Natural Creation
A Composite Pattern For Creating Objects

James Noble
Microsoft Research Institute,
Macquarie University, Sydney.

kjx@Qmri.mqg.edu.au

Abstract

Objects must be created throughout object-oriented programs. Programming languages
provide special facilities to create and initialise objects, and creational design patterns allow
these facilities to be used more flexibly. The Natural Creation pattern describes how these
facilities can be used to create objects in ways that model the natural semantics of the
program’s underlying domain. By applying the Natural Creation pattern, programs and
designs can be made more simple, more general, and easier to understand.

Intent

Create objects following the patterns of interaction of the existing objects in the program.
Natural Creation removes the need for clients to call special classes, constructors, prototypes
or factories to create objects, by assigning the responsibility for creation to related objects
in the domain.

Motivation

Object-oriented programs are communities of communicating objects. The classes of
the interacting objects are almost always less important to a program than the values
of the object’s attributes, and the structure of their collaborations. When objects are
created, they must be initialised carefully, so that the collaboration structure is maintained.
Given a collection of objects from the program, how can you create another object which
collaborates correctly?

For example, imagine an agricultural information (AI) system to help farmers breed
livestock, specifically sheep. To model the breeding process and estimate the characteristics
of livestock it will produce, Lamb objects must be created which collaborate with the Ewe
and Ram objects that (in the model at least) have created them.

The most common way to solve this problem is to use the primitive object creation
mechanisms provided by object—oriented programming languages, such as a call to a con-
structor or a class method attached to the Lamb class (for example, in Java, new Lamb()
or Smalltalk Lamb new). Primitive creation methods can certainly create objects, but will
not initialise those objects correctly without extra work — in this case, the Lamb must

be initialised with information from its ancestor sheep. Most languages allow construction
operations to be specialised, so that the new object can be correctly initialised when it is re-
turned, but this would still require the programmer to pass all the required information into
the specialised constructor or class method (for example, in Java new Lamb(aEwe,aRam) or
Smalltalk Lamb descendedFrom: aEwe and: aRam). Language-level construction also
requires the program to appeal to concepts which are not directly part of the program’s
domain — in this case the abstract Lamb class.

The Natural Creation pattern places the responsibility for creating new objects onto the
existing objects in the program, and requires these objects to collaborate to create the new
object. In the AI example, two objects in the program are already involved in creating a
new lamb — a ewe and a ram, so these objects can collaborate directly, calling language
level creation operations themselves as necessary, say ewe.breedFrom(ram) in Java, or ewe
breedFrom: ram in Smalltalk (see Figure 1).

ram ewe lamb

breedFrom(ram) -

Figure 1. Creating a new Lamb

Of course, “there ain’t no such thing as a free lunch” [12, p.405]. The object must be
created somehow — typically by using another creational pattern. The point of the Natural
Creation pattern is to shield clients of the creation operation from the details (including
any other patterns) used in its implementation.

For this reason, we treat the Natural Creation pattern is a composite pattern [13], in
that it describes how one or more lower level patterns can be used to provide a solution to
a more complex, higher level, or larger scale design problem than the lower level patterns
address directly. We have expressed this composite pattern using the “GOF” pattern form
(first used by Design Patterns [5]), with an expanded Related Patterns section to describe
in detail how the other creational patterns are used to implement natural creation.

Applicability

Use the Natural Creation pattern when you want to create an object, and
e the details of the object to be created depend upon the existing configuration of
objects.
e the object to be created will collaborate closely with the existing objects.
e you don’t want to expose special “creation” objects — such as classes, prototypes, or

factories.

Use Natural Creation when it makes sense within the application domain or simplifies
the overall design — if it results in fewer objects or simpler interfaces.

