Patterns for Essential Use Case Bodies

Robert Biddle, James Noble

Computer Science,
Victoria University of Wellington, New Zealand.
{robert kjx}@Qmcs.vuw.ac.nz
Ewan Tempero
Computer Science,
The University of Auckland, New Zealand.
ewan@cs.auckland.ac.nz

March 13, 2002

Abstract

Essential use cases are an effective way to analyse the usability re-
quirements for a system under development. Essential use cases are quite
stylised — writing good essential use cases is somewhat of a secret art.
This paper contains patterns that describe how to write the bodies of es-
sential use cases. Readers of this paper will be able to write good essential
use cases quickly, making it easier to specify usable systems.

Introduction

Systems need to be usable. If people can’t use systems we design, they will
avoid, circumvent, disparage, and sabotage them.

In the good old days of computing, people were so pathetically thankful to
have any kind of computer system at all that they were quite happy to wait in
long queues, pick up printouts several days after their jobs were submitted, type
programs on chicklet keyboards, and do all sorts of stupid stuff. Unfortunately
for us development types, these days are over. In an increasingly large number
of systems, the usability of a system is paramount: If you build it, they won’t
come if they can’t use it.

The discipline of Usage-Centred Design has been introduced to incorporate
usability into software engineering development processes. Described in Con-
stantine & Lockwood’s Software for Use [3], Usage Centred Design is based
on essential use cases, and draws from ideas from object-oriented methodol-
ogy [4, 5, 2, 1] as well as task analysis and prototyping techniques common to
human-computer interaction designers. A key feature of Usage-Centred Design
is that the design practitioner acts as an advocate for users, ensuring concern
for usability is maintained throughout the development cycle.

Essential use cases are quite stylised, and writing good essential use cases
is somewhat of a secret art. This paper extends our earlier collection, Patterns
for Essential Use Cases [?] to focus on the mechanics of writing the bodies of

individual use cases and the relationships between them — Figure 1 summarises
the problems dealt with by this collection of patterns, and the solutions they
provide. Larger-scale process issues such as what essential use cases actually
are, why you might want to find them, and how to test them are covered in the
earlier collection.

The content of these patterns is not novel, rather, this paper is an attempt to
cast some of the techniques of Usage-Centred Design (drawn particularly from
Software for Use) into a pattern form. We hope these patterns will complete
the large “literature” about use cases frantically being published by many fine
international publisers. Essential use cases are design to be short, simple, quick,
and to the point: we hope these patterns share these virtues.

Example

The patterns in this paper use examples drawn from a simple booking system
for an arts centre. The initial brief for this system is as follows:

Design a program for a booking office of an arts centre. There are
several theatres, and people may reserve seats at any theatre for any
future event. People need to be able to discuss seat availability, where
seats are located, and how much they cost. When people make a
choice, the program should print the price, record the selection, and
print out o ticket.

Typically, we would expect to have much more information (either more text,
or at least the opportunity to talk to the project sponsor). We will introduce
more details as the example progresses.

Form

The patterns are written in modified electric Portland form. Each begins with
a question (in italics) describing a problem, followed by a bullet list of forces
and discussion of the problems the pattern addresses. A boldface “Therefore:”
introduces the solution (also italicised) followed by the consequences of using
the pattern (the positive benefits first, then the negative liabilities, separated
by a boldface However:), an example of its use, and some related patterns.

Known Uses

It is standard to list known uses for each of the patterns. In the case of our
patterns, the known uses are all much the same so we have elected to discuss
them here.

The patterns we describe have shown up in a number of projects we have
been involved in, including Siemens Step7Lite project (for a programming envi-
ronment for programming logic controllers), projects for managing telecommu-
nications plant and managment of service requests, and industry and academic
courses and case studies.

Pattern Problem Solution
Write a use case where the
ides inf ti
Commanding Use | How can the user get the user provides information on
: the request, and the system
Case system to do something?

has the responsibility for
performing the command.

Requesting Use Case

How can the user find somet-
ing they need to know from
the system?

Write a use case where the
actor describes the informa-
tion they require, and then
the system presents that in-
formation

Monitoring Use Case

How can you let the user
know about a relatively
small amount of important
information from the sys-
tem

Write a use case where the
system presents that infor-
mation.

