Development and Evaluation of a Secure, Privacy Preserving
Combinatorial Auction

Ben Palmer

Kris Bubendorfer

Tan Welch

School of Engineering and Computer Science
Victoria University Wellington,
PO Box 600, Wellington, New Zealand 6140,
Email: {Ben,Kris,Ian}@ecs.vuw.ac.nz

Abstract

The use of electronic auctions as a means of trading
goods has increased year after year. eBay has gone
from half a million registered users in 1998 to 88 mil-
lion today. Businesses have also shown interest in
using auctions. However, the traditional single good
auction as used by eBay lacks the required ability to
express dependencies between goods in complex pro-
curement auctions leading to risky bidding strategies
and sub optimal allocations. The use of combinatorial
auctions, where bidders can place bids on combina-
tions of goods, allows bidders to take advantage of any
dependencies and auctioneers to generate optimal al-
locations of goods. In this paper we introduce a new
algorithm for creating a combinatorial auction circuit
that can be used to compute the result of a combina-
torial auction by any garbled circuit auction protocol.
In an electronic auction bids from competing parties
are commercially sensitive information as bidders will
not want their competitors finding out the value they
place on a given item. Therefore, there has been con-
siderable research into auction protocols that protect
knowledge of all bids except the winning bid from
everyone, including the auctioneer. The Garbled Cir-
cuit (GC) protocol as described by Naor, Pinkas and
Sumner is an example of such an auction. However, it
has only been used to provide privacy for single good
auctions rather than combinatorial auctions and has
been considered impractical for realistically sized auc-
tions due to the protocol’s communication overheads.
Using our algorithm for creating combinatorial auc-
tion circuits, the GC protocol can conduct combinato-
rial auction while keeping losing bid values secret. We
have also conducted performance measurements on
both the computation and communication overhead
of the GC protocol using our combinatorial auction
circuit. These experiments show that the commu-
nication overhead is low enough to allow its use for
realistically sized auctions (6MB for an auction with
3 goods, a maximum price of 16, and 100 bidders).
Keywords: E-Commerce, Distributed Systems, Secu-
rity.

1 Introduction

Electronic markets such as eBay and Trade Me have
changed the way people buy and sell goods online.
eBay and Trade Me support fixed price (the buy now
button) and standard auctions using an open out-
cry English auction protocol. Through the use of

Copyright (©2011, Australian Computer Society, Inc. This
paper appeared at the 9th Australasian Information Security
Conference (AISC 2011), Perth, Australia, January 2011. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 116, Colin Boyd and Josef Pieprzyk, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

such web-based auction services, auctions have be-
come an understood and accepted way for people to
trade goods.

A combinatorial auction differs from a normal auc-
tion by permitting bidders to express a preference for
more than a single good. An arbitrary collection of
items defined by the bidder, can have a combined
value greater than the sum of the individual items.
Bids can be made that are conditional upon obtaining
the entire set of desired items. As a simple example,
consider a real estate auction, where three adjacent
lots (A,B and C) are up for sale. The developer of
a retail centre needs a minimum of 2 adjacent lots.
If this was treated as 3 separate auctions, the value
of lot B (to the developer) would be greater than A
or C as winning A or C without B would have no
value. The various bidder strategies in this auction
are complex, involve risk, and are dependent on the
order of the auctions due to the dependencies between
the lots. The inability of the single good auction to
express such dependencies can lead to sub optimal
allocations. A combinatorial auction permits bidders
to express these dependencies and thereby enable the
auction to result in optimal allocations of goods to
bidders.

Garbled circuits are a software technique first pre-
sented by Yao (Yao 1982) as a solution to the Mil-
lionaire’s Problem, in which two millionaires wish to
determine who is richer — without revealing their ac-
tual wealth to the other. A garbled circuit involves
the creation of a set of Boolean gates in software to
compute a function, and then the garbling of the cir-
cuit to obfuscate the input and intermediate values,
but still allow execution of the function. The principle
idea of a garbled circuit is to act as a replacement for
the trusted party in transactions between mutually
distrustful parties.

Trust is a concept that we humans implicitly un-
derstand, but have difficulty in applying this under-
standing digitally. Trust takes into account the role
of the entity, the degree of potential loss and some-
times prior experience or experience of those trusted
by you. However, trust can be misplaced, and the
degree of risk underestimated. A trusted entity is
not necessarily trustworthy. This applies to electronic
auctions in particular, as the social mechanisms that
enforce trustworthy behaviour in traditional auctions
are missing.

Imagine the following scenario from (Bubendorfer
et al. 2009). Bob and Jane have surplus resources
and wish to sell these resources via Alice, their auc-
tioneer. The auction is a sealed bid reverse auction
(or tender), where clients issue requests for resources
and resource providers bid (and compete) to supply
them. Alice’s auction house is hosted using resources
provided by Sam. When a client submits a resource
request to Alice, Alice creates an auction and adver-
tises the new auction to Bob and Jane. Bob and Jane

respond by submitting their bids to Alice. At the end
of the auction, Alice examines the bids and declares
the winner of the auction.

In this scenario bid privacy can be compromised in
a number of ways. Alice can freely examine the bids
from Bob and Jane. She can then leak this informa-
tion to others giving them a competitive advantage.
Sam could also obtain this information directly from
the memory allocated to Alice, or if it were encrypted,
extract Alice’s key from memory. If Alice or Sam were
also resource providers, then the incentive to cheat is
considerable.

