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Abstract

The challenges faced by mobile and distributed appli-
cations include the ability to discover and negotiate
for the resources required for execution. The NO-
MAD (Negotiated Object Mobility, Access and De-
ployment) system is a middleware platform that pro-
vides an infrastructure to support applications con-
structed of mobile code. This paper describes the
NOMAD mechanisms for resource discovery and ne-
gotiation. NOMAD features a Marketplace providing
a forum in which multiple resource requirements lead
to contracts for the allocation of resources between
applications and resource providers. NOMAD’s Mar-
ketplace is also a useful model for resource allocation
in distributed systems such as grid computations. Ex-
perimental results show that resources are allocated
consistent with the policies of both the application
and the resource provider.

Keywords: mobility, resource allocation, resource dis-
covery, market negotiation, computational economy

1 Introduction to NOMAD

The adoption of distributed computing paradigms
such as mobile devices, agents and grid computing
have demonstrated the ability of one organisation’s
software to use resources provided by another organ-
isation. We envision a future world in which a global
market for computing resources exists. The resource
providers in this market may be organisations with a
temporary surplus of resources or organisations whose
sole business is to provide resources for a profit. This
paper presents NOMAD. NOMAD is a set of middle-
ware services that supports distributed applications
by providing resource discovery and negotiation in
the context of a global market. The NOMAD design
is suitable for distributed paradigms based on either
mobile code or initial placement.

NOMAD consists of loosely coupled cooperat-
ing virtual machines, named Depots, that host dis-
tributed applications. Each Depot independently
provides a collection of local resources ranging from
CPU cycles through to specific hardware and soft-
ware libraries, which are made available to applica-
tions in return for payment. Applications utilise these
resources to provide services to their clients, and ne-
gotiate to alter their resource profile as their resource
needs change (Figure 1).

The motivation behind NOMAD is to provide a
coherent global infrastructure as a bridge between
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Figure 1: High level view of NOMAD

applications and the Depots on which they execute.
This infrastructure includes resource discovery and
negotiation, location services and a payment service.
Resource discovery and negotiation includes mecha-
nisms describing resources, performing negotiation,
ensuring the integrity of negotiations and ultimately,
policing contract compliance.

A NOMAD application is a logical collection of
mobile code that provides one or more services (func-
tions). Each application is uniquely identified and
manages its collective parts in a cohesive fashion to
best deliver its service. Applications may provide ser-
vices to one or many clients1: a web robot, a stock
ticker, a chatroom or video rendering. Services are
identified publicly through a Yellow Pages Directory
service and have well known value to their clients. Ap-
plications may be either long lived or relatively short
lived, such as a typical personal computer application.

An application may be structured in a variety of
ways to best serve its clients. Moving closer to the
client or a fixed resource is a well recognised technique
to improve performance (Lange & Oshima 1999, Fos-
ter, Kesselman & Tuecke 2001). Each application
controls its degree of distribution by placing and repli-
cating its clusters to achieve goals such as reduced la-
tency to clients, redundancy and concurrent process-
ing. Objects within an application are grouped into
mobile clusters, and each cluster inherits functionality
supporting mobility and resource negotiation. Refer-
ences outside the cluster, take place via proxies (cre-
ated on the fly) so that an object in one cluster may
invoke a method on an object in a different cluster,
independently of either clusters’ current location.

An application negotiates with the Depots via
the NOMAD Marketplace for the execution resources
that it requires. The Marketplace provides both re-

1An application may itself be a client of another application.



source discovery and negotiation services. For their
part, Depots use policies to price their resources
and to organise such things as the balance of work
amongst a federation of Depots, or the quality of ser-
vice ranges that individual Depots offer. A federation
of Depots reflects common ownership, or administra-
tion of the member Depots.

NOMAD provides the global infrastructure that
integrates Depots and applications. In particular,
the provision of migration support, a location ser-
vice (Bubendorfer & Hine 2003) and an impartial re-
source negotiation mechanism. The objective of this
paper is to provide an overview of the mechanism used
to negotiate the purchase of resources within the NO-
MAD architecture.

