic princi-
ples and yet another might choose some alternative
concept such as fairness. Each of these mechanisms
bases its allocation decisions on different data and
subjects its jobs to different characteristic delays dur-
ing job placement. With many possible approaches to
Grid resource allocation the question arises: what im-
pact does the choice of resource allocation mechanism
have on the target Grid system?

This paper seeks to answer this question by exam-
ining how different allocation mechanisms change the
utilisation of a simulated Grid system. We have se-
lected three different allocation mechanisms that typ-
ify current thinking in resource allocation and have
constructed a GridSim (Buyya & Murshed 2002) sim-
ulation on which to observe their performance. We do
not consider local scheduling, our focus is one alloca-
tion mechanisms that operate above GRAM (Feller
et al. 2007) (or equivalent) level. We do not consider
workflow scheduling (Thain et al. 2005) or advanced
reservation (Netto et al. 2007), as these would serve
to hide the very characteristics that we interested in
observing by placing application or user constraints
on the allocation mechanism. We also do not look at
scheduling systems that delegate fine-grained schedul-
ing within larger scheduled blocks such as those allo-
cated by Falkon (Raicu et al. 2007).

This paper is organised as follows: we firstly give
an overview of allocation in Grid systems, we then
look at the protocols that we have selected to in-
vestigate and the design of the simulation, we then
present the characteristic utilisation patterns that we
observed and what observations and conclusions that
we can draw from this data.

2 Background and Resource Allocation

Before talking about the different models and mech-
anisms for allocating resources in the Grid, we must
first define what the Grid actually is. Until the paper
The Anatomy of the Grid - Enabling Scalable Virtual
Organizations(Foster et al. 2001) there was significant
doubt as to what ’grid computing’ or ’grid systems’
actually referred to. From this paper we can take the
foremost principle that what defines a Grid system
is that it facilitates resource-sharing among a set of
participants (some provide resources, others consume
them). The shared resources are then put to use by
some of the participants. The resource providers and
consumers have clearly defined conditions in which
they interact e.g. what is shared, who is allowed to
share and what quality of service one might expect.
The term virtual organization (VO) is used to de-
scribe participants who interact under these condi-
tions.

In essence a Grid is expected to encompasses three
points (Foster 2002):

e The resources coordinated are not subject to cen-
tralized control, i.e. they run under the domain
of a virtual organisation.

e The standards, protocols & interfaces used are
standardised, open and general purpose, i.e. the
interoperability of the resources allows seamless
integration with anything.

e The quality of service delivered is not trivial i.e.
to an agreement, to different types of agreements,
etc.

The remaining parts of this section will now look
at three different styles of Grid resource alloca-
tion. We will look at BOINC (Anderson 2004), Fair-
share (J.Kay & P.Lauder 1988) an agreement based
allocation and an economic allocation scheme based
around a reverse first price sealed auction. The de-
tails of the actual algorithms will be provided in later
sections 2.6.1.

2.1 Volunteer Resource Allocation

Volunteer computing or public resource computing is
based on the idea that willing participants with idle
resources, like CPU, will happily donate these in the
aid of some cause or task without any tangible remu-
neration for their use. It is characterized by the ease
of entry and exit of resource providing participants
in sharing their resources. Typically resources are al-
located to volunteers on a pull basis, with blocks of
tasks being allocated on request, and collected when
the next set of tasks is requested.

To see the effectiveness of volunteer comput-
ing in providing tremendous amounts of comput-
ing power, one has to look no further than the
SETI@home(Anderson et al. 2002) project. In 2001,
the average computing throughput provided by vol-
unteers was 23.76 Teraflops! There are a many other
BOINC (Anderson 2004) based projects including
Rosetta@home, TANPAKU@home, LHC@home, etc.
One social change that is observable in the volun-
teer computing environment is that a high computing
to data ratio is becoming less important, and there-
fore the advent of broadband has the potential for
data intensive applications to benefit from this model.
However, whilst some might argue that BOINC does
not, strictly meet the criteria established for defin-
ing a Grid due to the topology (star or similar (Sar-
menta 2001)), the work is often published at Grid
conferences and provides a usefully different alloca-
tion mechanism (Anderson et al. 2005) for the pur-
poses of this paper.

2.2 Agreement Based Resource Allocation

Agreement based resource allocation is a model where
the negotiation and management of resources is
formed by set policy. In essence either through ne-
gotiation (automated or not) a set of policies setting
the requirements or regulations for resource are es-
tablished and used for the allocation decisions. Each
participant adheres to the policy set out. This form of
resource allocation is usually used in an organization
on its own grid, between collaborating institutions,
etc, i.e. in general between places where collabora-
tion is high and long-term, e.g. universities and closed
communities.