Alarm Use Case

How can the system inform
the user about something?

Write a use case that begins
with the system taking the
responsibility to warn the
user

Prompting Step

How can you make sure
the user has the information
needed to make a decision?

Give the system the respon-
sibility of offering that in-
formation before the user
makes the decision

Confirming Step

How should you ensure that
correct information is com-
municated between the ac-
tor and the system?

Require the actor or system
to confirm the information.

Extension

How do you model errors
and exceptions in use cases?

Use extending use cases to
record errors and excep-
tions.

Inclusion

How do remove commonal-
ity between use cases?

Make a new use case con-
taining the common steps,
and include it in the use
cases that have the common
steps.

Specialisation

How can you handle differ-
ent kinds of interactions that
fullfil broadly similar goals?

Make more general and
more specific use cases to
capture the precise interac-
tions

Conditions

How do you model use cases
than can only operate under
certain circumstances?

Use pre- and post-conditions
to control when use-cases
are permissible.

Figure 1: Summary of the Patterns

1 Use Case Dialog Patterns

Once you start writing use cases you’ll realise that lots of kind of use cases come
up over and over again — that there are actually patterns in the dialogue bodies
of essential use case themselves. This section lists a number of these patterns.

In the interests of space, we give only the bare bones of each pattern.

1.1 Commanding Use Case

How can the user get the system to do something?

e Sometimes the user needs to get the system to do something.

Therefore: Write a use case where the user provides information on the
request, and the system has the responsibility for performing the command.

This is the simplest and most common kind of use case: the user’s commands
are listed in the left-hand column, and the system’s responsibility in the right-
hand column. Often this kind of use case can require just one user intention
step, and one system responsibility step, however more complex interactions,
requiring more infomation can have many steps for both the user and the system.

Note that essential use cases do not have an explicit step to choose the exe-
cution of this use cases as against any other use case. Rather, essential use cases
are written under the assumption that the user interface design has already in-
dicated that this use case should be carried out: how that choice is made is
purely an issue for the user interface. In some cases, an explicit interface inter-
face element may be required (a voice menu entry or GUI command button),
but in other designs may determine this implicitly (say by dragging the mouse).

Example

A simple use case for the arts centre system is to print out a performance
schedule, so that potential clients can inspect it at their leisure (and hopefully
return to make a booking).

Print performance schedule

User Intention System Responsibility

Chose start and end dates

Print schedule of performances
from start to end date

Consequences

+ The system executes the user’s command.

Discussion

Note also that use cases should only consider the “happy path” — that is,
they should be written under the assumption that it makes the use case is only
every started when it makes sense to do that use case, and that the case always
executes correctly (this term is due to Rebecca Wirfs-Brock [?]). You should
use Extension (2.1) and Conditions (2.4) to describe what happens when
things go wrong.

Related Patterns

If the command is important, you may need to include a Confirming Step (1.6):

Print performance schedule

User Intention System Responsibility

Chose start and end dates

Print schedule of performances
from start to end date

Confirm successful printout

This allows the user to know the command has been completed, even if it is
not immediately obvious.

1.2 Requesting Use Case

How can the user find someting they need to know from the system?

e Sometimes the system knows things that users doesn’t know, and users
need to find this out.

e The information may be simple, but there may be large amounts of infor-
mation (much of which is not of interest).

e Users have their own idiosyncratic ways of thinking about the world, which
may not match the way you (or your systems analysts and designers) thing
about it.

Therefore: Write a use case where the actor describes the information they
require, and then the system presents that information.

Example

Get Seat Prices

User Intention System Responsibility

Offer performances
Choose performance

Show prices for chosen perfor-
mance

The user chooses the theatre performance they wish to view, then the system
will provide seat prices for that performance. There can be easily up to ten
price classes for any performance, so all the prices cannot be display for all the
performances on a single screen.

Consequences

+ The user can get just the information that they need

+ If the information is large or complex, they can specify just that informa-
tion they need to see

- An extra user step is required to choose that information.

Related Patterns

This use case can also involve a Prompting Step (1.5). In fact, the example
above does this, the system prompts to “Offer performances” before the user
“Choose performance”. If there a small amount of important information needs
to be available constantly, consider a Monitoring Use Case (1.3).