1.1 Related Work

A comprehensive survey of mobile agent systems is
carried out in (Gray, Cybenko, Kotz, Peterson &
Rus 2001). However, the majority of these systems
implicitly utilise a cooperative model, in which re-
sources are free to all and no attempt is made to
manage the allocation of execution resources. This
cooperative model does not reflect the reality of
multiple administrative domains, ownership of ma-
chines and resources, and ignores abuse — both
malicious and accidental. Examples of these sys-
tems are: Aglets (Lange & Oshima 1998), NO-
MADS (Suri, Bradshaw, Breedy, Groth, Hill, Jeffers
& Mitrovich 2000), and Globe (van Steen, Homburg
& Tanenbaum 1999).

The various grid computing models make simi-
lar assumptions. Systems such as Condor (Thain,
Tannenbaum & Livny 2004), Legion (Grimshaw, Fer-
rari, Knabe & Humphrey 1999) and Globus (Foster
et al. 2001) make resource allocation decisions based
on performance information. Globus has been de-
signed to facilitate resource sharing over multiple or-
ganisations, however it assumes that prior agreement
has been reached on the sharing of resources.

Markets are particularly appropriate for resource
allocation in situations where software is spread
across a distributed system, serving different clients
and pursuing different goals (Miller & Drexler 1988).
Indeed, such systems have been used for the allocation
of computational resources since 1968 (Sutherland
1968), although in this early case the auction involved
the use of a whiteboard and pens to manually allocate
advance bookings on a departmental PDP1.

In (Drexler & Miller 1988) and (Miller & Drexler
1988) the authors developed a computation market
for the efficient auctioning of processor time to non-
concurrent processes on a single processor computer
system. This was also probably the first system which
considered the application of the various forms of
auction protocol to computer resource management.
Around the same time, Enterprise (Malone, Fikes,
Grant & Howard 1988) was developed for distributed
computing systems. Enterprise performed initial
placement of tasks to processors, using a protocol
based on that of contractNet (Smith 1980). In place
of currency, Enterprise used an estimate of priority
based on the expected processing time. Cheating by
understating processing time estimates was policed
by automatically aborting processes that significantly
overran their estimate. (Kurose & Simha 1989) in-
vestigated an economic iterative auction model for the
distributed allocation of files and demonstrated that
the attractive properties of auctions transferred into
the computational domain.

Spawn (Waldspurger, Hogg, Huberman, Kephart
& Stornetta 1992) was the first full attempt to cre-
ate a distributed computational economy, and utilised
bid escalation as described in (Drexler & Miller 1988,

Miller & Drexler 1988). As with the previous systems,
the only resource negotiated for was processor time,
and the currency in the system was allocated to users
by human system administrators. Users were priori-
tised by allocating different amounts of currency as
in (Sutherland 1968). Each computer in Spawn ex-
ecuted two processes, an auctioneer and a resource
manager. The resource managers each contained a
small list of auctioneers on neighbouring computers
which supplied updates of pricing and availability.
The auctioneer continuously accepted bids on the
next available slice of time. Spawn was limited to
initial placement, and thus on expiry of an existing
processor slice, the choice was either to abort the ap-
plication or to let it continue execution. The approach
used was to leave the decision to the application, that
is, by offering the application first-refusal basis on
the next processor slice at the current price. When
an application wished to spawn a new child, it sent
a request to the local resource manager which then
matched the applications CPU requirements against
those available on the monitored auctions, and bid on
its behalf.

Xenoservers (Yan, Early & Anderson 2000, Reed,
Pratt, Menage, Early & Stratford 1999) also promote
the ideal of a computational economy with mobile ob-
jects. The planned system parallels the NOMAD ar-
chitecture, with both Xenoservers and NOMAD De-
pots forming loci of resource and computation.

D’Agents (Gray et al. 2001) shares a market based
approach with NOMAD, although a number of im-
portant differences exist between the two systems.
NOMAD does not utilise access control lists as does
D’Agents, but rather relies on incentive based con-
trol within the economic model. Negotiation is ap-
plication initiated in NOMAD, whereas in D’Agents
servers auction their spare capacity.