One way to solve these problems is to ensure that
bids are kept private, that is, hidden from Alice and
Sam. At first it seems that this is impossible, as Alice
would be unable to compute the winner of the auc-
tion. However, we can utilise garbled circuits that
enable Alice to compute the outcome of the auction,
without revealing anything other than the winner and
the price paid. The most notable single good garbled
circuit auction protocol that utilises this solution is
by Naor, Pinkas and Sumner (Naor et al. 1999), other
garbled circuit auction protocols include (Jakobsson
& Juels 2000, Baudron & Stern 2001, Kurosawa &
Ogata 2002). There are no existing auction protocols
that utilise this solution for combinatorial auctions.

The contribution of this paper is the creation of
a novel algorithm to construct combinatorial auction
circuits. The resulting circuit is then used to compute
the results of a combinatorial auction when given the
number of goods, bidders, and the maximum price.
Our combinatorial auction circuit can be used with
any single good privacy preserving auction protocol,
based on garbled circuits (Naor et al. 1999, Jakobsson
& Juels 2000, Baudron & Stern 2001), to extend it for
combinatorial auctions. This is the first example of
a combinatorial auction circuit to appear in the liter-
ature and we present the circuit and the algorithms
used to generate it.

A criticism that is often levelled at garbled cir-
cuits is the communication overhead caused by the
garbled circuit that is sent from the auction issuer to
the auctioneer (Yokoo & Suzuki 2004, 2002, Perrig
et al. 2001). Even the creators of the garbled circuit
auction protocol state that:

As for the communication overhead, the ta-
bles that code the circuit can be sent from
the Al to the auctioneer in advance, before
the auction begins, possibly on a CD-ROM
or DVD (Naor et al. 1999).

The above quote suggests that it may not be fea-
sible to transmit an auction circuit over a network.
However, we can show empirically that that it is
indeed feasible and this is the case even for mul-
tiple good combinatorial auctions. We have imple-
mented the garbled circuit auction protocol by Naor
and Pinkas (Naor et al. 1999) and the Verifiable Proxy
Oblivious Transfer (VPOT) protocol (Juels & Szydlo
2003) introduced by Juels and Szydlo to fix a problem
with the original garbled circuits auction protocol. No
performance results have been published for the gar-
bled circuit auction protocol using VPOT before this
work. Finally we compare the performance of this
protocol with another well known privacy preserv-
ing combinatorial auction protocol based on threshold
trust.

2 Related Work

There are two main approaches used to ensure the pri-
vacy of bidder valuations; threshold trust (Franklin &
Reiter 1995, Yokoo & Suzuki 2002, Suzuki & Yokoo

2002, Harkavy et al. 1998, Peng et al. 2002, Buben-
dorfer & Thomson 2006) and two party trust (Lipmaa
et al. 2002, Naor et al. 1999, Juels & Szydlo 2003,
Cachin 1999, Kikuchi 2001). In threshold trust, the
co-operation of some quorum of hosts is required to
reconstruct a bid. Threshold trust is secure as long
as the quorum of honest hosts can be met. To imple-
ment threshold trust, different protocols have used
different techniques. A threshold El-Gamal homo-
morphic crypto system has been used to allow com-
putation on encrypted bids while needing a quorum
of hosts to decrypt the bids (Yokoo & Suzuki 2002).
This homomorphic auction protocol is able to con-
duct combinatorial auctions. Polynomial secret shar-
ing has also been used (Kikuchi 2001) and extended
to conduct combinatorial auctions (Suzuki & Yokoo
2002). Threshold trust has been criticised for requir-
ing a heterogeneous collection of hosts from different
organisations willing to commit computing resources
to host an auction (Lipmaa et al. 2002). It is easier
to find two parties from separate organisations will-
ing to conduct an auction for two party trust than to
find a larger group of parties to conduct an auction
using threshold trust.

Two party trust relies on a symmetric separation
of duty between two parties with the information be-
ing kept private as long as the two parties do not
collude. Garbled circuits are a two party trust proto-
col (Naor et al. 1999, Juels & Szydlo 2003) that uses
an auctioneer and an auction issuer as the two parties.
Garbled circuits preserve the communication pattern
of traditional auctions in that bidders just send in-
formation to the auctioneer, and only the auctioneer
sends information to the auction issuer. The bidders
in a garbled circuit auction do not have to encrypt
bid values, which can be computationally expensive
if the bidders are low power devices. The VPOT pro-
tocol addresses a security flaw in the original garbled
circuit auction protocol by replacing the proxy oblivi-
ous transfer protocol with a verifiable proxy oblivious
transfer protocol.

A novel auction protocol has been developed where
an auctioneer uses a third party to obliviously com-
pare bid values (Cachin 1999) . In this protocol one of
the parties learns a partial ordering of the bids, and
if the other party colludes with a bidder, then that
bidder could see all the comparisons.

A similar auction protocol to garbled circuits that
does not use an auction issuer but where instead bid-
ders perform the role of the auction issuer has also
been developed (Baudron & Stern 2001). Unfortu-
nately this protocol is restricted to five or six bidders
in real world situations and a malicious auctioneer
could collude with a bidder to break the assumptions
of the protocol.

3 A Combinatorial Auction Circuit

A circuit is a network of Boolean gates with a set of in-
puts, a set of intermediate gates, and a set of outputs
gates. Figure 1 shows a simple worked example of an
auction circuit. This circuit can compute the result of
an auction with one good, two bidders and uses two
bits to represent the prices. The inputs to the circuit
are the 2-bit bids from the two bidders. The outputs
of the circuit are two Boolean values that indicate
whether bidder one or bidder two was the winner and
a 2-bit value that is the maximum (winning) price. In
our example, when presented with the input values in
the figure, bidder one bids 10 and bidder two bids 11,
the circuit computes that bidder two wins the auction
with a maximum price of 11. As a further example
let’s change the inputs, and keep the same circuit.
Bidder one now bids 10 and bidder two now bids 01.

