Patterns for Essential Use Case Bodies

Robert Biddle, James Noble
Computer Science,
Victoria University of Wellington, New Zealand.
{robert,kjx}@mcs.vuw.ac.nz
Ewan Tempero
Computer Science,
The University of Auckland, New Zealand.
ewan@cs.auckland.ac.nz

Abstract

Essential use cases are an effective way to analyse the usability requirements for a system under development.
Essential use cases are quite stylised — writing good essential use cases is somewhat of a secret art. This paper
contains patterns that describe how to write the bodies of essential use cases. Readers of this paper will be able to
write good essential use cases quickly, making it easier to specify usable systems.

Introduction

Systems need to be usable. If people can’t use the systems we design, they will avoid, circumvent, disparage,
and sabotage them.

In the good old days of computing, people were so pathetically thankful to have any kind of computer
system at all that they were quite happy to wait in long queues, pick up printouts several days after their jobs
were submitted, type programs on chicklet keyboards, and do all sorts of stupid stuff. Unfortunately for us
development types, these days are over. In an increasingly large number of systems, the usability of a system
is paramount: If you build it, they won’t come if they can’t use it.

The discipline of Usage-Centred Design incorporates usability into software engineering development pro-
cesses. Described in Constantine & Lockwood’s Software for Use (Constantine & Lockwood 1999), Usage
Centred Design is based on essential use cases, and draws from ideas from object-oriented methodology (Ja-
cobson, Christerson, Jonsson & Overgaard 1992, Wirfs-Brock, Wilkerson & Wiener 1990, Cockburn 2001, Beck
1999) as well as task analysis and prototyping techniques common to human-computer interaction designers.
A key feature of Usage-Centred Design is that the design practitioner acts as an advocate for users, ensuring
concern for usability is maintained throughout the development cycle.

Essential use cases are quite stylised, and writing good essential use cases is somewhat of a secret art. This
paper extends our earlier collection, Patterns for Essential Use Cases (Biddle, Noble & Tempero 2001) to focus
on the mechanics of writing the bodies of individual use cases and the relationships between them — Figure 1
summarises the problems dealt with by this collection of patterns, and the solutions they provide. Larger-scale
process issues such as what essential use cases actually are, why you might want to find them, and how to test
them are covered in the earlier collection.

The content of these patterns is not novel, rather, this paper is an attempt to cast some of the techniques
of Usage-Centred Design (drawn particularly from Software for Use) into a pattern form. We hope these
patterns will complement the large “literature” about use cases frantically being published by many fine
international publishers (Bramble, Cockburn, Pols & Adolph 2002, Armour & Miller 2001, Rosenberg & Scott
1999). Essential use cases are designed to be short, simple, quick, and to the point: we hope these patterns
share these virtues.

Background

Jacobson et al. defines a use case in their 1992 book as “a behaviorally related sequence of transactions in a
dialogue with the system”(Jacobson et al. 1992). A more recent definition for the Rational Unified Process
(RUP) and the Unified Modelling Language (UML) shows little real change, saying a use case is “a description
of a set or sequence of actions, including variants, that a system performs that yields an observable result of
value to a particular actor” (Jacobson, Booch & Rumbaugh 1999). The general idea of a use case is to represent
intended sequences of interaction between a system (even if not yet implemented) and the world outside that
system.

Essential use cases were designed to avoid built-in assumptions, often hidden or implicit, about the form of
the user interface expected by the RUP style use cases. The term “essential” refers to essential models that
“are intended to capture the essence of problems through technology-free, idealized, and abstract descriptions”.
Essential use cases are documented in a format representing a dialogue between the user and the system. This
resembles a two-column format used by Wirfs-Brock (Wirfs-Brock 1993).

Copyright (©2002, Australian Computer Society, Inc. This paper appeared at the Third Asian Pacific Conference on Pattern
Languages of Programs (KoalaPLoP 2002), Melbourne, Australia. Conferences in Research and Practice in Information Technology,
Vol. 13. James Noble and Paul Taylor, Eds. Reproduction for academic, not-for profit purposes permitted provided this text is
included.