(Buyya, Abramson, Giddy & Stockinger 2002) ex-
plores how different economic models might be ap-
plied to the grid computing paradigm. For most cases
a general approach is discussed without attention to
the efficiencies of implementation. The authors have
successfully applied a market based approach to a
parametric sweep problem solved on a global grid.

NOMAD is unique in pursuing the creation of a
market driven global infrastructure for mobile and
distributed applications.

1.2 Economic Resource Management

Traditional resource management has been under-
taken by the operating system. In this role, it has
the conflicting goals of optimising the resource allo-
cation for the entire system (globally) and for each
application (locally). This is difficult as the operating
system is neither aware of, nor privy to, the needs or
goals of each application. A solution to this problem
is to separate the local optimisation from the global
optimisation, that is, the application must negotiate
for the resources it requires from the system on which
it wishes to execute (Stratford & Mortier 1999).

This is similar to the problem of allocating finite
resources over an independent population — as faced
by all human societies. For example, a farmer wishes
to get the best price for his wheat, while the baker
wishes to pay less. The solutions to this and related
problems have been refined by many years of human
competition and form the basis of economics (Miller
& Drexler 1988). This well founded and understood
technique of resource pricing has long been applied
to the problem of allocating finite computational re-
sources (Sutherland 1968).

The economic model is also powerful enough to
provide a mechanism, with which to solve a number
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Figure 2: Entities within the NOMAD system.

of other problems relating to the behaviour of enti-
ties within the system. One such problem in open
mobile systems is the malicious (or otherwise) wast-
ing or over-using of resources by a visiting entity.
This is a serious concern when the host and object
have different administrative domains or ownership.
Rather than design a system that predicts the entire
range of possible actions an entity might take, and
then permits or forbids those actions depending on
the probable impact on the system, financial incen-
tives (Drexler & Miller 1988) can be used to influence
the behaviour of entities within the system. An ex-
ample of this is the denial of service attack which,
if the instigator is charged for the actual resources
consumed, becomes infeasible.

The incentives that are designed into an economic
system ensure that it is in an entity’s best interest
to behave in an acceptable way (Sandholm 1996b).
Infractions cost real currency, and as a consequence
badly behaving entities suffer a real financial loss and
are unable to utilise additional resources once their
currency is expended. This is not a complete panacea,
as the system must still ensure that the entities within
the system are protected from other forms of interfer-
ence, and that the payment and negotiation systems
are secure. Nonetheless, utilising an incentive model
is a rational choice and motivates the use of the mar-
ket based approach for resource management in NO-
MAD.

1.3 NOMAD Overview

Figure 2 gives an overview of the major compo-
nents within the NOMAD architecture. Each De-
pot (Bubendorfer & Hine 1999) consists of a Depot
Manager and a set of managed virtual hosts (vHosts).
Management policies dictate how each Depot will re-
act to specific circumstances: how it will ensure lev-
els of service and how it interacts with Depots within
and outside of its federation. The Depot Manager is
also responsible for responding to negotiation, charg-
ing, and arranging the hosting of the global NOMAD
infrastructure components. A vHost is a virtual ma-
chine on which application code executes. A vHost is
responsible for managing physical resource use, secu-

rity, fault detection, and communication.
The application in Figure 2 consists of clusters

that physically reside on vHosts within Depots A and
B, and provides a set of services to its client C.

From the perspective of an application, the Mar-
ketplace fulfils both the role of resource discovery and
allocation. When an application requires resources, it
registers its resource requirements as an auction with
the Marketplace. The Marketplace distributes this
information to the bidders (the Depots that are po-
tential providers of the required resources) in a cat-
alogue and in turn collects any bids. Bids are made
by Depots to secure the right to host the applica-
tion, and thereby generate revenue from the sale of
its resources to applications. Clearly the application
wishes to obtain the resources at the lowest possible
price, whereas the Depot wishes to maximise the re-
turn on its resources. A good analogy is a private
building company bidding to fulfil a government con-
struction contract.

2 The Negotiation Service

Markets make an ideal tool for economic resource
management.