1.3 Monitoring Use Case

How can you let the user know about a relatively small amount of important
information from the system.

e Some important the system has is more important than other information.

¢ Some information may change frequently, or asychronously with respect
to the user.

e Some information may be important to the continued use of the system
— for example, some other use cases may (or may not) be permitted only
in certainly system states.

Therefore: Write a use case where the system presents that information.

Example

Show Today’s Performances

User Intention ‘ System Responsibility

‘ Show today’s performances

This is a minimal use case: it simply provides (generally a small amount
of) important information to the user. In a realisation of the system with a
graphical user interface, this information is typically displayed in a status bar
or on a window background.

Consequences

+ The status information is constantly available.
- The status monitors constantly take up display real estate.

- Changes to the status information can distract the user from more impor-
tant tasks.

Related Patterns

If instanteanous changes to the information, is more important the value of the
information (or some values are more important than others) then consider an
Alarm Use Case (1.4) as an alternative.

1.4 Alarm Use Case
How can the system inform the user about something?

e The system needs to draw actor’s attention to a change in its internal
state.

e The system is about to break a business rule.

e The notification should be asynchronous, that is, actors should not have
to trigger the use case.

Therefore: Write a use case that begins with the system taking the responsi-
bility to warn the user.

Example

Warn of start of performance

User Intention System Responsibility

Signal “performance about to
start”

Show name, theater, and times
of performance

The key point of this use case is that it starts in the right-hand-side column,
with a system responsibility (whereas use cases generally being with a left-hand-
side user intention). That is, it’s the systems job to start the use case, not the
user’s.

Consequences

+ The system takes responsibility for initiating the use case.
+ The system can pass information about the alarm to the actor.

+ The actor does not have to interrupt their current task immediately to
respond to the alarm.

- The actor can ignore the alarm.
Alarm use cases can often indicate (potential) violations of business rules —

say that a performance should not continue if less than 15% of seats have been
sold by the time it starts.

Discussion

If the alarm is important, you may need to include a Confirming Step (1.6):

Warn theater performance undersold

User Intention System Responsibility

Signal “performance undersold”

Show name, theater, time or
performance, and percentage of
seats sold

Confirm warning

This variant has the following different consequences to the main pattern:

+ actor cannot ignore the alarm.

- The actor cannot continue with their current task: they must interrupt it
to confirm the alarm.

1.5 Prompting Step

How can you make sure the user has the information needed to make a decision?

e Sometimes users need to make decisions based on information that is held
by the system.

e This information may or may not be known by users.

e It’s easier for people to choose between several options in front of them
than it is to remember what options are possible.

Therefore: Give the system the responsibility of offering that information
before the user makes the decision.

Whenever your use cases require input from the user — consider if the system
knows the most likely or most common inputs. If so, prompt the users with these
common inputs before they make their decision.

Example

Reserve seats for performance

User Intention System Responsibility

Offer unreserved seats

Choose seats

Consequences

+ Users have the information they need before they make the decisions
- The information you supply could bias the user’s choices

- Prompts can require screen real estate (or other interface resources), ob-
scuring other information that is actually more important to users.

1.6 Confirming Step

How should you ensure that correct information is communicated between the
actor and the system?

e Some information is more important than other information.

e When important information is commmunicated, it can be very important
to ensure it is communicated accurately.

e Similarly, some commands are sufficiently important (or dangerous) that
they should only be performed correctly.

Therefore: Require the actor or system to confirm the information.

Example

Pay for reservation

User Intention System Responsibility

Present reservation details
Offer payment methods
Choose payment method
Supply payment details
Confirm method and details

Accept payment

Confirm booking

Consequences

+ Users have an opportunity to confirm their data or actions have been
correctly interpreted by the system (and vice versa).

- Confirmations can require screen real estate (or other interface resources),
obscuring other information that is actually more important to users.

- Confirmations can distract users from more important tasks.

- Familiarity breeds contempt: confirmations can easily become routine. If
users consider them part of their everyday operation of the system (to
book a ticket, click “book”, “confirm”, “confirm”) then every command
will be confirmed instincitevly, even if erroneous.