Bidder 1 Bidder 1 Bidder 2 Bidder 2
Bid Bit 1 Bid Bit 2 Bid Bit 1 Bid Bit 2
I :
1 0 1 1

Maximum
Price Bit 2

Maximum
Price Bit 1

Bidder 2

Bidder 1
Winner Winner

Figure 1: A Simple Auction Circuit. A & gate repre-
sents an AND gate and a = 1 gate represents an OR
gate. Solid circles represent a join in the wires and
unfilled circuits represent NOT gates.

For these inputs, the circuit computes that bidder one
wins the auction with a maximum price of 10. Clearly
the circuits get more complex with higher numbers of
bidders, available prices, and goods.

Auction circuits need to be created dynamically
based on the parameters of the auction. An algo-
rithm is needed that can return a Boolean circuit for
computing the result of a combinatorial auction tak-
ing as inputs the number of bidders, the maximum
price, and the number of goods.

3.1 Building Blocks

We make use of the single good 1st price circuit of
Kurosawa and Ogata (Kurosawa & Ogata 2002) as a
building block for our combinatorial auction circuit.
A 1st price auction returns the highest bid as the win-
ner. The circuit is constructed of NOT, AND, OR,
XOR, and SELECT gates. A SELECT gate has three
inputs, if the first input is true it outputs the second
input, and if the first input is false it outputs the
third input. The single good auction circuit by Kuro-
sawa and Ogata uses a technique they term bit slicing
where the bits of the various bids are compared from
most significant to least significant. This is in con-
trast to the standard first price circuit that computes
the millionaires problem comparing each bidder’s bid
in turn. We also use a basic add circuit that given
two bitwise values as input, outputs the sum of these
two values.

Combinatorial auctions can be represented as an
auction graph (Figure 2(a)) where nodes represent
goods, links between nodes represent a subset of
goods, and each complete path through the graph
represents an allocation of the goods. The optimal
path through an auction graph is the path that re-
turns the highest revenue. The auction graph repre-
sentation of combinatorial auctions has been used in
several previous works (Yokoo & Suzuki 2002, Suzuki
& Yokoo 2002).

3.2 The Complete Circuit

The auction graph representation, the 1st price cir-
cuit and the add circuit are used to create a circuit to
compute the optimal value for a combinatorial auc-
tion along with the winning bidders and prices. Fig-
ure 2 shows a three good auction graph in 2(a) and
2(b) shows the construction of the resulting combina-
torial auction circuit. Every link in the auction graph

G
I <65
YA 1,Gs

ode
(G1,G2, G61,62,G3 o Noge
G3} a2
3. A
~/Node 4 G
G1,G2
% { y &
Node 6
—
(a) Three Good Auction Graph
Add
Circuit
st 1st
Price Price
Circuit Add Circuit
— Circuit Tst
N Price
Price Circuit
Circuit 1st 1st
Price Price
1st Circuit Tst Circuit
Price Price
Circuit Add Circuit
Circuit 1st
1st Price
grlcet Circuit
ircul
Add 1st nf | Add
Circuit Price Circuit
Circuit

(b) Auction Circuit Graph

Figure 2: Creating a Combinatorial Auction Circuit
based on an Auction Graph

has a 1st price circuit that outputs the maximum bid
for that link. Every node in the auction graph ex-
cept the last node has an add circuit that adds the
maximum bid for the incoming link to the bids on
the outgoing link. The last node has a final 1st price
circuit that outputs the optimal value for the combi-
natorial auction.

An auction circuit for combinatorial auctions
needs to compute and output not only the optimal
value for the auction, but also which bidders won
which goods and at what price. Each 1st price cir-
cuit outputs the maximum bid for that link and the
associated bidder. These values are combined for ev-
ery link in a path by using a SELECT gate to output
the winning bidder only if that link is on the opti-
mal path. Further SELECT gates are used to output
the winning price for a bidder on a link only if that
link is on the optimal path and if that bidder had the
maximum price for that link.

3.3 Circuit Creation Algorithm

We now present our algorithm used in the creation of
our combinatorial auction circuit. It takes as input
the number of bidders, prices, and goods and outputs
a circuit for computing the result of a combinatorial
auction. The outputs are a series of bits for each bid-
der that indicate if that bidder won any of the links
on the auction graph and the winning bids they need
to pay for each link. In case of tie break the cir-
cuit outputs both winning bidders and the auctioneer
would need to choose some other way of deciding the
winner, such as a coin toss.

Algorithm 1 is the main algorithm used in the
creation of the circuit. The algorithm is split in to
two parts. The first part calculates the optimal path
through the auction graph by calculating the maxi-
mum bid for each link in the graph, adding together
the maximum bids for each path, and then calculat-
ing the optimal path based on the maximum bids for
each path. The second part of the algorithm calcu-
lates the winning bidders and prices using SELECT
gates for each bidder and every link and path in the
auction graph.

Algorithm 1

Procedure CreateCombinatorial AuctionCircuit

Input: nBidders, nPrices, nGoods

Output: AuctionCircuit AC

1. (* Create the Auction Graph)

2. AuctionGraph Graph <+ CreateAuction-

Graph(nGoods)

3. (x Loop Through All Paths *)

4. for Paths ¢ € Graph

5. (* Loop Through Links on Path)

6. for Links j € 4

7 Create 1st Price Circuit with in-
puts of the bids for link j

8 (* Get the Max Bid for Path i x)

9. if Number Links on Path i > 1)
10. for Links j € 4
11. AddOutputs(j,j+1,AC)

12. (* find the optimal path x)

13. Create 1st Price Circuit with Inputs of the Final
Add Circuits For Each Path

14. (x Now find what bidders won for what price *)

15. (% Loop Through All Bidders %)

16. for Bidder ¢ € nBidders

17. (* Loop Through All Paths %)

18. for Paths j € Graph

19. (* Loop Through Links on
Path)

20. for Links k € j

21. WinningBiddersPrices

(i,j,k,nPrices,AC)
22. return AC

Algorithm 2 is a helper method that is used to add
the outputs of the 1st Price Circuit for each link in a
path together to get the maximum price for a path in
the auction graph. These maximum prices for each
path are then compared in the final 1st Price Circuit
that outputs the optimal path for an auction.