Structure

Father Mother
operation() request(Father)
|
|
|
|
|
|
|
_ v
Collaborateswith ———= Child
Crestes ~ ------- = constructor(Mother,Father)

Figure 2. Natural Creation Structure

Participants

Father (Ram)
e Requests that Mother creates a new Child object.
Mother (Ewe)
e Defines an interface by which a child can be created.
e Selects class of child object to create.
e Marshals initialisation data for child object constructor.
e May collaborate with other objects as necessary to gather initialisation data.
e Takes responsibility for actually creating the child.
Child (Lamb)
e The new object that is created and initialised

e Initialises its internal state based on arguments passed from Mother.

Collaborations

e Father requests object creation

e Mother determines the class of the Child to create

e Mother creates the Child, collecting and passing initialisation arguments.
e Child initialises itself.

father mother child

request(father)

-
>

constructor(mother father)___ ,g

Figure 3. Natural Creation Collaborations

Consequences

The Natural Creation pattern has the following benefits:

1. Creation is Abstract. The object creation process is abstracted away from the client
code. No special creational objects (like classes, prototypes, factories, or builders)
are visible to client programmers — they simply call the natural creation interface,
typically just a single method.

2. Marshalling is handled separately. The Natural Creation pattern organises creation
into three separate stages. First, it gathers the necessary information about the new
object to be created. Second, the new object is created — this stage may be trivial
if a language level creation operation is used, or very complex if a pattern such as
Builder [5] or Product Trader [14] is used. The information gathered in the first stage
may be used to provide instructions to the Builder or a specification for a Product
Trader. Third, the new object is initialised using the information gathered at the first
stage. This separation allows initialisation arguments to be gathered and marshaled
independently from the creation and initialisation of the new object.

3. Fidelity to the Domain Model. A domain model should describe the important objects
in a program’s domain. A good program design should try to represent those domain
objects as simply and clearly as possible [8]. Domain models should not include the
complex creational machinery required by the Builder or Abstract Factory patterns,
or even language-level constructs like classes or prototypes'. By abstracting away
from these details, a program will better reflect its domain model.

4. Simpler Interfaces. The interface provided by the natural creation pattern can be sim-
pler than the interfaces provided by language features or creational patterns. This is
for two reasons: first, the natural creation pattern can be tailored to use only the in-
formation required when creating a given kind of object from a particular context, and
second, this information can be retrieved from collaborating objects in the program.

5. Coupling is Reduced. Because the details of the creation process have been abstracted
out from client code, coupling between the creating client’s code and the actual code
embodying the creation is reduced. This has the advantage that the underlying
creation mechanism or design pattern can be redesigned without affecting the interface
presented to the client, and consequently, the client code.

!Pedantically, an object representing “the class of all Ewes” would be a meta-level object in a domain-
specific metamodel, while an individual, real Ewe is an actual object in a domain model.

The Natural Creation pattern also has the following liabilities:

1. Natural Creation is Implicit. Natural Creation removes direct calls to language-level
creation operations from client code. As a result, creation operations will be harder
to find in the program text — for example, they will not be able to be located
using program cross-reference tools which find constructor calls. Also, being unable
to determine which methods create new objects may cause particular problems for
languages without garbage collection, such as C++.

2. Eztra Message Send. Natural Creation typically requires at least one extra method
send whenever it is used to create an object. This may slightly slow the execution
of the program, although these methods may often be good candidates for compiler
inlining.

Implementation

The following implementation issues are relevant to the Natural Creation pattern.

1. Gathering data from more objects. Often, information from more than two objects is
required to create and initialise a child object. Using the Natural Creation pattern,
data can be gathered from other objects which collaborate with the Mother or Father
objects, and this can be used to initialise the Child object.

2. Arguments vs. Collaboration. The Natural Creation pattern works best when most
of the information required to create and initialise the child object come from the
existing father and mother objects, and the objects with which they collaborate.
Some kinds of objects, however, are primarily initialised with transient information
from constants, local variables or arguments; in these cases the Natural Creation
pattern provides less benefit. For example, creating a twelve-point bold italic font in
Java by

Font f = new Font("Times", BOLD|ITALIC, 12);

does not require any information from the creating object or its collaborators, and
the natural way to create the font is by calling the constructor directly.