Agreement Based resource allocation comes in two
general forms:

e Policy based resource allocation is a model which
uses a hierarchical approach to recursively sub-
divide the resources available. For some, logi-
cally dividing the grid resources makes sense, as

this way everybody has access to them. This is
heavily linked to the concept of virtual organi-
zations (VO) (Foster et al. 2001). Using a pol-
icy, a share of the resources is allocated to each
VO. The VO can then be made to enforce a lower
level policy or just subdivide its resources among
its members. Variants of policy based resource
allocation include Fairshare scheduling (J.Kay
& P.Lauder 1988) and decentralized Grid-wide
Fairshare scheduling (Elmroth & Gardfjall 2005).
These two are focused on grid resource utilization
and aim to deliver the allocated target shares
through policies.

e Service level based resource allocation (An-
dreozzi et al. 2005), as the name suggests, relies
on the use of service level agreements (SLAs).
Each grid user must produce a service level
agreement indicating their expectations of ser-
vice quality. A resource broker then performs
some match making to assign suitable resources
to requests. With the service level agreement,
a better quality of service is enforced. This
is an active area of definition being defined by
the Grid Resource Allocation and Agreement
ProtocolWorking Group of the Global Grid Fo-
rum (Grid Resource Allocation and Agreement
Protocol Working Group of the Global Grid Fo-
rum 2003).

2.3 Economic Resource Allocation

Economic resource allocation is where the negotiation
of resources is done via an economic mechanism. A
currency is used as the medium of exchange, indepen-
dent of whichever economic mechanism is in place. As
is seen in modern economies, this greatly enables the
exchange (or at least a chance to) of needs and wants
in return for goods and services. Auctions have long
been suggested as a means to allocate resources in
a distributed system (Malone et al. 1988) whereby
clients initiate an auction to find the best offer of
resources to execute a task. Indeed the earliest ex-
ample of a computational resource auction that we
have found is (Sutherland 1968) in which a white-
board based auction was utilised by which bidders
could spend their processing time allocations.

The main advantage of auctions for distributed
and Grid computing is that they are naturally de-
centralised with can permit many auctioneers able to
function in a distributed network. Auctions can also
compute optimal allocations giving providers the best
return on resources. There are four main types of auc-
tion protocol; the English, Dutch, Sealed-Bid, and the
Vickrey auction protocol. The English auction is the
conventional open outcry, ascending price, multiple
bid protocol. The Dutch auction is an open outcry,
descending price, single bid protocol. The Sealed-Bid,
or tender, is a sealed single bid, best price protocol.
The Vickrey auction is similar to the Sealed-Bid auc-
tion, except that the winning bidder pays the amount
of the second best bid. All four auction protocols yield
the same return in private value auctions hence the se-
lection of an auction protocol usually depends on mes-
saging and other implementation requirements (Vick-
rey 1961).

Economic resource allocation is seen as the mech-
anism that will enable real growth in the number of
Grid systems, in particular commercial ones. This
will lead to more choice and better options for po-
tential Grid consumers. As Buyya, Abramson, and
Giddy state "It offers incentive for resource owners
to be part of the Grid and encourages consumers to
optimally utilize resources and balance time frame and
access costs.” (Buyya et al. 2001)

Another reason for its attractiveness is that it
seems the most intuitive. As modern day economies
revolve heavily around trade and allocation of re-
sources, which is done via economic mechanisms, im-
plementing this mechanism would seem the most nat-
ural. Experience with these mechanisms also gives
us knowledge with which we can theorise what the
effects in grid systems would be (R. Wolski and J.
Brevik and J. S. Plank and T. Bryan 2003). The
mechanisms proposed for use in grid resource allo-
cation include auctions, commodity markets, tenders
and posted price (Buyya 2002).

With the emergence of Ebay and other Internet
auction sites, it is easy to see that particular economic
mechanisms are better suited than others to selling or
getting (depending on your perspective) goods and
services in a particular context. For instance market
gardeners use a commodity market mechanism to sell
their produce, but at the supermarket we use a posted
price mechanism.

Therefore what economic resource allocation
mechanism should be used in grid systems? Differ-
ent mechanisms result in potentially different market
properties, like price stability, grid resource utiliza-
tion, efficiency, etc. This means that choosing the
right mechanism(s) would be of utmost importance
for the success of the grid system. There are also
issues with a closed or open currency (Parkes et al.
2001) and trust (Bubendorfer & Thomson 2006) that
are beyond the scope of this paper. Various types
of auctions and commodity market models have been
simulated including (R. Wolski and J. Brevik and J. S.
Plank and T. Bryan 2003, Kant & Grosu 2005, Das &
Gros)u 2005, Regev & Nisan 1998, Pourebrahimi et al.
2006).