Discussion

Once again, it is important to note that the insertion of a confirming step (ei-
ther as the user’s intention or the system’s responsibility) to does not necessarily
require the traditional dialog-box style implementation, especially as the prob-
lems with such confirmations are well known. For example, Tog has described
how wait timeouts can be used to confirm actions, rather than dialog boxes: in
these cases, the user does nothing to confirm a correct operation but has a few
seconds grace to abort an incorrect operation [?].

2 Organising Use Cases

In this section, we briefly list a number of patterns which will describe how to
model relationships between use cases, based on the UML and Usage-Centered
Design relationships.

2.1 Extension

How do you model errors and exceptions in use cases?

e You write essential use cases to described the “happy path” — that is
describing the correct behaviour of the system.

e In the real world things go wrong: you have to deal with the “unhappy
path” somehow.

e Every use case makes the description of the system more complex (and
probably the system as a whole more complex t00).

Therefore: Use extending use cases to record errors and exceptions.

One use case (called the extending case or extension) can extend another
use case (called the base case). This means that whenever the base case is
enacted, execution can switch to the extension case instead. If the extension
completes successfully, the base case can contine; or the extension can terminte
the execution of the base case.

Example

Consider again the “Pay for reservation” use case (§1.6).

Pay for reservation

User Intention System Responsibility

Present reservation details
Offer payment methods
Choose payment method
Supply payment details
Confirm method and details

Accept payment

Confirm booking
This is written following the happy path: it assumes that the payment is

successful. We could write an extending use case to describe what happens
when the payment is declined (when the Accept payment step fails).

10

Payment declined
extends: Pay for reservation

User Intention System Responsibility

Show payment failure

Offer alternative payment meth-
ods

Choose payment method
Supply payment details
Confirm method and details

Accept payment

In this case, the user is offered a choice of an alternative payment method;
if this fails in turn, then the whole Pay for reservation use case has failed.

Consequences

+ Extensions allow you to describe errors or exceptions.

+ Extensions ensure that these descriptions do not clutter the body of the
happy path use case.

- When designing or implementing a use case, you have find (and then
consider) all the use cases that extend it.

- You can easily overuse extensions. You should assume interface and soft-
ware designers will make common-sense decisions in situations in common-
sense situations, and concentrate on describing the important, strange,
interesting, or weird.

Discussion

Sometimes you need to have a use case that extends every other use case: you
y y y
can write this as “extends *”.

2.2 Inclusion

How do remove commonality between use cases?

e Many use cases can contain common steps.

¢ Repeating these common steps is not only boring: it also creates consis-
tency problems.

Therefore: Make a new use case containing the common steps, and include
it in the use cases that have the common steps.

One use case (called the included case or inclusion) can be included in an-
other use case (called the base case). In the body of the base use case, you can
write “> anotherUseCase” to include the steps of the included case — this can

11

appear on either column of the base case. Whenever that step of the base case is
enacted, you execute the included use case; when the included case is complete,
you contine with the next step of the base use case.

Example

needs to be done — can’t think of a good one now.

Consequences

+ Common steps are localised in a single use case

+/- Changing an included use case changes all the use cases into which it is
included.

- You have to understand all the subsidiary use cases to understand a use
case that includes them.

- If you're not careful, you can end up doing procedural design with use
cases as procedures and inclusions as subroutine calls!

2.3 Specialisation

How can you handle different kinds of interactions that fullfil broadly similar
goals?

e Sometimes there are many similar tasks users need to do.

e Some ways of using one use case may be more common or more important
than other ways of using the same case.

o User interfaces need to recognise commonality between similar use cases
to provide consistent designs; however they also need to recognise frequent
use cases to provide efficient designs.

Therefore: Make more general and more specific use cases to capture the
precise interactions users will have with the system.

One use case (called the special case, subcase, or specialisation) can specialise
another use case (called the base case, general case, or supercase).

Unlike extends or uses, this relationship puts an informal requirement on the
bodies of the base and special cases: the special case should be a “special version
of” the base case. The relationship also means that whenever the supercase may
be enacted, the subcase may be encated instead.

Example

Consider again the Print performance schedule use case from (§1.1):

Print performance schedule

User Intention System Responsibility

Chose start and end dates

Print schedule of performances
from start to end date

12

A particularly common version of this use case will be to print the schedule
for just today and tomorrow. Since it is probably worth optimising the user
interface design and/or the software design to support this particular version,
we can make a specialisation of the base case to handle this situation.