Algorithm 2

Procedure AddOutputs

Input: Link j, Link j + 1, AuctionCircuit AC
1. if (j is the first link in the path)

2. Create Add Circuit with inputs of the
maximum bids for link j and j + 1

3 else

4. Create Add Circuit with inputs of the

maximum bids for link j41 and the out-
put of the previous Add Circuit

Algorithm 3 is executed for every bidder and every
link in every path of the graph. The first SELECT
gate outputs the winning bidder of the 1st Price Cir-
cuit for this link in the auction graph provided the
link is on the optimal path. The second two SELECT
gates output the winning price of the 1st Price Circuit
for this bidder and link in the auction graph provided
the path is on the optimal path and this bidder was
the winner of the link.

Algorithm 3

Procedure WinningBiddersPrices

Input: Bidder 4, Path j, Link k, nPrices, Auction-
Circuit AC

/

Sy
N

{4
f7
(il

Auction Issuer ()

i idder @
| (I <'/—'I|‘

Auctioneer
Client ®

Bidder

Figure 3: Garbled Circuit Parties

1. (* Creates gate to work out the winning bidders
and prices for this link in the graph)

2. Create a SELECT gate with 3 inputs. The first
input is the output of the final 1st Price Circuit
for path j, the second input is the output of the
1st Price Circuit for bidder ¢ and link k, and the
third input is the output of the final 1st Price
Circuit for path j

3. for m < nPrices

4. Create a SELECT gate with 3 inputs.

The first input is the output of the final
1st Price Circuit for path j, the second
input is the winning price for link k at
price m, and the third input is the out-
put of the final 1st Price Circuit for path

J

5. Create a SELECT gate with 3 inputs.
The first input is the output of the 1st
Price Circuit for bidder ¢ and link k, the
second input is the previous SELECT
node, and the third input is the output
of the 1st Price Circuit for bidder ¢ and
link k&

4 Garbled Circuits Auction Protocol

A garbled circuit is a Boolean circuit for computing
the result of some function that has been obfuscated
by one party to hide the input and intermediate val-
ues of the gates of the circuit. When presented with
a garbled circuit any party can calculate the result
of the function when provided with the garbled input
values to the circuit and an output mapping from
garbled outputs to the actual output of the origi-
nal circuit. In the garbled circuit auction protocol,
a Boolean circuit is created that outputs the result of
the auction (Naor et al. 1999). This circuit is then
garbled by a party known as the auction issuer and
sent to the auctioneer. Using the garbled circuit cre-
ated by the auction issuer, the auctioneer is then able
to compute the result of the auction after discovering
the garbled inputs of the garbled circuit. As long as
the auction issuer does not reveal a set of random val-
ues it used when garbling the circuit, the input and
intermediate values remain hidden from the auction-
eer. The verifiable proxy oblivious transfer (VPOT)
protocol (Juels & Szydlo 2003) addresses a security
flaw in the original garbled circuit auction protocol
where the auction issuer could change bids without
detection. Figure 3 shows the parties in the garbled
circuits auction protocol. The bidders and the client
only need to have a connection to the auctioneer, and
the auctioneer is the only party that needs a connec-
tion to the auction issuer.

The basic steps of a Sealed-Bid auction using the
garbled circuit protocol are:

e The client contacts the auctioneer with details of
the auction they wish to run.

e The auctioneer advertises details of the auction
including the number of goods, number of prices,
and the auction issuer being used.

e The auction issuer constructs a garbled circuit
for the auction based on how many bidders,
goods, and the number of bits in the price as well
as a mapping from garbled outputs to outputs.

e The auction issuer sends the garbled circuit and
output mapping to the auctioneer.

e The auction issuer, auctioneer, and bidders use a
protocol called verifiable proxy oblivious transfer
(VPOT) which results in the auctioneer learning
the garbled values of the inputs, and the auction
issuer and bidders learning no new information.

e The auctioneer executes the garbled circuit using
the garbled input and decodes the output using
the output mapping sent by the auction issuer.

More details of the garbled circuit auction proto-
col, including the algorithms used, can be found in
the Appendix.

4.1 Security

The security of the garbled circuit auction protocol
comes from the garbling of the circuit that is done by
the auction issuer. This garbled circuit is then sent
to the auctioneer to execute. As long as the auction
issuer does not collude with the auctioneer losing bid
values are kept secret. During the garbling of the cir-
cuit, each wire connecting the nodes in the circuit is
assigned a randomly generated value and a randomly
generated permutation of the values of the wire that
is used to create the garbled value of the wire. A gate
table is then created for each node in the circuit that
maps the garbled input of the node to the garbled
output. A publicly known random function is used to
create the gate table ensuring that knowledge of one
combination of the garbled inputs of a node does not
reveal the other garbled outputs. The VPOT proto-
col is then executed by the bidders, auctioneer, and
the auction issuer after which the auctioneer learns
the garbled inputs of the circuit and can execute the
circuit to find the garbled outputs. A mapping is
provided by the auction issuer that maps the garbled
outputs of the circuit to the actual output. Parties in
the garbled circuit auction protocol are assumed to
be passive adversaries, although in the original paper
verification techniques are discussed which can extend
the garbled circuit auction protocol to handle active
adversaries. A more detailed security analysis of the
garbled circuit auction protocol can be found in the
original paper (Naor et al. 1999), and a the paper pre-
senting the VPOT protocol contains a detailed anal-
ysis of the security of VPOT (Juels & Szydlo 2003).