3. The class of the child object. The class of the object to be created must be determined
before the child can be created. If the class is always determined by the client, then
it may be more natural to create the object directly by a language level mechanism.
If the child’s class is not immediately obvious, then one of the other creation patterns
can be used to compute the class.

4. Shallow vs. deep creation. When creating and initialising an object based on collab-
orations with other objects in the program, the new object can be built in one of two
ways: either by referring directly to the collaborating objects (shallow creation), or
by making copies of the collaborating objects and using the copies (deep creation).
As in shallow and deep copying [6] shallow creation is more efficient in both space and
time, while deep creation ensures that the new object will be completely independent
from the objects that create it.

To be safe, new objects should share only immutable data — data that cannot change,
and should copy any data that could change [1, 10]. As an example of what can go

wrong, consider the following Smalltalk code which creates a Rectangle from two
points using the corner: natural creation method.

pointl := 10 @ 10.
point2 := 20 @ 20.
rectangle := pointl corner: point2.

Now, if we change the x coordinate of the first point, the x coordinate of the rectangle
will also be changed, because the corner: method uses shallow creation to make the
rectangle so the rectangle refers directly to the two points.

pointl x: 100.
rectangle origin x == 100. "returns true"
rectangle origin == pointl. "returns true"

. Operators in Smalltalk. User defined operators can be used to implement the Natural
Creation pattern. Because operators’ meaning is typically less clear than textual
message names, operators should only be used for creating instances of very common
classes, or where the meaning of the new operator is clear. For example, Smalltalk’s
use of the / binary operator to define fractions is effective because the operator is used
to represent fractions outside programming, fractions are quite common in Smalltalk
programs, and the idiom is well known. Kent Beck calls these kind of operators
“Shortcut Constructor Methods” and suggests that no more than three be used per
application [2].

Sample Code

The following Java code shows how the Natural Creation pattern can be used to create
Lamb objects for the Al example system. The pattern can be used in several different ways
depending on the detailed design of the rest of the system, and other patterns that need to
be applied.

The simplest case is where the Ewe, Ram, and Lamb objects are all instances of a Sheep
class, but (for flock management reasons) a new Lamb needs to record its parent Sheep.
The natural creation method breedFrom calls the language level constructor, removing the
coupling to the Sheep class from the client.

class Sheep {

Sheep ewe, ram;

Sheep(Sheep ewe, Sheep ram) {
this.ewe = ewe;
this.ram = ram;

Sheep breedFrom(Sheep ram) {
// should be called only on a ewe
return new Sheep(this, ram);

If the objects are from different classes (say subclasses of Sheep), then we can use the
Factory Method pattern [5] to choose the appropriate subclass, based on the class of the
ewe. For example:

class Merino extends Sheep {
Merino(Sheep ewe, Sheep ram) {
this.ewe = ewe;
this.ram ram;

Sheep breedFrom(Sheep ram) {
// should be called only on a ewe
return new Merino(this, ram);

}

In this example, the breedFrom method is both a Factory Method (because it is overridden
in subclasses to choose the class to create) and a Natural Creation method (because it
is called from clients to create objects). Note that, as far as the client is concerned, the
interface the client needs to call is exactly the same as the earlier example (without a Factory
Method) because the natural creation pattern has abstracted the creation operation from
the client code.

Known Uses

The Natural Creation pattern has been used in quite a large number of systems, although
it has not always been recognised as such.

The Smalltalk system, for example, makes quite heavy used of the Natural Creation
pattern. For example, Points can be created from numbers using the @ operator, rectangles
from points by using the corner and extent methods, and fractions from numbers using
the / operator.

pointl := 10 @ 10.
rectanglel := pointl extent: pointl.
rectangle2 := pointl cormer: 100@100.
oneThird := 1 / 3.