Pattern Problem Solution
Use Case Dialog Patterns
How can the s g, h sy o do | T 2 e e VEe T wer e
1.1 Modify State Use Case something that involves changing the v q i

state the system maintains?

the system has the responsibility for
performing the command.

1.2 Query State Use Case

How can the user find something they
need to know from the system?

Write a use case where the actor de-
scribes the information they require,
and then the system presents that in-
formation

1.3 Status Use Case

How can you let the user know a small
amount of crucial information?

Write a use case where the system
presents that information.

1.4 Alarm Use Case

How can the system inform the user
about something?

Write a use case that begins with
the system taking the responsibility to
warn the user.

Use Case Steps

2.1 Prompting Step

How can you make sure the user has
the information needed to make a de-
cision?

Give the system the responsibility of
offering that information before the
user makes the decision.

2.2 Confirming Step

How should you ensure that correct
information is communicated between
the actor and the system?

Require the actor or system to confirm
the information.

Organising Use Cases

3.1 Extension

How do you model errors and excep-
tions in use cases?

Use extending use cases to record er-
rors and exceptions.

3.2 Inclusion

How do remove commonality between
use cases?

Make a new use case containing the
common steps, and include it in the
use cases that have the common steps.

3.3 Specialisation

How can you handle different kinds of
interactions that fulfill broadly similar
goals?

Make more general and more specific
use cases to capture the precise inter-
actions.

3.4 Conditions

How do you model use cases than
can only operate under certain circum-
stances?

Use pre- and post-conditions to control
when use-cases are permissible.

gettingCash (conventional)

Figure 1: Summary of the Patterns

gettingCash (essential)

User Action

insert card

enter PIN

press key

press key

enter amount

press key

take card

take cash

Figure 2: On the left, a conventional use case for getting cash from an automatic teller system. On the right,

System Response User Intention | System Responsibility
identify self

read magnetic stripe verify identity

request PIN offer choices
choose

verify PIN dispense cash

display transaction menu take cash

display account menu

prompt for amount

display amount

return card

dispense cash

an essential use case for the same interaction. (From Constantine and Lockwood.)




Constantine and Lockwood give the examples shown in figure 2. The narrative in the use case on the left
is for a conventional use case, described in terms of actions and responses. The dialogue in the use case on
the right is for an essential use case, described in terms of intentions and responsibilities. The steps of the
essential use case are more abstract, and permit a variety of concrete implementations. It is still easy to follow
the dialogue, however, and the essential use case is shorter.

Note that essential use cases do not have an explicit step to choose the execution of this use cases as against
any other use case. Rather, essential use cases are written under the assumption that the user interface design
has already indicated that this use case should be carried out: how that choice is made is purely an issue for
the user interface. In some cases, an explicit interface interface element may be required (a voice menu entry
or GUI command button), but in other designs may determine this implicitly (say by dragging the mouse).

Usability

We often define usability as “the fit between the person doing the work, the tasks required by the work, and
the software to support the person doing the task”. In terms of our patterns, the key force they address
is usability, but usability has many facets — learnability, efficiency (that important tasks can be performed
quickly), memorability, low error rates, likeability (that the user interface looks cool), and soon on (Nielsen
1993). Many of these patterns directly address some or all of these facets of usability — subforces — in the
solutions and techniques that they provide.

More importantly, though, these patterns support the key dynamic of Usage-Centered Design: “abstraction
focused interaction”. Essential use cases are essential precisely because they focus only on the essentials of the
interactions required for people to complete their work with the software. They elide any user-interface details,
as described above, however they also elide any information about the skill of the user, the interaction media,
nonfunctional constraints on their realisation, and so on. Omitting these crucial details in the production of
use cases means that the use cases should focus on solely on the interaction itself. The point, of course, is
that use cases written in this way provide a sound foundation upon which interface design can build, explicitly
addressing all these issues to produce highly usable computer systems. While aiming at usability, then, these
patterns are primarily about analysing interaction: many other pattern collections describe techniques for
designing interfaces following an analysis (Borchers 2001, Tidwell 2002, Erickson 2002, Bradac & Fletcher
1988, Harrison, Foote & Rohnert 2000).