Market price systems constitute a well un-
derstood class of mechanisms that under cer-
tain conditions provide effective decentrali-
sation of decision making with minimal com-
munication overhead — (Wellman 1993).

A Market is clearly the suitable choice for NO-
MAD, with distributed decision making, minimal
overhead, well understood theory and the abstrac-
tion of resources as currency. This permits the NO-
MAD system to charge for the use of resources, pre-
vent unbounded resource attacks as with denial of
service (Yan et al. 2000), and represent priority. A
Market provides a forum in which buyers and sellers
meet (resource discovery) and negotiate to perform
optimal allocations with minimal overhead, mutual
selection and decentralised decision making between
buyers and sellers.

The use of different market models for distributed
computing has been explored in (Buyya et al. 2002).



For NOMAD we chose an auction model. The auction
model allows a resource provider to follow a range
of market policies such as commodity, posted price,
or dynamic pricing. For example, to follow a posted
price model the provider might simply check the time
of day and respond with the appropriate cost. Each
request for resources elicits a response from a set of
interested providers. This eliminates the need for the
Marketplace to maintain potentially complex pricing
policies for each resource provider.

NOMAD applications direct their own distribu-
tion, therefore they initiate negotiation for the re-
sources they require. Depots take on a competitive
provider role, bidding to supply their resources and
collect revenue from the applications they host.

2.1 Selection of an Auction Protocol

For use in a computational economy, like NOMAD,
an auction protocol must lead to optimal allocations
with minimal overhead. In this section we look at the
suitability of different types of auction protocols.

There are four main types of auction protocol iden-
tified by Vickrey (Vickrey 1961); the English, Dutch,
Sealed-Bid, and what has since become known as the
Vickrey auction protocol. The English auction is the
conventional open forum, ascending price, multiple
bid protocol. The Dutch auction is an open forum,
descending price, single bid protocol. The Sealed-Bid,
or tender, is a closed forum, single bid, best price pro-
tocol in which all bids are opened simultaneously. The
Vickrey auction is similar to the Sealed-Bid auction,
except that the winning (highest) bid then pays the
amount of the second highest bid.

Messaging overhead is incurred when multicasting
the current state of an auction to all bidders. This
overhead is particularly costly in the case of the open
forum protocols, where each (potential) bidder must
be kept informed of the current price. In the En-
glish auction — each bidder needs to know every bid
that has been made. This in turn raises a question
of fairness, with reliable and prompt delivery of up-
dates required, lest a bidder miss out due to network
delay or loss. The second source of overhead is in the
auctioneer, which must collect and process multiple
bids, and select the winner. An agreement protocol
is required to close multiple bid auctions. Selection
of a winner can require considerable computational
effort, especially in computational resource auctions,
as is discussed in section 2.2.

The most significant result in auction theory is
the revenue equivalence theorem (Vickrey 1961).
This states that all four auction protocols yield the
same expected return in private value2 auctions. In
addition, the strategies and payoffs associated with
the Dutch and Sealed-Bid auction protocols, even for
non private-value auctions, are the same. That is, the
Dutch and Sealed-Bid auction protocols are strategi-
cally equivalent, in all valuation models, as only the
winning bid matters and no information is revealed
during the auction process.

In private value auctions the English and Vickrey
auction protocols produce the same allocations (at
the same prices), where the bidder who values the
item most wins it, but does so with different strate-
gies. However, the English and Vickrey auction pro-
tocols are not equivalent in non-private value auc-
tions, as the open outcry nature of the English auction
protocol provides additional information to the bid-
ders, which can then alter their valuations. (Milgrom

2In private value auctions the valuation depends solely on the
bidder’s own preferences. In contrast, the valuation in a common
value auction depends entirely on the other bidders’ values of the
item. Correlated valuations are a weighted combination of private
and common values.

& Weber 1982) shows that in correlated value auc-
tions, this enables a variation of the English3 auction
protocol to generate greater revenue than the Vick-
rey, Dutch and Sealed-Bid protocols when there are
three or more bidders.