5 Circuit Size

As stated in the introduction, one of the main criti-
cisms of the garbled circuit auction protocol is the size
of the garbled circuit, which is composed of gate ta-
bles and an output mapping, that has to be sent from
the auction issuer to the auctioneer. Even the cre-
ators of the garbled circuit auction protocol suggest
sending the gate tables on a CD-ROM or DVD (Naor
et al. 1999). In order to investigate these claims, in
this section we quantify the size of the gate tables
for different combinatorial auctions. We first inves-
tigate the complexity of the circuit before providing
experimental results on the size of the circuit.

Circuit Size vs Number of Bidders
6000

5000
4000
3000

2000

Circuit Size (KB)

1000

0 20 40 60 80 100 120
Number of Bidders

Figure 4: Circuit Size vs Number of Bidders

5.1 Complexity

Table 1 shows the upper bound on the number of
gates used in our combinatorial auction circuit where
g is the number of goods, b the number of bidders,
and p the bits in the price. There are 29 possible
unique combinations of goods. There are B, possible
unique allocations of the g goods where B, is the Bell
Number for the number of goods. For every allocation
there can be at most g links in the graph so we assume
there are g links for every allocation.

The largest factor influencing the size of the circuit
is the number of goods ¢g. Increasing the number of
bidders b results in a linear growth in the number of
nodes in the circuit. Increasing the number of bits in
the price p results in a linear increase in the size of
the circuit and an exponential increase in the number
of available prices. More available prices mean that
bids can be more finely expressed — increasing the
bid granularity of the auction protocol. For example,
with p = 4 there are 16 = 2% available prices but with
p = 5 there are 32 = 2° possible prices. When the
number of goods g is increased, the total number of
nodes in the auction circuit increases exponentially.
When the number of goods is increased linearly the
number of possible combinations of goods increases
exponentially as there are 29 possible combinations
of goods.

5.2 Experimental Results

To calculate the size of the garbled circuit, we have
taken the number of two input gates in the combina-
torial auction circuit and multiplied them by 4 and
then by 128. This is because for every two input gate
there are 4 entries in the gate table and every entry
is 128 bits. The size of the output mapping is not in-
cluded in this calculation, but is significantly smaller
than the size of the gate tables. We have quantified
the size of the garbled circuit in respect to the number
of bidders, number of goods, and the number of bits
in the price. Other than the variable under test, the
default parameters selected were ten bidders, three
goods, and four bits in the price (for a maximum bid
of sixteen).

Figure 4 shows the size of the garbled circuit in-
creasing linearly as the number of bidders increases.

The size of the garbled circuit is proportional to
In(maximum bid) as shown in Figure 5.

Figure 6 shows the size of the garbled circuit
(shown on a logarithmic scale) increasing exponen-
tially as the number of goods increases.

The size of the garbled circuits in these tests would
not require a CD or DVD to be sent from the auc-
tion issuer to the auctioneer and could be sent over
the network. For example, an auction with 3 goods,
a maximum bid of 16, and 100 bidders has a garbled

No. of Input Nodes
No. of Output Nodes
No. of AND Nodes
No. of OR Nodes
No. of SELECT Nodes
No. of XOR Nodes

29bp
b(p + (299))
2Bggp(b+1)
Bgbg(1 + p) + Bygp(b+1)
Bgbg(2p + 1) + Bgbgp
ngp

Total No. of Nodes

297 Tbp + Bygp(4b+5) + Bybg(3p+2) + bp

Table 1: Number of Nodes in the Auction Circuit

Circuit Size vs Maximum Bid
1400

1200

1000

@
3
o 800
N
S 600
=]
£ 400
(]
200
0
10 100 1000
Maximum Bid
Figure 5: Circuit Size vs Maximum Bid
Circuit Size vs Number of Goods
100000
10000
@
< 1000
4
8
- 100
3
g
[S) 10

1
2 3 4 5 6

Number of Goods

Figure 6: Circuit Size vs No of Goods

circuit of approximately 5MB. A larger auction with
5 goods, a maximum bid of 200, and 50 bidders has a
garbled circuit size of approximately 85MB. The size
of the garbled circuits gets very large for large num-
ber of goods but, if some combinations of goods can
be removed as invalid, the garbled circuit size would
drop. It is also worth noting that construction of a
more compact combinatorial auction circuit with less
gates would decrease the size of the garbled circuit.

6 Performance Results

We have tested the performance of the garbled cir-
cuits protocol in respect to the number of bidders,
number of goods, and the number of bits in the price.
Other than the variable under test, the default pa-
rameters selected for performance measurements were
ten bidders, three goods, and four bits in the price.
The test machines were a group of four Dell Optiplex
GXT755s each with an Intel Core 2 Duo processor and
2048MB DDR SDRAM. The auction time recorded is
the total time to compute the auction, this includes
the creation of the circuit, the garbling of the circuit,
the VPOT protocol to learn the garbled inputs, and
the garbled circuit execution time.

The time taken to complete the auction increases
linearly as the number of bidders increases as shown
in Figure 7. This is due to the linear growth in the
time taken to execute the VPOT protocol and to gar-

Garbled Circuit Auction Time vs Number of Bidders
300

250

@ 200
5

& 150
)

g 100
£

50

0

0 20 40 60 80 100 120
Number of Bidders
Figure 7: Auction Time vs No of Bidders
Garbled Circuit Auction Time vs Bits in Price

100

90

80

- 70

2 60
o

g 50

2 40

g 30
E

20
10

4 6 8 10 12 14
Bits in Price

Figure 8: Auction Time vs Bits in Price

ble and execute the circuit as the number of bidders
increases.