Example

The patterns in this paper use examples drawn from a simple booking system for an arts centre. The initial
brief for this system is as follows:

Design a program for a booking office of an arts centre. There are several theatres, and people may
reserve seats at any theatre for any future event. People need to be able to discuss seat availability,
where seats are located, and how much they cost. When people make a choice, the program should
print the price, record the selection, and print out a ticket.

Typically, we would expect to have much more information (either more text, or at least the opportunity to
talk to the project sponsor). We will introduce more details as the example progresses.

Form

The patterns are written in modified electric Portland form. Each begins with a question (in italics) describing
a problem, followed by a bullet list of forces and discussion of the problems the pattern addresses. A boldface
“Therefore:” introduces the solution (also italicised) followed by the consequences of using the pattern (the
positive benefits first, then the negative liabilities), an example of its use, and some related patterns.

Known Uses

It is standard to list known uses for each of the patterns. In the case of our patterns, the known uses are all
much the same so we have elected to discuss them here.

The patterns we describe have shown up in a number of projects we have been involved in, including Siemens
StepT7Lite project (for a programming environment for programming logic controllers), projects for managing
telecommunications plant and management of service requests, and industry and academic courses and case
studies.




1 Use Case Dialog Patterns

Once you start writing use cases you’ll realise that lots of kind of use cases come up over and over again —
that there are actually patterns in the dialogue bodies of essential use case themselves. This section lists a
number of these patterns. In the interests of space, we give only the bare bones of each pattern.

1.1 Modify State Use Case

How can the user get the system to do something that involves changing the state the system maintains?

e Sometimes the user needs to get the system to do something.
e That something requires the system to change its state.
e Exactly what changes take place depends on information that the user has.

Therefore: Write a use case where the user provides information on the request, and the system has the
responsibility for changing the state.

This is the simplest and most common kind of use case: the user’s commands are listed in the left-hand
column, and the system’s responsibility in the right-hand column. Often this kind of use case can require just
one user intention step, and one system responsibility step, however more complex interactions, requiring more
information can have many steps for both the user and the system.

Example

An important use case for the arts centre system is the provide tickets for seats for a performance.

Purchase Tickets

User Intention System Responsibility

Choose performance and seats

Record specified seats at specified
performance as reserved

Print tickets

Consequences

+ The system executes the user’s command.

Discussion

Typically use cases should only consider the “happy path” — that is, you should assume the use case is only
ever started when it makes sense, and that the use case always executes correctly (this term is due to Rebecca
Wirfs-Brock (Wirfs-Brock 1993)). You should use Extension (3.1) to describe what happens when things go
wrong, and Conditions (3.4) to describe when things shouldn’t happen.

Related Patterns

If the command is important, you may need to include a Confirming Step (2.2):

Print performance schedule

User Intention System Responsibility

Chose start and end dates

Print schedule of performances
from start to end date

Confirm successful printout

This allows the user to know the command has been completed, even if it is not immediately obvious.




1.2 Query State Use Case

How can the user find something they need to know from the system?

Sometimes the system knows things that users don’t know, and users need to find this out.
The information may be simple, but there may be large amounts of information
Some information may be more important than other information

Users have their own idiosyncratic ways of thinking about the world, which may not match the way you
(or your systems analysts and designers) think about it.

Therefore: Write a use case where the actor describes the information they require, and then the system
presents that information.

Example

Get Seat Prices

User Intention System Responsibility

Choose performance

Show prices for chosen perfor-
mance

The user chooses the theatre performance they wish to view, then the system will provide seat prices for
that performance. There can be easily up to ten price classes for any performance, so all the prices cannot be
displayed for all the performances on a single screen.