The Java collection classes provide natural creation methods to create iterators (called
Enumerations) on collections. For example,

Vector vec = new Vector(10);
Enumeration e = vec.elements();

Note that this abstracts the name of the concrete VectorEnumerator class out of the
creation code. Other iterators (including Smalltalk Streams and C++ STL iterators) do
not use natural creation methods and require the client to specify the class of the iterator
(generally because these libraries have a larger number of iterators to choose from).

Many graphics libraries use Natural Creation to create objects which can draw on win-
dows. For example, VisualWorks uses GraphicsContext objects [11], Smalltalk/V uses Pen
objects [7], and the Java AWT uses Graphics objects [4].

In Java, to draw on a window you create a Graphics context object for the window and
then draw on the context.

Graphics g = window.getGraphics();
g.fillRect (0, 0, 100, 100);
g.drawString(‘‘Hello’’,10,10);

VisualWorks Smalltalk also provides some other good examples of Natural Creation. For
example, all Smalltalk objects understand the method -> to create an association (like a
cons cell) out of a pair of objects. This method is a pure example of the Natural Creation
pattern (not a Factory Method) because it is never overridden. The method asValue, again
understood by all objects is another example. The asValue method creates a value holder
(a sort of decorator) containing the object to which the message is sent [15]. This method
is only overridden in one class to which it should not apply.

A final Smalltalk example of the Natural Creation pattern is the way new classes are
created in Smalltalk. For example, the Bag class is created as the subclass of the Collection
class, adding a single instance variable (or field) called contents, as follows:

Collection subclass: #Bag
instanceVariableNames: ’contents ’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Collections-Unordered’

This is just a Smalltalk message send? that is sent to the superclass of the new (as
yet nonexistent) subclass. The result of the message send is that a new class is created,
ultimately by a language-level operation to create an instance of a system Metaclass. This
message is never overridden in the Smalltalk system.

Related Patterns

As Natural Creation is a composite creational pattern, one or more creational patterns
are typically applied as subordinate patterns whenever the Natural Creation pattern is
applied. Figure 4 shows the relationships between the subordinate design patterns in more
detail, showing the patterns that use other patterns, and the patterns that conflict (provide
alternative solutions to similar problems) [9].

Factory Method The Factory Method pattern [5] is one of the most basic creational
patterns. The Factory Method pattern allows subclasses to decide what class to
instantiate to create an object, rather than hardcoding the class name in a superclass
method. The AT example in the Sample Code section shows how a Factory Method can
be used by the Natural Creation pattern — alternatively, an application of the Natural
Creation pattern often looks like an application of the Factory Method pattern, except
that the method is never overridden.

Considering one of the known uses of Factory Method in Design Patterns [5, p.115] can
make this distinction clearer. The View class in the Smalltalk-80 MVC framework

2The message name in this expression is a real Smalltalk mouthful:
subclass:instanceVariableNames:classVariableNames:poolDictionaries:category:

Abstract

— - Factory

Factory M e&hod
:
Natural v
Creation Prototype

Builder ,

Product Trader

——= One pattern uses another pattern in itsimplementation

<---» Two patterns conflict (provide aternative solutions)

Figure 4. Natural Creation and Subordinate Creational Patterns

has a defaultController method which returns a controller for the view. This
method is defined in terms of a defaultControllerClass method which returns
the class of the controller to create, and it is this method which is overridden by
subclasses. The defaultControllerClass method, then, is the Factory Method,
while the defaultController method is an example of Natural Creation, as this is
the method View’s clients call.

Prototype The Prototype pattern [5] is an alternative to the Factory Method pattern that
allows subclasses (or individual objects) to determine what kind of object to create,
by creating that object by cloning a prototype rather than instantiating a class. The
Prototype pattern can be used to implement Natural Creation when this flexibility is
required, and it can also be used directly where new instances are created by cloning
in the domain [3].