2.4 The Simulation

We cannot at present answer the general question:
which of the above allocation mechanisms will return
the greatest utilisation of the Grid system? This is
not only because we lack any substantial evidence
(empirical, proof, or simulated), but also because the
approaches differ in their ability to control the re-
sources. What we can do however, is observe the util-
isation patterns, and therefore make more informed
choices when designing a Grid allocation system to
best match the usage requirements.

The first obvious step is to build a simulation
which will help determine at least how the choice of
mechanism will impact or characterise the utilisation
that a Grid system will deliver. The advantages of
simulation are well understood, and provide a flexi-
ble and controlled environment in which to carry out
comparative analysis. This greater control allows bet-
ter analysis of underlying behaviours and their causes.

2.5 Simulation Package

Simulation is a tool for system analysis that has been
studied for a considerable length of time. In this re-
spect it is a well understood discipline, with well de-
fined areas of application. Shannon (Shannon 1975)
provides the following formal definition: Simulation
is the process of designing a model of a real system
and conducting experiments with this model for the
purpose either of understanding the system or of eval-
uating various strategies (within the limits imposed by
a criterion or set of criteria) for the operation of the
system. The important point is that this is without
the costs inherent in building or modifying a real sys-
tem. Simulation can also deal with more complex
systems and interactions between systems than ana-
lytical models.

At the time of writing this paper, there were
three published simulation packages that enable
simulations of some type of resource allocation
for the grid: GridSim(Buyya & Murshed 2002),
SimGrid(Casanova 2001) and Mercatus(Kant 2005).
Both GridSim and Mercatus are implemented in Java
and run on top of SimJava(Howell & McNab 1998),
which is a process based discrete event simulation
package. SimGrid on the other hand runs on its own
components and is implemented in C. The GridSim
simulation package was chosen as the environment to
perform the simulations as the most developed overall
package.

2.6 Simulation Design

There were three types of resource allocation mech-
anisms simulated: an implementation of volunteer
resource allocation, which will be called Volunteer
Pooling, FairShare resource allocation which is Policy
based resource allocation, and a reverse first priced
sealed auction (RFPSA), which is economic based re-
source allocation.

The general design of each mechanism follows the
diagram described in figure 1. This is the most most
commonly seen form in literature(Buyya et al. 2000,
Buyya 2002) for Grid Systems. Greater detail about
the simulation design of the mechanisms can be found
in (Krawczyk 2006).

Resource

Resource

E}%O OgMachines i @)%O O@)Machines

Figure 1: General Structure of the Implementation.
Each solid line between an entity represents a flow of
jobs.

2.6.1 Volunteer - Volunteer Pooling

The volunteer computing allocation algorithm used in
our simulation differs from standard in two significant
ways. Firstly volunteers are pooled together, which
form several grid resources to better fit the general
Grid approach. Secondly reliability is delegated to
each resource pool is responsible for making sure that
a job that is assigned to the resource pool is done,
even if an individual machine fails. The term failure
refers to a machine that has gone offline/been discon-
nected/chosen not to continue processing the job. In
standard BOINC (Anderson 2004) redundant compu-
tations are used to resolve these forms of failure. In
our simulation we have made the assumption that no
volunteer machine is malicious, so once jobs are done
they are not verified.

The various roles in the allocation algorithm are:

1 Broker

e,

(@)

; (ee} Machines

Figure 2: The steps involved when a set of jobs are
assigned in the Volunteer Pooling mechanism. Step
1: the user sends the set of jobs to the broker. Step
2: the broker polls all available resource pools. Step
3: each resource pool responds with how many it is
willing to take. Step 4: the job is sent to a willing
resource pool. Step 5: the resource assigns the job in
a first in first out fashion to a free machine.

e Users produce the jobs that are to be executed
by the grid system. They each have a broker
which they send these jobs to at a constant rate,
until they have none left. Figure 2 shows the
steps that a job goes through as it is assigned to
a resource.

e Brokers on receiving a set of user jobs, polls all
the available resources and waits for a response
as to how many jobs the resource can take. The
broker distributes the jobs around to random re-
sponsive resources until it has none left.

e Resources on receiving a subset of jobs assigns
jobs to any free machines, and then places any
remaining jobs on a queue. Jobs are serviced on
a first in first out basis from the queue. Should
a volunteer machine crash and fail to do a job,
the resource either reassigns that job, or puts it
back in first position in the queue.

2.6.2 Agreement - Policy based - FairShare

Out of the agreement based resource allocation mech-
anisms, the decision was made to implement a policy
based one, namely a fairShare variant based on the
Grid-wide Fairshare(Elmroth & Gardfjall 2005). The
implementation is simplified in that it only has one
policy level, i.e. there is only a top level representa-
tion of users and no distinction, such as sub-users, for
which to have a second level of policies.