Figure 8 shows the time taken to complete the
auction when the number of bits in the price is in-
creased. The relationship between the number of bits
in the price and the time taken appears to be linear.
Increasing the number of bits in the price by 1 bit
increases the maximum bid by a power of 2. Figure 9
illustrates the relationship between the time taken to
compute the auction and the maximum bid.

Figure 10 compares the performance of garbled cir-
cuits with the performance (Bubendorfer & Thom-

Garbled Circuit Auction Time vs Maximum Bid
100
90
80
70
60
50
40
30
20
10
0

10 100

Time (Seconds)

1000
Maximum Bid

10000 100000

Figure 9: Auction Time vs Maximum Bid

Auction Time vs Number of Goods
1000
—Yokoo and Suzuki
(2002)
—Garbled Circuit

Time (Seconds)
-
o
o

2 3 4 5
Number of Goods

Figure 10: Auction Time vs No of Goods

Auction Time vs Maximum Bid

—Yokoo and
80 Suzuki(2002)
70— Garbled Circuit

Time (Seconds)
ey
o

0 200 400 600 800 1000 1200
Maximum Bid

Figure 11: Auction Time vs Maximum Bid

son 2006) of the homomorphic auction protocol by
Yokoo and Suzuki (Yokoo & Suzuki 2002). The time
taken to complete the auction increasing exponen-
tially as the number of goods increases. This is due to
the number of possible allocations of goods increas-
ing exponentially as the number of goods increases.
For example, for 2 goods there are 4 possible alloca-
tions and for 3 goods there are 8 possible allocations.
This is known as the combinatorial auction problem
(CAP) which is NP complete and exponential. De-
pending on the particular auction taking place, there
may be a large number of invalid allocations that
can be removed to improve performance. Practical
auctions can be done with fewer goods, for example
a case study of industrial procurement auctions for
cleaning contracts reported auctions with 9, 7, and
42 goods (Lunander & Lundberg 2009). As privacy
preserving auctions would be particularly useful for
high value goods, the running time and communica-
tion overhead of the auction would be less of an issue
than for low value goods. Construction of a more
compact combinatorial auction circuit would further
reduce the auction overhead. The garbled circuit auc-
tion protocol performs worse than the protocol by
Yokoo and Suzuki based on the number of goods.
Pre-computation of the garbled circuit could provide
a significant reduction in time taken to compute the
auction.

Figure 11 compares the performance of garbled cir-
cuits with the performance of the homomorphic auc-
tion protocol with respect to the maximum bid. The
garbled circuit auction protocol performs better than
the homomorphic auction protocol when a large bid
granularity is required due to a fundamental property
of the bid vector representation used in the homo-
morphic auction protocol and other auction protocols
that use a bid vector notation (Yokoo & Suzuki 2002,
Suzuki & Yokoo 2002). When using a bid vector no-
tation, increasing the bid vector size linearly increases

the time taken to compute the auction and the max-
imum bid linearly. When using the garbled circuit
auction protocol, increasing the number of bits in the
price increases the time taken to compute the auction
linearly but increases the maximum bid exponentially.

7 Conclusions

This paper has shown the development of an algo-
rithm to construct a circuit composed of Boolean
gates that can compute the result of a combinatorial
auction. When combined with a privacy preserving
auction protocol, based on general circuit evaluation,
the algorithm can be used to conduct combinatorial
auctions where only winning bids are made public.
This is the first example of a combinatorial auction
circuit to appear in the literature.

We have presented the concept of an auction cir-
cuit and described some of the building blocks we
have used to create our algorithm. The algorithm
to construct a combinatorial auction circuit is pre-
sented in detail. The size of the circuit created by
our algorithm is presented. The size of the circuit
grows linearly with the number of bidders. The size
of the circuit increases exponentially with the number
of goods as the number of possible combinations of
goods in the auction also increases exponentially. The
circuit size increases linearly as the number of avail-
able prices increases exponentially which provides an
advantage for auctions where a large range of bids
is required. We have shown that the communica-
tion overhead is feasible (6MB for an auction with 3
goods, a maximum price of 16, and 100 bidders). The
garbled circuit auction protocol has also been shown
to give comparable performance results to the homo-
morphic combinatorial auction protocol by Yokoo and
Suzuki (Yokoo & Suzuki 2002). The garbled circuit
auction protocol outperforms protocols that use a bid
vector notation, such as the homomorphic auction
protocol, when a large granularity of bids is required.

A Garbled Circuit Algorithms

This appendix describes our interpretation of and al-
gorithms for the original single good garbled circuit
auction protocol, and a simple worked example of a
garbled circuit. This appendix explains ideas first
presented in the original paper on the garbled cir-
cuit auction protocol (Naor et al. 1999), more details
can also be found in the paper on the VPOT proto-
col (Juels & Szydlo 2003).

A.1 Table of Definitions

The following terms are used in the description of
garbled circuits:

e Client: The entity that requests the auctioneer
to conduct an auction.

e Auctioneer: Takes the details from the client and
runs the auction. Communicates with the auc-
tion issuer to get the garbled circuit and garbled
input values.

e Auction Issuer: Assists in running the auction.
Should be from a separate organisation than the
auctioneer. Garbles circuits and then assists the
auctioneer in learning the garbled inputs.

e Bidder: Bids on items in the auctions.

e Auction Circuit: Circuit composed of Boolean
gates that can be used to compute the result of
an auction.

e Node: Boolean gate in an auction circuit.

e Wire: Link between two nodes of an auction cir-
cuit. A wire can have a value b of 0 or 1.

e W9 and W': Multi-bit random values that are
used to represent the 1 and 0 value of a wire.

e ¢: Result of a random permutation of a wires
value b.

e (W% ¢): Garbled value of a wire. Formed by
concatenating W for the value b of the wire with
the result of the permutation ¢ of the value b of
the wire.

e ¢: The node function which calculates the output
of the node based on the inputs. For example,
for an AND gate g(0,1) =0 and g(1,1) = 1.

e Gate Table: Each node in the auction circuit has
a gate table that maps the garbled inputs to a
garbled output.

e Output Mapping: Table that maps the garbled
outputs to actual outputs. Each output wire has
an output mapping.

e Pseudo Random Function F(a,b): Pseudo ran-
dom function F' takes a as a seed and b as an
argument and returns a random value. We use
the SHA-1 hash function to represent this func-
tion.