Consequences

+ The user can get just the information that they need.
+ If the information is large or complex, they can specify just that information they need to see.
- The user still has to describe what they need accurately enough for the system to know what is wanted.

Related Patterns

The use case can also involve a Prompting Step (2.1). If there a small amount of important information
needs to be available constantly, consider a Status Use Case (1.3).

1.3 Status Use Case

How can you let the user know a small amount of cricual information?

e Some information the system has is more important than other information.
e Some information may change frequently, or asynchronously with respect to the user.

¢ Some information may be important to the continued use of the system — for example, some other use
cases may (or may not) be permitted only in certainly system states.

Therefore: Write a use case where the system presents that information.

Example

Show Next Performances

User Intention ‘ System Responsibility

Continuously show the remaining
performances today

This is a minimal use case: it simply provides (generally a small amount of) important information to the
user. In a realisation of the system with a graphical user interface, this information is typically displayed in a
status bar or on a window background.

Consequences

+ The status information is constantly available.
- The status monitors constantly take up display real estate.
- Changes to the status information can distract the user from more important tasks.



Related Patterns

If instantaneous changes to the information is more important the value of the information (or some values are
more important than others) then consider an Alarm Use Case (1.4) as an alternative.
To report large amounts of information, consider the Query State Use Case (1.2) as an alternative.

1.4 Alarm Use Case

How can the system inform the user about something?

e The system needs to draw the actor’s attention to a change in its internal state.
e The system is about to break a business rule.
e The notification should be asynchronous, that is, actors should not have to trigger the use case.

Therefore: Write a use case that begins with the system taking the responsibility to warn the user.

Ezxzample

Warn of start of performance

User Intention System Responsibility

Signal “performance about to
start”

Show name, theatre, and times of
performance

This use case starts in the right-hand-side column, with a system responsibility (whereas use cases generally
being with a left-hand-side user intention). That is, it’s the systems job to start the use case, not the user’s.
Consequences

+ The system takes responsibility for initiating the use case.

+ The system can pass information about the alarm to the actor.

+ The actor does not have to interrupt their current task immediately to respond to the alarm.
- The actor can ignore the alarm.

- The actor no longer initiates action, and so loses control over the system.

Alarm use cases can often indicate (potential) violations of business rules — say that a performance should
not continue if less than 15% of seats have been sold by the time it starts.

Discussion

If the alarm is important, you may need to include a Confirming Step (2.2):

Warn theatre performance undersold

User Intention System Responsibility

Signal “performance undersold”

Show name, theatre, time or per-
formance, and percentage of seats
sold

Confirm warning

This variant has the following different consequences to the main pattern:

+ The actor cannot ignore the alarm.
- The actor cannot continue with their current task: they must interrupt it to confirm the alarm.




2 Use Cases Steps

As well as patterns of whole use cases, there are also patterns within the bodies of individual use cases. This
section describes the two main patterns we have seen within use cases — prompting for a new interaction and
confirming a previous interaction.

2.1 Prompting Step

How can you make sure the user has the information needed to make a decision?

e Sometimes users need to make decisions based on information that is held by the system.
e This information may or may not be known by users.

e It’s easier for people to choose between several options in front of them than it is to remember what
options are possible.

Therefore: Give the system the responsibility of offering that information before the user makes the decision.
Whenever your use cases require input from the user — consider if the system knows the most likely or most
common inputs. If so, prompt the users with these common inputs before they make their decision.

Example
Reserve seats for performance
User Intention System Responsibility
Offer unreserved seats
Choose seats
Record seats reserved
Consequences

+ Users have the information they need before they make the decisions.

+ Users are more likely to make correct decisions, decreasing the error rate.

+ Because information is presented to them, users do not need to remember it, increasing learnability.
- The information you supply could bias the user’s choices.

- Prompts can require screen real estate (or other interface resources), obscuring other information that is
actually more important to users.

2.2 Confirming Step

How should you ensure that correct information is communicated between the actor and the system?

e Some information is more important than other information.