If a certain strategy pays a player the highest pay-
off, regardless of other players’ strategies, then that
strategy is known as a dominant strategy. Neither
the Dutch nor the Sealed-Bid auction protocols have
a dominant strategy. The dominant strategy for the
English auction protocol is to bid a small increment
over the current bid price and stop when the private
value is reached. The dominant strategy for the Vick-
rey auction protocol is to bid the true value of the
item. This strategy has two important and beneficial
side effects:

• bidders reveal their values accurately allowing for
globally efficient allocations, and

• bidders need not waste efforts in attempting to
counter-speculate other bidders.

Counter-speculation wastes computational re-
sources and introduces considerable complexity into
the system, while not improving overall allocations.

An additional efficiency is achieved by using a pro-
tocol requiring a single bid based on a static descrip-
tion of the lot4 and auction. That is, the bidder sub-
mits a single bid and does not need to be advised of
changes to the state of the auction, other than the
outcome. This minimises the number of messages ex-
changed during an auction.

The Vickrey auction protocol5 is a single bid
Pareto-optimal6 (Rasmusen 1994) technique that is
efficient in terms of messages and allocation. This
suggests it is ideal for machine to machine negotia-
tion and is the auction protocol selected for use in
NOMAD.

There are however, seven limitations concerning
the applicability of the Vickrey auction protocol to
computational systems: the lying auctioneer, bid-
der collusion, possible release of sensitive information,
lying in non-private value auctions, lower revenue
in non-private value auctions, sub-optimal allocation
and lying in interrelated auctions, uncertainty of valu-
ation and wasteful counter-speculation. These limita-
tions have been identified in the literature (Rasmusen
1994)(Sandholm 1996a)(Vickrey 1961), and are prob-
ably amongst the reasons why the protocol has been
abandoned in some recent projects.

The Vickrey auction protocol provides an ideal ba-
sis for automation if the specific design of the market
is able to successfully address its limitations. How the
design of the NOMAD Marketplace addresses these
limitations is discussed in section 2.4.

2.2 Describing Multiple Requirements

Another challenge is the focus of standard auction
mechanisms on the sale of a single good. This is fine
when the good is a single unit, such as a soccer ball,
but not when the good in question is, say, one sock

3The protocol is open exit in which all bidders are aware of
other bidders ceasing to bid.

4A lot is an individual set of goods in an auction, which are bid
on as a unit.

5It is worth pointing out that even small modifications to this
protocol may seriously damage its dominant strategy of truthful
bidding. For example, in (Drexler & Miller 1988, Miller & Drexler
1988) and Spawn (Waldspurger et al. 1992), the addition of the
escalation mechanism reintroduces counter speculation and non-
truthful bidding.

6A distribution of resources is Pareto-optimal if any redistribu-
tion of resources which is beneficial to one or more individuals is
also detrimental to one or more others.



— which has its greatest value when part of a pair.
Likewise, execution resources form an indivisible set,
related and conditional upon the availability of each
other. Piecewise negotiation of these individual re-
sources will not give any usable result let alone an
optimal allocation. After all, it is very difficult to ex-
ecute when the memory is on a different host from
the allocated CPU cycles. This is the combinato-
rial allocation problem (CAP) (Rothkopf, Pekec̆ &
Harstad 1995, Parkes 2001), in which a set of compo-
nents have a synergistic value that exceeds the sum
of the individual parts. Because of synergistic combi-
nations and substitution effects, bidders have prefer-
ences not just for particular items, but for collections
of items.

The solution to the CAP is the Generalised Vick-
rey Auction (GVA) (MacKie-Mason & Varian 1994),
which utilises a single auctioneer that is required to
solve the CAP for all resources and all bidders. This
requires however, not just a single NP-complete com-
putation, but multiple NP-complete computations to
find the optimal solution. Approximations such as
iBundle (Parkes 1999) still require that the auction-
eer perform multiple NP-complete computations.

Clearly these existing approaches are untenable in
practice, and would severely limit the scale of any
system in which they were utilised. Our approach is
to distribute the computation of the CAP amongst
the Depots that choose to bid. A NOMAD applica-
tion employs a resource description graph (RDG) to
describe the resources it requires. A RDG is a single
directed acyclic graph which describes an auction, its
set of lots and possible alternatives for each lot.