The various roles in the allocation algorithm are:

e Users Each user in FairShare is assigned a tar-
get share of the grid resources. This is set at
the beginning of each simulation and does not
change. Again users produce the jobs that are
to be executed in the grid system. They each
have a broker which they send the jobs to at a
constant rate, until they have none left. Figure 3
shows the steps involved in assigning a job to a
resource.

e Brokers Once a broker receives a set of jobs, a
resource is randomly picked and assigned a sub-
set of the jobs. The broker is limited as to how

Broker Broker

> 1 1 o2
C7 N
° [[cm
2 2
QF,
4 ®3a M
4

Resource
3b Assign Priority 4
Cm) Priority Queue \
(om) [Cuos,
Priority 1 Priority 2

E @ (SRS) @ Machines
\ O [G—]

Figure 3: The steps involved in assigning a set of jobs
in the FairShare mechanism. Stepl: the user sends
the jobs to the broker. Step2: the broker randomly
sends the job to the resource. Step3a: the Grid-
Statistics entity sends the current user share statis-
tics. Step3b: the job is assigned a priority based on
the deviation from the current user share and tar-
get share of the user from which the job originated.
Step4: the job is put in the priority queue. Stepb:
the first job on the queue is taken and assigned to a
free machine.

many total jobs can be outstanding at any point
in time. This stops the resources from being
flooded with jobs.

e Resources Once at the resource, the job is as-
signed a priority based on the deviation from its
user target share and the current share supplied
by the GridStatistics entity. It is then put into
a priority queue, and the first job at the queue
is the next job to be processed. Each time the
users current shares are updated, all the jobs in
the queue have their priorities updated as well.
In the simulation the current user share used for
the priorities takes the total usage history of the
grid system into account rather than decaying as
in the real protocol.

2.6.3 Auction

The reverse first price sealed auction (RFPSA) was
implemented, as it is a simple, quick auction. Jobs
are put up for tender, and the lowest bid wins. In
total seven different auctions were simulated. The
differences between them were based on their reserve
price setting policy and their job costing policy. For
the sake of clarity, space and interest, only four of
the auctions will be presented. This is because these
auctions were the most interesting, and the others
were the same if not similar. The basic auction was
implemented as standard the GridSim distribution -
although we did create the auction costing and bid-
ding policies.
In short, the different auctions were:

e Auction df load-dif had a broker which was
drip fed currency, and the resources responded
by changing their bidding price based on the load
difference they experienced.

e Auction Random had a broker that had no
budget, and its resources bid a random number.

e Auction Load had a broker that had no budget,
and its resources returned the current load it was
under.

e Auction WaitingT had a broker that had no
budget, and its resources returned the current
average waiting time of jobs currently processing.

Broker

7

Compute Winner

Post

Aucllon 3] 8

Resource

Costlng Pollcy
Queue
| |
&O OE}Machines

Figure 4: The steps involved in assigning a job to a
machine in the RFPSA mechanism. Stepl: the user
sends the jobs to the broker. Step2: the broker creates
the auctions. Step3: the broker sets the reserve price
of the auction. Step4: the broker posts the auction
and the resources receive notification that an auction
is taking place. Stepbd: the resource costs the job.
Step6: the resource decides whether or not to bid.
Step7: the winner is computed once the auction has
closed. Step8: the job is allocated to the winning
resource. Step9: the resource assigns the jobs in a
first in first out fashion to a free machine.

e Users produce the jobs that are to be executed
by the grid system. They each have a broker,
which they send these jobs to at a constant rate,
until they have none left. Figure 4 shows the
steps involved in assigning a job to a resource.

e Brokers On receiving a job, the broker proceeds
to make a RFPSA for it. The reserve price that
is sets is dependent on the price setting policy
chosen. In policy drip-feed (df), the broker had
no budget to start with, but was given budget
injections at the same rate at which jobs were
coming in. The reserve price was set at:

money from injections — money spent

jobs waiting at broker + jobs being auctioned

Auction df load-dif used this policy. This was to
recreate a broker being drip fed currency (e.g. to-
kens or money), and using the available currency
(what it had not managed to spend) split over the
jobs that it currently had. In policy no-budget,
the broker had no budget. The reserve price was
not set, indicating that the broker would accept
anything.

e Resources Resources first receive notification
that an auction is taking place. The method that
the resource uses to cost the job is dependent on

the policy chosen. There is not space to reit-
erate all the policies, so only the least intuitive
will be presented here, the remaining policies can
be found in (Krawczyk 2006). In policy load-
difference (load-dif) the price bid by a resource
increased or decreased depending on the differ-
ence in the load the resource was under from the
last time it checked. Specifically load difference
was calculated as:

lastload
— (X(processing time of jobs in the queue)

+ X(processing time left of executing jobs))

2.6.4 Simulation Metrics

For the simulations several metrics were implemented
to gauge a mechanisms performance. These were:

e Recording of statistics on the total grid utiliza-
tion.

e Recording of statistics on the amount of time a
job spends at a broker.

e Recording of statistics on the amount of time a
jobs waits at a resource before being processed.

e Recording the finishing time of each simulation.

e Calculating averages, medians, standard devia-
tions and inter quartile ranges where possible.