A.2 Garbled Circuit Generation

To garble a circuit, the auction issuer executes the
following algorithm on the nodes and wires of the auc-
tion circuit.

Algorithm 4

Procedure GarbleCircuit

Input: AuctionCircuit AC, RandomFunction F
Output: GateTable GT, OutputMapping OM

1. (* Assign random values to the wires *)

2. for wire i € AC

3. Randomly generate W2 and W} corre-
sponding to 0 and 1.

4. Choose a random permutation over
{0,1}, by — ¢

5. (* Construct function tables for every node *)

6. for node k € AC with input nodes i,j

7. for ¢; < 0tol

8. for c; < 0tol

9. GT(]C)(C“ Cj) —

10. GetGTValue(i, j, k)
11. (* Construct output mapping *)

12. for output wire k € AC

13. OM (k,0) « (W2, 71(0))

14. OM (k,1) < (W}, m(1))

Algorithm 4 garbles an auction circuit. The first
step is to assign random values to every wire of the
auction circuit. Every wire has a value corresponding
to0and 1 (WO W1) assigned to it as well as a random
mapping of its output 7 that maps the wires value b
to c.

For every node in the auction circuit a table is
constructed that, given the garbled input of the node,
outputs the garbled output. If the node is an output
node, an output mapping is also produced mapping
the garbled output of the node to the actual output.
These steps can only be performed with the knowl-
edge of the random values assigned to all the wires.
Algorithm 5 details the calculation done for an entry
in the gate table. The tables for each node and the
output mappings are then sent to the auctioneer to
execute the circuit.

Algorithm 5

Procedure GetGTValue

Input: InputNode i, InputNode j, Node k
Output: bit [] Value

1. Value + ,

2. (WU e @ (FWE,e;)) @ (F(W),¢.))}
3. return Value

A.3 Executing a Circuit

The following algorithm is executed by the auctioneer
after it has received the GateTable and OutputMap-
ping arrays from the auction issuer. The auctioneer
will also have received the garbled inputs after com-
pleting the VPOT protocol with the bidders and auc-
tion issuer.

Algorithm 6

Procedure EzecuteCircuit

Input: AuctionCircuit AC, GateTables GT, Out-
putMapping OM, GarbledInputs GI, Random-
Function F

Output: ActualValues AV

1. (* Reset All Nodes %)

2. for Nodes k € AC

3 Computed(k) < false

4. (* Compute All Nodes)

5. repeat

6. for Node k with input nodes ¢ and j

7 if ((Computed(i) N Computed(j)) U

(ieGInjeGI)

8 GarbledOutputy, +

9. GetGO(i, j, k,GT)

10. Computed(k) + true

11. until All Nodes have been Computed
(* Convert Garbled Output to Actual Output x)

12. for output nodes o

13. if (GarbledOutput, = OM (0,1))
14. then AV (o) «+ 1
15. else AV (o)« 0

Algorithm 6 executes a garbled circuit given the
auction circuit, gate tables, output mapping, garbled
inputs, and random function. It loops through all the
nodes in the auction circuit until they have all been
computed. The gate tables are used to compute the
garbled output of a node k with input wires ¢ and
j. Inputs ¢ and j will have garbled input values of

(Wi, ¢;) and <W;)j ,¢;). From the garbled inputs the

values ¢;, ¢, Wibi, and WJI,” can be extracted from the
concatenated garbled inputs. Then the garbled out-
put can be computed using algorithm 7. Algorithm 7
uses the entry in the gate table for ¢; and ¢; as well
as the output of the random function with seed Wibi
and input ¢; and with seed le.jj and input ¢;. The

output mapping is used to convert the garbled output
to the actual output for an output node.

Algorithm 7

Procedure GetGO

Input: InputNode i, InputNode j, Node k, GateTa-
bles GT

Output: bit [] GarbledOutput

1. GarbledOutput <

2. F(W],c;) @ F(W",c)) ® GT[k(ci, ;)
3. return GarbledOutput

A.4 A Simple Garbled Circuit

Figure 12 illustrates a small garbled circuit with an
AND and an OR gate as well as the 'Random Values
Assigned to Wires” which are the random values and

Gatetables

AND Table
OR Table
Ci,Cj | Output —

00 | 110 CLG | Ouput | Random Function F

01 010 00 101 Seed | Fseed0) |Feed)

10 001 01 110 00| 111 | o1

11 001 10 000 01 | 001 100

1 100 10 | 000 101
Input 1 11 110 010
&
w X
Input 2 >=1 Y4
Output
Y
Input3—————————
Random Values Assigned to Wires Garbled Output to Output Mapping
Wire Wo Wi Co Cl Garbled Output Output
N 10 00 0 1 101 1
W 10 01 1 0 010 0

X 11 01 1 0

Y 01 00 0 1

Z 01 10 0 1

Figure 12: Garbled Circuit Example

permutation computed by the auction issuer and kept
secret from any of the other parties taking part in the
protocol. The auction issuer would have executed al-
gorithm 4 to produce the random values assigned to
wires, the gate tables and the garbled output to out-
put mapping. The 'Random Function F’ is available
to any party in the protocol. The garbled value of a
wire is set to (W?, ¢) so for wire Z the garbled value
of 0 is (01,0) = 010.