Each RDG has one or more accept states. Each
accept state represents an independent lot and each
lot can be won by a different Depot. An applica-
tion may choose to package several lots in one RDG
in the hope of achieving savings through the sharing
of resources required by the different lots. A Depot
may choose to bid on any subset of the lots described
in a RDG. An entirety bid (Hurwicz, Schmeidler &
Sonnenschein 1985), is a bid for all the lots in the
RDG and allows the bidder to benefit from savings
resulting from the combined bids.

Each sentence (path to an accept state) through
the RDG identifies a set of resources required to fulfill
a particular task. A Depot bidding on this lot is ex-
pected to provide all resources specified in one of the
sentences leading to the accept state. The classes of
resources that can be specified in a RDG sentence in-
clude hardware, software, network access, protection
domain access, quality of service parameters and spe-
cific specialised resources. Alternate sentences ending
in the same accept state define acceptable compro-
mises. For example two sentence might represent a
trade off between network bandwidth and memory
that can be used for buffering or caching.

The RDG provides a general representation of re-
sources and limits bidding to combinations of resource
allocations that are deemed to be valid by the creator
of the RDG. This restriction means that the Depot
is faced with a smaller and better defined problem.
Further, NOMAD utilises the combination of RDG
and entirety bidding to replace the NP-complete CAP
with a good approximation enabling multi-component
auctions with the standard Vickrey auction protocol.

This approximation does not eliminate all NP-
complete computations, however, it does reduce the
size of the problem set and move the computations
from the auctioneer to the Depot (bidder). The De-
pots compute their bids concurrently and the load is
widely distributed.

There are two main points of caution that we have
identified. Firstly, the size of the RDGs cannot be
too large or the load on each Depot becomes exces-

sive. Secondly, the edge expressions which compose
the RDG must be carefully specified to minimise com-
putation. Malicious exploitation of these limitations
could form routes of attack on the negotiation system
and must be rigorously policed by both the Market-
place and the Depots themselves.

The reduced NP-complete problem at each Depot
can be entirely eliminated by further restricting the
Depot to:

• making either just a single lot bid or an entirety
bid for each auction, and

• waiting on the outcome of that auction before
bidding again.

Providing that the size and edge specifications
are enforced, the bid computation will be sufficiently
tractable to make these restrictions unnecessary.

In addition, this approach avoids the difficulty
of balancing the books (Parkes, Kalagnanam & Eso
2001) and the computation of the social welfare of the
system (MacKie-Mason & Varian 1994), as the win-
ner simply pays the second price. This further reduces
the load on the entire system and particularly on the
auctioneer. Privacy is enhanced as Depots need only
reveal a single bid value to the Marketplace (auction-
eer). In addition, the Marketplace need not parse and
understand RDG edge expressions — this evaluation
is performed by the Depots interested in bidding7.

2.3 The NOMAD Marketplace

The NOMAD Marketplace is a distributed resource
allocation system, implemented by a set of cooperat-
ing Markets. The Marketplace enables applications
to negotiate and pay for execution resources. It per-
forms the related functions of resource discovery and
negotiation. The mechanism, as shown in Figure 3,
is straightforward, allowing computationally bound
clients to construct resource descriptions from build-
ing blocks and to negotiate efficiently.

.

.

..

. . .

. . .

Market

12
3 4

5
Depot Application

1. Application Registers
2. Catalogues Distributed
3. Depot Bids
4. Contracts Generated
5. Contract(s) Redeemed

Figure 3: The Market Protocol.

Applications requiring resources construct a RDG
describing their requirements and register an auction
with a Market. The Market receiving the RDG con-
structs a set of catalogues consisting of all RDGs
from current auctions. These catalogues are then dis-
tributed to both Depots and other Markets known to
this Market. This is the resource discovery mecha-
nism.

Negotiation in NOMAD is performed using the
principles of the Vickrey auction protocol. Depots
compute valuations based on the information within
the catalogues and submit their bids to the Market
conducting the auction. Once the auction is over, the
Market identifies the winner(s) and generates signed
contract certificates that are passed to the applica-
tion. The application then redeems these contracts

7A Depot looking to bid will, by inference, have spare resources.
Using these resources to evaluate potential clients is sensible.



at the appropriate Depots and obtains the negotiated
resources.