2.6.5 Simulation Parameters

The number of users, number of resources, number
of jobs, size of jobs, amount of machines, amount of
processors a machine had and their processing power,
the budget for brokers in auctions, and the rate at
which jobs are sent from the user, are all potential
variables. The decision was made to:

e Set the amount of processing elements at one per
machine.

e Keep the total amount of machines and their
processing power fixed at 100 machines, and 400
MIPS.

e Base the job length on a Poisson distribution
with a mean of 400 x 100 machine instructions,
which would take 100 seconds.

e Keep the total amount of jobs the same.

e Base the job rate on a negative exponential dis-
tribution with mean equal to two seconds.

e Keep the unit price of a job for auctions the same
at twenty five.

e Vary the number of users, while keeping the num-
ber of resources fixed.

e Vary the number of resources, while keeping the
number of users fixed.

3 Results & Analysis

These results are divided into two sections: varying
users and varying resources. Varying users shows the
results from varying the number of users between the
mechanisms, while varying resources shows the results
from varying the number of resources between the
mechanisms. This section just briefly shows the more
interesting results as well as a summary of them. For
more detail please consult (Krawczyk 2006).

3.1 Varying Users

In the first set of experiments, the number of users
was varied between one, two, five, ten and twenty
users. The number of resources was held fixed at five
resources and twenty machines.

Fair Grid Utilization Varying Users
1 — T T T

(7—” W=

2 Users
5 Users
10 Users
20 Users

| —
—

Grid Utilization
o o
«» o

0.1 Vertical Lines indicate Job
Scheduling Finish Point
.

. . .
0 500 1000 1500 2000 2500 3000 3500
Time in GridSim seconds

Fair Waiting vs Processing Time Varying Users

1 User

2 Users
5 Users
10 Users
20 Users

processing time in GridSim seconds

. e, e

- J
1000 1500 2000 2500
waiting time in GridSim seconds

Figure 5: A Graph of Grid Utilization and a Graph of
Job Processing vs Waiting Time for FairShare Vary-
ing the Number of Users.

3.2 Varying Resources

In addition to varying the number of users, a second
set of experiments looked at varying the number of
resources. The number of resources was changed be-
tween one, two, five, ten and twenty resources. The
total amount of machines in the grid system was al-
ways evenly distributed among the resources and to-
taled one hundred. The number of users was fixed at
five users based on the previous results.

3.3 Summary

The results show that Auction df_load-dif, Auction
Random, Auction Load and FairShare all produced
similar results. FairShare had the highest grid utiliza-
tion on average, but did not have the fastest simula-
tion time. This went to Auction Load. The fact that
no mechanism achieved 100% grid utilization shows
that they are not perfect at allocating jobs to re-
sources. Evident from all the auction grid utilization
graphs (for example in figures 6 & 5) was that they
had a slower start than FairShare. Their grid utiliza-
tion did not increase as quickly as FairShare’s did.
This behavior was due to performing the auction it-
self, i.e. the auction duration time did not allow a job
to be allocated right away. This small amount of time

Auction df_load-dif Grid Utilization Varying Users
T . . T

X
1 User
091 2 Users
5 Users
0.8 10 Users
20 Users
0.7
L —
—
S 06 —
k] /J
N
= 05
5
=]
G 04
0.3
20 10 5 2 1
0.2
0.1 Vertical Lines indicate Job
Scheduling Finish Point;
0
0 500 1000 1500 2000 2500 3000 3500

Time in GridSim seconds

Auction Random Grid Utilization Varying Users
T T

T ; T
/ L — 1 User
09p 2 Users
5 Users
0.8 10 Users
20 Users
0.7
I \
5 06 —
3 /J
N
= 050
5
=]
G 04
0.3
20 10 5 2 1
0.2
0.1 Vertical Lines indicate Jop
Scheduling Finish Point
0 \
0 500 1000 1500 2000 2500 3000 3500

Time in GridSim seconds

Figure 6: Graph of Grid Utilization Varying the Num-
ber of Users for Auction df_load-dif and Random.

wasted adds up and affects the auction’s start. The
slow start stops having an effect when jobs start to be
put into queues at the resources. This is probably the
most interesting utilisation characteristic revealed, as
it holds for the entire class of auction mechanisms.
Therefore an auction should preferably be deployed
in a continuous scenario.