To execute the circuit in Figure 12 the auctioneer
would take the following steps:

e Find out the garbled input values. Forsay V =1,
W =1, and Y = 0 the output should be 1. The
garbled input value for V is 001, for W is 010,
and for Y is 010. The garbled input value is the
garbled value of the wire for the input value.

e Now we need to execute the gates. To execute
the AND gate we use our garbled inputs and the
gatetable. The output is 001 ¢ 111 ¢ 100 = 010.

e Now we need to execute the OR gate. The output
is 101 & 001 & 001 = 101. Using the garbled
output to output mapping we can see the output
of the garbled circuit is 1.

This is a small example that shows how a garbled
circuit works. A circuit that executes an auction has
thousands of gates depending on the parameters of
the circuit.

References

Baudron, O. & Stern, J. (2001), Non-interactive pri-
vate auctions, in P. Syverson, ed., ‘FC’01: Pro-
ceedings of the 5th Annual Conference on Financial
Cryptography’, Lecture Notes in Computer Sci-
ence, Springer-Verlag.

Bubendorfer, K., Palmer, B. & Thomson, W. (2009),
Dynamic ambient paradigms, in R. Buyya &
K. Bubendorfer, eds, ‘Market Oriented Grid and
Utility Computing’, Wiley, pp. 541-568.

Bubendorfer, K. & Thomson, W. (2006), Resource
Management Using Untrusted Auctioneers in a
Grid Economy, in ‘proceedings of the Second IEEE
International Conference on e-Science and Grid
Computing (E-SCIENCE)’, Amsterdam, Holland.

Cachin, C. (1999), Efficient private bidding and auc-
tions with an oblivious third party, in ‘CCS ’99:

Proceedings of the 6th ACM conference on Com-
puter and communications security’, ACM, New
York, NY, USA, pp. 120-127.

Franklin, M. & Reiter, M. (1995), The design and im-
plementation of a secure auction service, in ‘Pro-
ceedings IEEE Symposium on Security and Pri-
vacy’, IEEE Computer Society Press, Oakland, Ca,
pp- 2-14.

Harkavy, M., Tygar, J. D. & Kikuchi, H. (1998), Elec-
tronic auctions with private bids, in ‘WOEC’98:
Proceedings of the 3rd conference on USENIX
Workshop on Electronic Commerce’, pp. 61-74.

Jakobsson, M. & Juels, A. (2000), Mix and match:
Secure function evaluation via ciphertexts, in ‘ASI-
ACRYPT ’00: Proceedings of the 6th International
Conference on the Theory and Application of Cryp-
tology and Information Security’, Springer-Verlag,
London, UK, pp. 162-177.

Juels, A. & Szydlo, M. (2003), A two-server, sealed-
bid auction protocol, in ‘FC ’02: Proceedings of
the 6th Annual Conference on Financial Cryptog-
raphy’, Springer-Verlag, pp. 72-86.

Kikuchi, H. (2001), (m+1)st-price auction protocol,
in ‘FC '01: Proceedings of the 5th International
Conference on Financial Cryptography’, Springer-
Verlag, pp. 351-363.

Kurosawa, K. & Ogata, W. (2002), Bit-slice auction
circuit, in ‘ESORICS ’02: Proceedings of the 7th
European Symposium on Research in Computer
Security’, Springer-Verlag, London, UK, pp. 24-38.

Lipmaa, H., Asokan, N. & Niemi, V. (2002), Secure
vickrey auctions without threshold trust, in ‘FC’02:
Proceedings of the 6th Annual Conference on Fi-
nancial Cryptography’, Springer-Verlag, pp. 85—
101.

Lunander, A. & Lundberg, S. (2009), Do combina-~
torial procurement auctions lower cost? - an em-
pirical analysis of public procurement of multiple
contracts, Umea Economic Studies 776, Umea Uni-
versity, Department of Economics.

Naor, M., Pinkas, B. & Sumner, R. (1999), Privacy
preserving auctions and mechanism design, in ‘EC
'99: Proceedings of the 1st ACM conference on
Electronic commerce’, ACM, pp. 129-139.

Peng, K., Boyd, C., Dawson, E. & Viswanathan,
K. (2002), Robust, privacy protecting and publicly
verifiable sealed-bid auction., in ‘ICICS '02: Fourth
International Conference on Information and Com-
munications Security’, pp. 147-159.

Perrig, A., Smith, S., Song, D. & Tygar, J. (2001),
‘Sam: a flexible and secure auction architecture
using trusted hardware’, Parallel and Distributed

Processing Symposium., Proceedings 15th Interna-
tional pp. 1764-1773.

Suzuki, K. & Yokoo, M. (2002), Secure combinatorial
auctions by dynamic programming with polyno-
mial secret sharing, in ‘Sixth International Finan-
cial Cryptography Conference (FC-02)’, Springer-
Verlag, pp. 44-56.

Yao, A. C. (1982), Protocols for Secure Computa-
tions, in ‘proceedings of the 23rd Annual IEEE
Symposium on Foundations of Computer Science’,
Chicago, 1L, USA, pp. 160-164.

Yokoo, M. & Suzuki, K. (2002), Secure multi-agent
dynamic programming based on homomorphic en-
cryption and its application to combinatorial auc-
tions, in ‘proceedings of the First International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2002)’, ACM, New York, NY,
USA, pp. 112-119.

Yokoo, M. & Suzuki, K. (2004), Secure generalized
vickrey auction without thirdparty servers, in ‘pro-
ceedings of the 8th International Financial Cryp-
tography Conference (FC-2004)’, Florida, USA.