The Marketplace does not seek globally optimal
allocations, rather it divides the applications and De-
pots into geographic and categorical regions. Auc-
tions are advertised between regions via the distribu-
tion of catalogues between regional Markets.

Bipartite auctions (in which only one Depot is el-
igible to bid) are simulated within the multipartite
auction protocol, in such a way that ensures a target
Depot will bid its true value.

2.4 Addressing the Limitations of the Vick-
rey Auction

The Vickrey auction is an ideal basis for auto-
matic resource allocation, once its limitations are ad-
dressed. This section outlines how each of the lim-
itations is satisfied within the design of the NO-
MAD Marketplace. Additional details are available
in (Bubendorfer 2001).

The problem of the Lying Auctioneer can only
be ultimately resolved by making the Marketplace a
trusted core NOMAD service in much the same way
that filesystems are trusted. Additionally, the Mar-
ketplace only charges the application a set fee rather
than a commission based on sale price, removing the
temptation to misrepresent the second price. Bidder
Collusion is only possible when bidders can identify
other potential bidders and form a cartel. NOMAD
is an agoric system in which Depots are free to join or
leave — consequently the pool of bidders is dynamic.
The only entity that has access to bidder identities is
the Market conducting the auction, which is trusted.
As the auction is sealed, collusive bidders have no
means of detecting if or how an independent bidder
has bid, unlike in the English auction. The problem of
Revelation of Sensitive Information is solved by the
construction of the post-auction contracts. Specifi-
cally the Market signs the second price bid itself and
the winner is not informed of the source of the second
highest bid, but can trust the value as signed by the
Market to ensure that it is not being cheated.

To solve the problems of Lying in non-
Private Value Auctions and Lower Revenue in non-
Private Value Auctions, contracts are strictly non-
transferable. This property is enforced by the Mar-
ketplace mechanism. A contract and therefore the
potentially resalable lot does not exist until the appli-
cation redeems the contract at the successful Depot.
As the contract (before redemption) is not binding on
the application, and the Depot is not aware if it is the
winner before the contract is presented, there is noth-
ing to on-sell. At the time the contract is redeemed,
the resources must be made immediately available to
the application. It follows, that since contracts are
non-transferable, all auctions in the Marketplace are
private value and neither of these two limitations ap-
ply. Depots acting cooperatively within a federation
may still balance their load by utilising the same al-
gorithm that airlines use - offering financial incen-
tives for a contract (ticket) holder to move to another
prearranged Depot (flight) and redeem its contract
(travel) there.

The provision of entirety bidding and the mecha-
nisms supporting it removes the possibility of coun-
terspeculation and lying when Depots are bidding on
related lots. This resolves the issue of Sub-optimal
Allocation and Lying in Interrelated Auctions.

Uncertainty of Valuation arises from the potential
complexity computing a bidder’s true valuation. This
is minimised by two factors in the NOMAD context.
Firstly, the resource description graph is a directed
acyclic graph and therefore finite, and secondly the
language of edge expressions is designed for ease of

computation. Even further, only risk averse bidders
are affected by local uncertainty, and as risk is pro-
portional to stake, in the low value NOMAD auc-
tions there are likely to be few risk averse bidders.
However, even assuming there is local uncertainty,
in (Bubendorfer 2001) we show that the necessary
conditions underlying the proof in (Sandholm 1996a)
are equivalent to bidder collusion and this limitation
is therefore infeasible under the negotiation condi-
tions maintained within the NOMAD Marketplace.

3 Implementation

A NOMAD prototype has been implemented in Java
on top of Flexinet (Hayton & the Advanced Net-
worked Systems Architecture Team 1999). The cur-
rent version features implementations of all of the sys-
tem components described in this paper. The design
of the system is not bound to Java or Flexinet, and
alternative platforms and language support are being
investigated.