Sheep breedFrom(Sheep ram) {
Sheep clone = this.clone();
clone.setEwe(this);
clone.setRam(ram) ;
return clone;

}

Abstract Factory The Abstract Factory pattern [5] is similar to the Factory Method
pattern, in that it allows an object to be created without specifying its concrete
class, however, Abstract Factory allows a family of related or dependent objects to
be created so that they will work together. If a family of classes needs to be created,
an Abstract Factory can be used to implement Natural Creation in much the same
way as a Factory Method.

Sheep breedFrom(Sheep ram) {
return sheepAbstractFactory.makeSheep(this, ram);
}

Note that an Abstract Factory can be implemented using either language-level object
construction or the Prototype pattern, as shown in Figure 4.

Builder The Builder pattern [5] describes how the construction of a complex object can be

separated from its representation, so that the same construction process can create
different representations. Like an Abstract Factory, a Builder can require quite a
complex client interface. The Natural Creation pattern should use a Builder when
a complex object needs to be created, and can also be used to present a simpler
interface to clients.

Sheep breedFrom(Sheep ram) {
// again, the same creation interface
return sheepBuilder.makeSheep(this, ram);

}

Product Trader The Product Trader pattern [14] pattern allows clients to create objects

by providing an abstract specification, and then using a Product Trader object to
find, create, and return a new object which matches that specification. The client
interface to a Product Trader is complicated by the need for the client to create the
specification object, and then pass that to the trader. The Natural Creation pattern
can use a Product Trader when the choice of class to instantiate depends upon a very
flexible mapping from the marshaled information, and again has the advantage that
it encapsulates the trader’s complexity, presenting that same simple interface to the
ultimate client whichever underlying creational pattern is used.

Sheep breedFrom(Sheep ram) {
ProductSpecification spec =
new Specification(Sheep, this, ram);
return sheepProductTrader.createFor(spec);

}

Finally, creational programming patterns such as Constructor Method, Explicit Initialisa-
tion, and Lazy Initialisation [2] describe how object creation can ultimately be implemented
using the facilities of a programming language.

Acknowledgements

Thanks to the anonymous reviewers for their comments on this paper. This work was
supported by Microsoft Australia Pty. Ltd.

References

[1]

[2]
3]

[4]

Henry G. Baker. Equal rights for functional objects or, the more things change, the more they are the
same. OOPS Messenger, 4(4), October 1993.

Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

K.H.S. Campbell, J. McWhir, W.A. Ritchie, and I. Wilmut. Sheep cloned by nuclear transfer from a
cultured cell line. Nature, 380:64-66, March 1996.

Patrick Chan and Rosanna Lee. The Java Class Libraries, volume 2. Addison-Wesley, second edition,
1998.

[5]

Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns. Addison-Wesley,
1994.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation. Addison-
Wesley, 1983.

Wilf Lalonde. Discovering Smalltalk. Benjamin/Cummings, 1994.
James Noble. Patterns for finding objects within designs. In TOOLS Pacific 25, 1997.

James Noble. Classifying relationships between object-oriented design patterns. In Australian Software
Engineering Conference (ASWEC), pages 98-107, 1998.

James Noble, Jan Vitek, and John Potter. Flexible alias protection. In ECOOP Proceedings, 1998.
ParcPlace Systems. VisualWorks Smalltalk User’s Guide, 2.0 edition, 1994.

Eric Raymond and Guy L. Steele. The New Hacker’s Dictionary. MIT Press, second edition, 1993.
Dirk Riehle. Composite design patterns. In ECOOP Proceedings, 1997.

Dirk Riehle. Product trader. In Robert C. Martin, Dirk Riehle, and Frank Buschmann, editors, Pattern
Languages of Program Design, volume 3. Addison-Wesley, 1998.

Bobby Woolf. Understanding and using the ValueModel framework in VisualWorks Smalltalk. In
Pattern Languages of Program Design. Addison-Wesley, 1994.