Print today’s performance schedule
specialises: Print performance schedule

User Intention System Responsibility

Print schedule of performances
for today, and for the next day
with performances

Consequences

+ You can group your use cases into categories or hierarchies.
+ You can identify important special versions of more general use cases.

- Specialisations can make use case models more complex.

Related Patterns

If you seem to have a choice between Inclusion (2.2) and specialisation, choose
inclusion.

2.4 Conditions

How do you model use cases than can only operate under certain circumstances?

¢ Some use cases can only be encated at certain times or in certain situations.

e Some use cases can only be encated in under certainly conditions or states
of the system or the world.

e Some use cases can only be encated after other use cases have been en-
cated.

Therefore: Use pre- and post-conditions to control when use-cases are per-
missible.

A precondition is something which must be true before a use case can be
enacted; a postcondition is something which is true afterwards. If a use case has
a precondition, that condition can be assumed to be true before the use case is
executed; if it has a postcondition, that condition can be assumed to be true
afterwards.

Example

The theatre booking system could require users to log in before they can use
the system. We can model this with a condition called “User is logged in”.

13

Login

User Intention System Responsibility

Precondition: not User is logged in
Identify self

Verify identity

Postcondition: User is logged in

Then, every use case could require the user to be logged in:

Print performance schedule

User Intention System Responsibility

Precondition: User is logged in
Chose start and end dates

Print schedule of performances
from start to end date

Finally, users should log out at the end of the session.

Logout

User Intention ‘ System Responsibility

Precondition: User is logged in
‘ Confirm logout
Postcondition: not User is logged in
(Extra for experts: the system could log a user out if they have been idle for
say 30 minutes:
Timeout
extends: *

User Intention System Responsibility

Precondition: User is logged in

‘Wait until user has been idle 30
minutes

> Logout

We’ve described this here using extensions, inclusions, and conditions. This
is really a cautionary example: you should never need anything so baroque in
practice.)

14

Consequences

+ Conditions can make it clearer when particular use cases can execute

- Conditions can make use case models much more complex. You rarely
need more than two conditions in any application.

— In particular, resist the temptation to construct complex application-level
state machines in use case conditions.

Discussion

There are several useful kinds of conditions:

e the value of an imaginary, application-global boolean variable — list the
name of the variable (e.g. “User is logged in”, “networkIsConnected”)

o that some other use case has been executed in this session — list the name
of the use case (e.g. “User login”). That is, each use case automatically
sets one of the imaginary global variables after they execute.

e a description of a condition in the system or the real world

e not some other condition

Note that the login example could be simplified by using an implicit “Login”
use case name condition instead of a special “User is logged in” condition. Doing
it implicitly is a little more terse but means exactly the same as the explicit
conditions in the example above. The only differences is that the Login use case
would not need to establish a postcondition, because the “Login” econdition is
established automatically when its homonomous use case completes successfully.

Pre- and post-conditions should match up in a complete model: that is, for
any condition, there should be at least one use case that establishes it as a
postcondition, at least one use case that depends upon it as a precondition, and
at least one use case that cancels it (as a notpostcondition).

Related Patterns

If you seem to have a choice between Extension (2.1) and conditions, choose
extensions.

Conclusions

In this paper, we have presented a number of patterns for writing essential use
cases for a system. Many of these patterns may also be applicable to con-
ventional use cases, although we believe the patterns are more evident in the
essential form of the use case. Clearly a number of the patterns we have dis-
cussed here need more development, and we are investigating other possible
patterns.

References

[1] Kent Beck. Eztreme Programming Ezplained: Embrace Change. Addison-Wesley,
1999.

15

Alistair Cockburn. Writing effective use cases. Addison-Wesley, 2001.

Larry L. Constantine and Lucy A. D. Lockwood. Software for Use: A Practical

Guide to the Models and Methods of Usage Centered Design. Addison-Wesley,
1999.

Ivar Jacobson, Mahnus Christerson, Patrik Jonsson, and Gunnar Overgaard.
Object-Oriented Software Engineering. Addison-Wesley, 1992.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object
Oriented Software. Prentice Hall, 1990.

16