¢ When important information is communicated, it can be very important to ensure it is communicated
accurately.

e Similarly, some commands are sufficiently important (or dangerous) that they should only be performed
correctly.

Therefore: Require the actor or system to confirm the information.



Ezxzample

Pay for reservation

User Intention System Responsibility

Present reservation details
Offer payment methods
Choose payment method
Supply payment details
Confirm method and details

Accept payment

Confirm booking

Consequences

+ Users have an opportunity to confirm their data or actions have been correctly interpreted by the system
(and vice versa).

- Confirmations can require screen real estate (or other interface resources), obscuring other information
that is actually more important to users.

- Confirmations can distract users from more important tasks.

- Familiarity breeds contempt: confirmations can easily become routine. If users consider them part of
their everyday operation of the system (to book a ticket, click “book”, “confirm”, “confirm”) then every
command will be confirmed instinctively, even if erroneous.

Discussion

The insertion of a confirming step (either as the user’s intention or the system’s responsibility) does not
necessarily require the traditional dialog-box style implementation. The problems with such confirmations are
well known. Tog has described how wait timeouts can be used to confirm actions, rather than dialog boxes:
in these cases, the user does nothing to confirm a correct operation but has a few seconds grace to abort an
incorrect operation (Tognazzini 1998).




3 Organising Use Cases

In this section, we briefly list a number of patterns that will describe how to model relationships between use
cases, based on the UML and Usage-Centered Design relationships.

3.1 Extension

How do you model errors and exceptions in use cases?

¢ You write essential use cases to described the “happy path” — that is describing the correct behaviour
of the system.

¢ In the real world things go wrong: you have to deal with the “unhappy path” somehow.
e Every use case makes the description of the system more complex (and probably the system as a whole

more complex t00).
Therefore: Use extending use cases to record errors and exceptions.

One use case (called the extending case or extension) can extend another use case (called the base case).
This means that whenever the base case is enacted, execution can switch to the extension case instead. If the
extension completes successfully, the base case can continue; or the extension can terminate the execution of
the base case.

Example

Consider again the “Pay for reservation” use case (Section 2.2).

Pay for reservation

User Intention System Responsibility

Present reservation details
Offer payment methods
Choose payment method
Supply payment details
Confirm method and details

Validate payment

Confirm booking

This is written following the happy path: it assumes that the payment is successful. We could write an
extending use case to describe what happens when the payment is declined (when the Validate payment step
fails).

Payment declined
extends: Pay for reservation

User Intention System Responsibility

Show payment failure

Offer alternative payment methods
Choose payment method
Supply payment details

Confirm method and details

Accept payment

In this case, the user is offered a choice of an alternative payment method; if this fails in turn, then the
whole Pay for reservation use case has failed.

Consequences

+ Extensions allow you to describe errors or exceptions.
+ Extensions ensure that these descriptions do not clutter the body of the happy path use case.

- When designing or implementing a use case, you have find (and then consider) all the use cases that
extend it.

- You can easily overuse extensions. You should assume interface and software designers will make common-
sense decisions in situations in common-sense situations, and concentrate on describing the important,
strange, interesting, or weird.



Discussion

The need for an extension use case is often indicated by phrases in a step that indicate that the step will not
always complete successfully, such as “check” or “validate”.

Sometimes you need to have a use case that extends every other use case: you can write this as “extends
x99

3.2 Inclusion

How do remove commonality between use cases?

e Many use cases can contain common steps.
e Repeating these common steps is not only boring: it also creates consistency problems.

Therefore: Make o new use case containing the common steps, and include it in the use cases that have the
common steps.

One use case (called the included case or inclusion) can be included in another use case (called the base
case). In the body of the base use case, you can write “> anotherUseCase” to include the steps of the included
case — this can appear on either column of the base case. Whenever that step of the base case is enacted, you
execute the included use case; when the included case is complete, you continue with the next step of the base
use case.