From the statistics on the job waiting times, we
see that the most stable, i.e. the ones with the low-
est amount of deviation were the auctions (bar Auc-
tion WaitingT). They showed that the average wait-
ing time was predictable based on the amount users,
except for twenty, which was probably the fault of
the simulation having a submit limit that was too
high. They also showed that the waiting time when
varying resources was very stable and potentially a
QoS benefit. FairShare’s inability to offer a QoS level
like the auctions is probably due to its policy spec-
ifying that each user got an equal share of the grid
resources. Had its policy specified to focus on the
maximum job waiting time, then its results probably
could have reflected the job waiting time stability of
the auctions (except for Auction WaitingT). Volun-
teer Pooling had the worst performances, due to its
uneven loading of resources.

The job processing time statistics show that stan-
dard deviation of all the mechanisms was rather large.
This indicates that all the mechanisms experienced
widely varying job processing times. Generally, the
lower the standard deviation of processing times, as
seen in figures 7 & 11 for FairShare and Auction Load,
the better the mechanism did overall. Obviously, the
link between job sending rate and job processing time
needs to be explored so that this can be fully under-
stood. For instance, knowing what kind of impact

Average Job Processing Time and Standard Devation

& Auction df_load-di 61010
500 1—— m Auction Random
0 Auction Load

0 Auction WaitingT 42991
mFairshare
400 +——@ Volunteer 0% | N

204.90 20569

. 14238 12646 14451
s 12682
1168

100 8 L

0 —
‘Average Processing Time Average Processing Standard Deviation

Average Waiting Job Waiting Time & Standard Deviation

1000

900 |—{BAuction df_load-di 380
m Auction Rendom
400 |__|mAuction Load 77448
0 Auction WaitingT
mFairshare

700 T {mvountser 0% [| 64811

600 —

500 —
37669 39475
{55 388.03 38256

300

21488
19850 209.25
200

100

Average Waiting Time Average Waiting Standard Deviation

Figure 7: Average Job Processing Time & Standard
Deviation and Average Job Waiting Time & Standard
Deviation Varying Users.

it has on the performances of the mechanisms. For
job processing time, Volunteer Pooling had the worst
performances once again.

Analyzing the scalability of the mechanisms shows
that Volunteer Pooling again performed the worst,
when the number of users was increased. However, its
performance improved when the amount of resources
was increased. The auctions were the most stable
across varying users and resources (except for Auction
WaitingT), as predicted, while FairShare coped well
with increasing the amount of users, but not so well
with increasing the amount of resources.

Overall, Volunteer Pooling performed markedly
worse than expected although to be fair, this ap-
proach was not really being considered in the context
for which it was developed. The poor performance
of Auction WaitingT was most likely due GridSim’s
approach to choosing the winner, when auctions pro-
duced a tie.

4 Conclusion

Grid resource allocation is a complex problem that
has to be tackled one simple step at a time, other-
wise the multitude of effects and information is over-
whelming. We have set out to characterise different
styles of grid allocation, and have turned up some
interesting results that are potentially useful to Grid
system designers. In general auctions produced a slow
start to a batch execution, although their turnaround
times were very stable and useful if this were a QoS
parameter. This finding alone suggests that auction
based resource allocation is best deployed in a contin-
uous allocation scenario. In a burst scenario one of
the other allocation mechanisms would return better
overall utilisation. Fairshare and other mechanisms
that do not have an set-up time (as auctions need)
clearly win in overall utilisation with higher utilisa-

Volunteer 0% Waiting vs Processing Time Varying Resources

1 Resource

2 Resources
5 Resources
10 Resources
20 Resources

@
S
=]
S

processing time in GridSim seconds

: 2o . ,
0 500 1000 1500 2000 2500 3000 3500
waiting time in GridSim seconds

Volunteer 10% Waiting vs Processing Time Varying Resources
14000

1 Resource

2 Resources
5 Resources
10 Resources
10000} © 20 Resources

12000

@
=]
=]
S
T

@
=3
=3
S

processing time in GridSim seconds
IS
(=]
o
3

2000

h L L
0 0.5 1 15 2 25 3 35
waiting time in GridSim seconds @

Figure 8: Graph of Job Processing vs Waiting Time
for Volunteer Pooling with 0% Failure & 10% Failure
Varying the Number of Resources.

tion, and less degradation as the number of users in-
creased.

However, as a final conclusion we will state that
the utilisation penalty of running an auction is not
severe. The implication is that, building an economic
allocation system utilising an auction protocol is a
reasonable choice, without a large utilisation deficit.
In addition the other benefits (scalability, robustness,
efficiency, etc.) from using such an allocation protocol
will in all likelihood outweigh the loss in utilisation.