3.1 Experimental Performance

The goal of the experiments presented in this section
is to demonstrate the impact of valuation policies on
the allocation of resources. The experiments were car-
ried out on a grid of identical machines, each hosting a
single Depot. To demonstrate the influence of policy
on distribution, we formed the Depot bid valuations
on the arbitrary basis of their (x, y) position on the
grid, plus the current load n. The inclusion of the
current load prevents any single Depot from winning
all auctions.

The first experiment uses a Depot valuation policy
of (x + y) + n. The results in Table 1 show the test
applications clustering on the Depots with low grid
references and therefore correspondingly lower bids8.
The result matrix in Table 1 shows the average load at
each grid position, and the 95% confidence intervals.

Table 2 shows the effect of changing the weighting
of one of the grid components, with the Depot val-
uation policy (2x + y) + n. The resulting data and
graph illustrates the effect nicely with a significant
preference exhibited for one side of the grid.

Depot policy is not the only influence on resource
allocation, as the application is able to express con-
straints and preferences via its RDG. In the following
experiment the test applications express a preference
to be near a specific Depot. Depots use a uniform9

valuation policy based on the load n and the Euclid-
ian distance from the current Depot (x′, y′) to the
preferred Depot (x, y):

n+
√

(x− x′)2 + (y − y′)2

Results are given Table 3 for a five by five grid
with the preferred Depot in the centre. The clear
peak in the middle is confirmation that the applica-
tion preferences encoded in the resource description
graph directly influence distribution.

3.2 Mobile Application Prototypes

(Liu & Liu 2000) describes a prototype distributed
meeting scheduler implemented as a mobile user
agent. The agent travels amongst multiple machines,
following a schedule, and querying each machine to
obtain its owner’s diary. NOMAD supports such ap-
plications, as the ownership of a machine is a con-
straint that can be specified during negotiation. A

8The graph has been rotated so that Depot (3, 3) is at the front.
9All Depots have the same valuation policy, unlike the earlier

non-uniform policies.
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Table 3: Application policy influences distribution.



similar application was implemented in NOMAD, al-
though in our case it was a test of the technology
rather than a useful application in its own right. The
application would negotiate for resources on two De-
pots, and then migrate continuously between them,
carrying a small payload of data each time.

This and the test applications used in the experi-
ments from section 3.1 are not useful applications in
their own right. We have also constructed a num-
ber of test applications to explore the capabilities of
the NOMAD architecture. One of these applications
was a whiteboard service, of which we constructed
two versions to explore the flexibility of NOMAD
with both client-server and distributed programming
paradigms. The distributed version of the service
would respond to new clients by creating a white-
board service object near the client. From this point
the client would interact with the local service object.
Any updates were then coordinated amongst the peer
whiteboard service objects. Both versions were con-
structed in less than half a day.

Of the two versions, the distributed whiteboard is
the most instructive. Negotiation with a well known
contact agent resulted in a new service object being
created close to the location of the client. These local
service agents act in concert with other client’s white-
board service agents to keep the client views weakly
consistent10. The contact agent only performed du-
ties involving the initial creation of the service agents
for clients. This prototype could be easily extended to
provide additional functionality — in the case of phys-
ically mobile clients, each service agent could shadow
the movement of their client throughout the network.

These prototype applications demonstrate the
strength of the NOMAD platform in the creation
of distributed software. In particular the ease with
which both paradigms were implemented, demon-
strating the effectiveness of the supporting NOMAD
framework.

4 Summary

This paper presents an overview of the design of the
NOMAD Marketplace. The Marketplace utilises auc-
tions to perform distributed resource allocation on the
basis of multiple resource requirements. The combi-
nation of auction and catalogue distribution enable
the discovery of computational and other types of re-
source by independent mobile entities within a dy-
namic distributed environment.

This paper outlines how the limitations of the
Vickrey auction are satisfied within the design of the
NOMAD Marketplace. The Marketplace moves the
workload from a single central auction server and dis-
tributes it widely to the individual Depots.

The combination in NOMAD of Vickrey auction,
resource description graph, Market mechanisms, and
catalogue distribution, provides unique and innova-
tive solution to the problem of global distributed re-
source allocation and discovery.
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