Example
Print tickets
User Intention System Responsibility
Print ticket for specified seats
Record tickets printed
Update ticketed printed count
Purchase tickets
User Intention System Responsibility
Specify performance and seats
>Print Tickets
Issue tickets for reserved seats
User Intention System Responsibility
Identify reserved seats
>Print Tickets
Consequences

+ Common steps are localised in a single use case.
+/- Changing an included use case changes all the use cases into which it is included.
- You have to understand all the subsidiary use cases to understand a use case that includes them.

- If you’re not careful, you can end up doing procedural design with use cases as procedures and inclusions
as subroutine calls!




3.3 Specialisation

How can you handle different kinds of interactions that fulfil broadly similar goals?

e Sometimes there are many similar tasks users need to do.

e Some ways of using one use case may be more common or more important than other ways of using the
same case.

e User interfaces need to recognise commonality between similar use cases to provide consistent designs;
however they also need to recognise frequent use cases to provide efficient designs.

Therefore: Make more general and more specific use cases to capture the precise interactions users will have
with the system.

One use case (called the special case, subcase, or specialisation) can specialise another use case (called the
base case, general case, or supercase).

Unlike extends or uses, this relationship puts an informal requirement on the bodies of the base and special
cases: the special case should be a “special version of” the base case. The relationship also means that whenever
the supercase may be enacted, the subcase may be enacted instead.

Example

Print performance schedule

User Intention System Responsibility

Chose start and end dates
Print schedule of performances

from start to end date

A particularly common version of this use case will be to print the schedule for just today. Since it is
probably worth optimising the user interface design and/or the software design to support this particular
version, we can make a specialisation of the base case to handle this situation.

Print today’s performance schedule
specialises: Print performance schedule

User Intention System Responsibility

Print schedule of performances for
today, and for the next day with
performances

Consequences

+ You can group your use cases into categories or hierarchies.
+ You can identify important special versions of more general use cases.
- Specialisations can make use case models more complex.

Related Patterns

If you seem to have a choice between Inclusion (3.2) and specialisation, choose inclusion.

3.4 Conditions

How do you model use cases than can only operate under certain circumstances?

e Some use cases can only be enacted at certain times or in certain situations.
e Some use cases can only be enacted in under certainly conditions or states of the system or the world.
e Some use cases can only be enacted after other use cases have been enacted.

Therefore: Use pre- and post-conditions to control when use-cases are permissible.

A precondition is something that must be true before a use case can be enacted; a postcondition is something
which is true afterward. If a use case has a precondition, that condition can be assumed to be true before the
use case is executed; if it has a postcondition, that condition can be assumed to be true afterward.



Example
The theatre booking system could require users to log in before they can use the system. We can model this
with a condition called “User is logged in”.

Login

User Intention System Responsibility

Precondition: not the current user is logged in
Identify self
Verify identity

Postcondition: the current user is logged in
Then, every use case could require the user to be logged in:

Print performance schedule

User Intention System Responsibility

Precondition: the current user is logged in

Chose start and end dates
Print schedule of performances
from start to end date

Finally, users should log out at the end of the session.

Logout
User Intention ‘ System Responsibility

Precondition: the current user is logged in
‘ Confirm logout

Postcondition: not the current user is logged in
Ezxtra for experts: the system could log a user out if they have been idle for say 30 minutes:

Timeout
extends: *

User Intention System Responsibility

Precondition: the current user is logged in

Wait until user has been idle 30
minutes

> Logout

We’ve described this here using extensions, inclusions, and conditions. This is really a cautionary example:
you should never need anything so baroque in practice.

Consequences

+ Conditions can make it clearer when particular use cases can execute.

- Conditions can make use case models much more complex. You rarely need more than two conditions in
any application.

— In particular, resist the temptation to construct complex application-level state machines in use case
conditions.

Discussion

There are several useful kinds of conditions.

e the value of an imaginary, application-global boolean variable (e.g. “the current user is logged in”,
“networkIsConnected”),

e the fact that some other use case has been executed in this session (e.g. “User login”),
e a description of a condition in the system or the real world (e.g., “Identity has been verified”), or
¢ the negation of some other condition.