5 References
References

Anderson, D. (2004), BOINC: A System for
Public-Resource Computing and Storage, in ‘5th
IEEE/ACM International Workshop on Grid Com-
puting’, pp. 365-372.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M.
& Werthimer, D. (2002), ‘SETI@home - An Exper-
iment in Public-Resource Computing’, Communi-
cation of the ACM 45(11), 56-61.

Anderson, D. P., Korpela, E. & Walton, R. (2005),
High-performance task distribution for volunteer
computing, in ‘First IEEE International Confer-
ence on e-Science and Grid Technologies, Mel-
bourne, Australia’.

Andreozzi, S., Ferrari, T., Ronchieri, E. & Monforte,
S. (2005), Agreement-Based Workload and Re-
source Management, in ‘the first international con-

Fair Grid Utilization Varying Resources

Grid Utilization
o
w

1 Resource 0
0.2H 2 Resources

5 Resources
0.1H 10 Resources |y,

20 Resources ¢

.
0 500 1000 1500 2000 2500 3000 3500
Time in GridSim seconds

Fair Waiting vs Processing Time Varying Resources

1 Resource

2 Resources

» L. 5 Resources
Wiy 5 LT 10 Resources

1200 s E 20 Resources

1000 % g S

processing time in GridSim seconds

L e

X - L egtodm R e -

0 500 1000 1500 2000 2500 3000
waiting time in GridSim seconds

Figure 9: Graph of Grid Utilization and a Graph of
Job Processing vs Waiting Time for FairShare Vary-
ing the Number of Resources.

ference on escience and Grid Computing’, IEEE,
Melbourne, Australia, pp. 181-188.

Bubendorfer, K. & Thomson, W. (2006), Resource
managment using untrusted auctioneers in a grid
econonmy, in ‘proceedings of the 2nd IEEE Inter-
national Conference on e-Science and Grid Com-
puting, Amsterdam’.

Buyya, R. (2002), Economic-based Distributed Re-
source Management and Scheduling for Grid Com-
puting, PhD thesis, Monash University, Melbourne,
Australia.

Buyya, R., Abramson, D. & Giddy, J. (2000), An
Economy Driven Resource Management Architec-
ture for Global Computational Power Grids, in
‘The 7th International Conference on Parallel and
Distributed Processing Techniques and Applica-
tions (PDPTA 2000)’, Las Vegas, USA.

Buyya, R., Abramson, D. & Giddy, J. (2001), A Case
for Economy Grid Architecture for Service Oriented
Grid Computing, in ‘Proceedings of 10th Interna-
tional Parallel and Distributed Processing Sympo-
sium: Heterogeneous Computing Workshop’, San
Francisco, California, USA.

Buyya, R. & Murshed, M. (2002), ‘GridSim: a toolkit
for the modeling and simulation of distributed re-
source management and scheduling for Grid com-
puting’, Concurrency and Computation: Practice
and Ezxperience 14.

Casanova, H. (2001), Simgrid: A Toolkit for the Sim-
ulation of Application Scheduling, in ‘lst Interna-

Auction df_load—-dif Waiting vs Processing Time Varying Resources
1600 ..

1400

[
)
=3
S
T

[
o
1=}
=)
T

©

S

=)
T

@

=1

=]
T

1 Resource

2 Resources
5 Resources
10 Resources
20 Resources

processing time in GridSim seconds

IS

S

=]
T

n

o

=)
T

0 100 200 300 400 500 600 700
waiting time in GridSim seconds

o

Auction Random Waiting vs Processing Time Varying Resources
1400

1200

1000 -

1 Resource

2 Resources
5 Resources
10 Resources
20 Resources

800

600

400

processing time in GridSim seconds

200+

o i L L L L J
0 100 200 300 400 500 600 700 800 900
waiting time in GridSim seconds

Figure 10: Graph of Job Processing vs Waiting Time
varying the number of resources for Auction df_load-
dif and Random.

tional Symposium on Cluster Computing and the
Grid’.

Das, A. & Grosu, D. (2005), Combinatorial Auction-
Based Protocols for Resource Allocation in Grids,
in ‘Proceedings of the 19th IEEE International Par-
allel and Distributed Processing Symposium’.

Dimitrakos, T., Randal, D. M., Yuan, F., Gaeta, M.,
Laria, G., Ritrovato, P., Serhan, B., Wesner, S.
& Wulf, K. (2003), An emerging architecture en-
abling grid based application service provision, in
‘Seventh International Enterprise Distributed Ob-
ject Computing Conference (EDOCO03), Brisbane,
Queensland, Australia’.

Elmroth, E. & Gardfjall, P. (2005), Design and Evalu-
ation of a Decentralized System for Grid-wide Fair-
share Scheduling, in ‘the first international confer-
ence on escience and Grid Computing’, IEEE, Mel-
bourne, Australia, pp. 221-229.

Feller, M., Foster, I. & Martin, S. (2007), Gt4 gram:
A functionality and performance study, in ‘Tera-
Grid 07’, Madison, WI, USA.

Foster, 1. (2002), ‘What is the Grid?
A Three Point Checklist’, Web,
http://www.gridtoday.com/02/0722/100136.html.

Foster, 1., Kesselman, C. & Tuecke, S. (2001), ‘The
Anatomy of the Grid - Enabling Scalable Virtual
Organizations’, Intl J. Supercomputer Applications

Average Job Processing Time and Standard Deviation Varying Resources

800

689.35

61458

500 487.42 48640

5221 46036

300

200

100

Average Processing Time Average Processing Standard Deviation

Average Job Waiting Time and Standard Deviation Varying Resources

65275

Average Waiting Standard Deviation

Figure 11: Average Job Processing Time & Standard
Deviation and Average Job Waiting Time & Standard
Deviation

Grid Resource Allocation and Agree-
ment Protocol Working Group of the
Global Grid Forum (2003), Website,

http://forge.gridforum.org/projects/graap-weg.

Howell, F. & McNab, R. (1998), simjava: a dis-
crete event simulation package for java with ap-
plications in computer systems modelling, in ‘First
International Conference on Web-based Modelling
and Simulation, San Diego CA, Society for Com-
puter Simulation’.

JKay & P.Lauder (1988), ‘A fair share scheduler’,
Commun. ACM 31(1), 44-55.

Kant, U. (2005), Mercatus: A toolkit for the simula-
tion of market-based resource allocation protocols
in grids, Master’s thesis, WAYNE STATE UNI-
VERSITY.

Kant, U. & Grosu, D. (2005), Double Auction Proto-
cols for Resource Allocation in Grids, in ‘Proceed-
ings of the International Conference on Information
Technology: Coding and Computing’.

Krawczyk, S. (2006), ‘Grid Resource Al-
location: an investigation into the vi-
ability of economic resource allocation’,

http://www.mes.vuw.ac.nz/research/dsrg/sk.pdf.

Malone, T. W., Fikes, R. E., Grant, K. R. &
Howard, M. T. (1988), Enterprise: A Market-
like Task Scheduler for Distributed Computing
Environments, in H. B.A, ed., ‘The Ecology of
Computation’, Elsevier Science Publishers (North-
Holland), pp. 177-205.

Netto, M. A. S., Bubendorfer, K. & Buyya, R. (2007),
Sla-based advance reservations with flexible and
adaptive time qos parameters, in ‘the Fifth Interna-
tional Conference on Service-Oriented Computing’,
Vienna, Austria.

Parkes, D. C., Kalagnanam, J. & Eso, M. (2001),
Achieving Budget-Balance with Vickrey-Based
Payment Schemes in Exchanges, in ‘Proceedings of
the International Joint Conference on Artificial In-
telligence’, pp. 1161-1168.

Pourebrahimi, B., Bertels, K., Kandru, G. & Vassil-
iadis, S. (2006), Market-based resource allocation
in grids, in ‘second IEEE International Conference
on e-Science and Grid Computing’.

R. Wolski and J. Brevik and J. S. Plank and T. Bryan
(2003), Grid resource allocation and control using
computational economies, in F. Berman, G. Fox &
A. Hey, eds, ‘Grid Computing: Making The Global
Infrastructure a Reality’, John Wiley & Sons.

Raicu, 1., Zhao, Y., Dumitrescu, C., Foster, I. &
Wilde, M. (2007), Falkon: Fast and light-weight
task execution framework, in ‘Super Computing’,
Reno, NV, USA.

Regev, O. & Nisan, N. (1998), The POPCORN
market— an online market for computational re-
sources, in ‘In Proceedings of the First Interna-
tional Conferenceon Information and Computation
Economies’, ACM Press, Charleston, SC, pp. 148—
157.

Sarmenta, L. F. (2001), Volunteer Computing, PhD
thesis, MIT Department of Electrical Engineering
and Computer Science.

Shannon, R. E. (1975), Systems Simulation the art
and science, Prentice-Hall.

Sun Microsystems (2007),
http://www.network.com/.

Sutherland, L. E. (1968), ‘A Futures Market in
Computer Time’, Communications of the ACM
11(6), 449-451.

Thain, D., Tannenbaum, T. & Livny, M. (2005), ‘Dis-
tributed computing in practice: the condor ex-

perience.’; Concurrency - Practice and Experience
17(2-4), 323-356.

‘Sun Grid’,

Vickrey, W. (1961), ‘Counterspeculation, Auctions,
and Competitive Sealed Tenders’, The Journal of
Finance 16(1), 8-37.