Note that the login example could be simplified by using an implicit “Login” use case name condition instead
of a special “the current user is logged in” condition. Doing it implicitly is a little more terse but means exactly
the same as the explicit conditions in the example above. The only differences is that the Login use case would
not need to establish a postcondition, because the “Login” condition is established automatically when its
homonomous use case completes successfully.

Note also that including “Login” in another use case is different from having “the current user is logged in”
as a pre-condition. The latter only requires that the user be logged in in order to carry out the use case. The
former requires that the user logs in on every enactment of that use case (“Authenticate” would be a better
name in that case).

Pre- and post-conditions should match up in a complete model: that is, for any condition, there should
be at least one use case that establishes it as a postcondition, at least one use case that depends upon it
as a precs)ndition, and at least one use case that cancels it (that is, its postcondition is the negation of the
condition).

Related Patterns

If you seem to have a choice between Extension (3.1) and conditions, choose extensions.




4 Conclusions

In this paper, we have presented a number of patterns for writing essential use cases for a system. Many of
these patterns may also be applicable to conventional use cases, although we believe the patterns are more
evident in the essential form of the use case. We expect to improve upon the patterns we have discussed here,
and we are investigating other possible patterns.

Acknowledgements

Many thanks to the members of the KoalaPLoP writers’ workshop — Pronab Ganguly, Pradip Sarkar, Marie-
Christine Fauvet, and Brian Foote.

References

Armour, F. & Miller, G. (2001), Advanced Use Case Modeling: Software Systems, Volume 1, Addison-Wesley.
Beck, K. (1999), Extreme Programming Explained: Embrace Change, Addison-Wesley.

Biddle, R., Noble, J. & Tempero, E. (2001), Patterns for essential use cases, in J. Noble & B. Wallis, eds,
‘KoalaPLoP 2001: The Second Asian-Pacific Conference of Pattern Languages of Program Design’, Mel-
bourne, Australia.

Borchers, J. (2001), A Pattern Approach to Interaction Design, John Wiley & Sons, Ltd.

Bradac, M. & Fletcher, B. (1988), A pattern language for developing form style windows, in R. Martin, D. Riehle
& F. Buschmann, eds, ‘Pattern Languages of Program Design’, Vol. 3, Addison-Wesley, pp. 347-358.

Bramble, P., Cockburn, A., Pols, A. & Adolph, S. (2002), Patterns for Effective Use Cases, Addison-Wesley.
Cockburn, A. (2001), Writing effective use cases, Addison-Wesley.

Constantine, L. L. & Lockwood, L. A. D. (1999), Software for Use: A Practical Guide to the Models and
Methods of Usage Centered Design, Addison-Wesley.

Erickson, T. (2002), ‘Interaction design patterns page’,
http://www.pliant.org/personal/Tom Erickson/InteractionPatterns.html.

Harrison, N., Foote, B. & Rohnert, H., eds (2000), Pattern Languages of Program Design, Vol. 4, Addison-
Wesley, chapter Part 7: Patterns of Human-Computer Interaction, pp. 445-593.

Jacobson, 1., Booch, G. & Rumbaugh, J. (1999), The Unified Software Development Process, Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P. & Overgaard, G. (1992), Object-Oriented Software Engineering,
Addison-Wesley.

Nielsen, J. (1993), Usability Engineering, Academic Press.

Rosenberg, D. & Scott, K. (1999), Use case driven object modeling with UML: A practical approach, Addison-
Wesley.

Tidwell, J. (2002), ‘Ui patterns and techniques’, http://time-tripper.com/uipatterns/.

Tognazzini, B. (1998), ‘The polite interface or guidelines for dialogs’, “Ask Tog”
http://www.asktog.com/columns/012dialogGuidelines.html.

Wirfs-Brock, R. J. (1993), ‘Designing scenarios: Making the case for a use case framework’, The Smalltalk
Report 3(3).

Wirfs-Brock, R., Wilkerson, B. & Wiener, L. (1990), Designing Object Oriented Software, Prentice Hall.



