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Abstract. The object capability model is a de-facto industry standard widely
adopted for the implementation of secure software. We call capability policies
the policies enforced by programs using object capabilities. Such policies tend
to restrict the objects and the circumstances which may access services. In this
paper we argue that capability policies should be made explicit and written sepa-
rately from the code implementing them. We also argue that the specification of
capability policies requires concepts that go beyond the features of current spec-
ification languages. Moreover, we argue that we need methodologies with which
to prove that programs adhere to their capability policies as specified.
To give precise semantics to capability policy specifications, we propose execu-
tion observations, which talk about various properties of a program’s execution.
We use execution observations to write the formal specification of five out of the
six informal policies in the mint example, famous in the object capability litera-
ture. In these specifications, the conclusions but also the premises may relate to
the state before as well as after execution, the code may be existentially or uni-
versally quantified, and interpretation quantifies over all modules extending the
current module. In statically typed languages, adherence of code to the capability
policies relies heavily on the guarantees provided by type system features such as
final and private.

1 Introduction

Capabilities — unforgeable authentication tokens — have been used to provide secu-
rity and task separation on multi-user machines since the 60s [5], e.g. PDP-1, operat-
ing systems e.g. CAL-TSS [13], and the CAP computer and operating system [38]. In
capability-based security, resources can only be accessed via capabilities: possessing a
capability gives the right to access the resource represented by that capability.

Object capabilities [22] apply capabilities to object-oriented programming. In an
object capability system, an object is a capability for the services the object provides:
any part of a program that has a reference to an object can always use all the services
of that object. To restrict authority over an object, programmers must create an inter-
mediate proxy object which offers only restricted services, delegating them back to the
original object.

Object capabilities afford simpler and more fine-grained protection than privilege
levels (as in Unix), static types, ad-hoc dynamic security managers (as in Java or JSand
[1]), or state-machine-based event monitoring [2]. Object capabilities have been adopted
in several programming languages [24, 19, 36] and are increasingly used for the provi-
sion of security in web programming in industry [25, 37, 32].
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Thus, object capabilities are employed to enforce policies which restrict access to
services: which objects, and under what conditions, may activate these services. We call
such policies, which regulate access to services, capability policies. Capability policies
are program centred, fine grained, open in the sense that they specify aspects of the be-
haviour of all possible extensions of a program, and have necessary as well as sufficient
parts; the latter require that certain effects may only take place if the originating code
or the runtime context satisfy some conditions, [7].

The key problem with object capability programming as practiced today is that —
because capabilities are just objects — code manipulating capabilities is tangled to-
gether with code supporting the functional behaviour of the program. The actual ca-
pability policies enforced by a program are implicit and scattered throughout the pro-
gram’s code, and the functionality concerns are tangled with those of the capability
policy.

We argue that capability policies should be specified separately from the program
implementing them. We also argue that the specification of capability policies requires
features that go beyond what is available in current specification languages.

We propose that capability policies can be specified through execution observations,
which are, essentially observations relating to program execution, accessibility, reach-
ability and tracing. For example, execution observations can say things like ”execution
of a given code snippet in a given runtime context will access a certain field”, or “it is
possible to reach certain code through execution of some initial code”.

We follow the Mint example [24] to illustrate our ideas; using execution observa-
tions we give precise meaning to five out of the six policies proposed informally in that
paper. In these policies, the conclusions but also the premises may relate to the state
before as well as after execution, the code may be existentially or universally quanti-
fied, and interpretation quantifies over all modules extending the current module. In the
process of developing the mint specifications, we were surprised by the many different,
and plausible interpretations we found for the policies.

The paper is organised as follows: Section 2 presents the Mint [19] as an example
of object capability programming, implemented in Joe-E/Java. Based on that example,
Section 3 distills the characteristics of capability policies. Section 4 then outlines exe-
cutions observations, while section 5 uses them to express those policies, and discusses
alternative interpretations. Section 6 discusses alternative meanings of these policies.
Section 7 surveys related work, and Section 8 concludes.

2 The Mint: an Object Capability Example

We use as running example a system for electronic money proposed in [24]. This ex-
ample allows for mints with electronic money, purses held within mints, and transfers
of funds between purses. The currency of a mint is the sum of the balances of all purses
created by that mint. The standard presentation of the mint example defines six capa-
bility policies, which we repeat here, as they were described in [24]:

Pol 1 With two purses of the same mint, one can transfer money between them.
Pol 2 Only someone with the mint of a given currency can violate conservation of that

currency.
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1 // module MMint

2 public final class Mint { }
3

4

5 // module MPurse

6 public final class Purse {
7 private final Mint mint;
8 private long balance;
9 // INV: balance ≥ 0

10

11

12 // PRE: balance ≥ 0
13 // POST: result.mint=mint ∧ result.balance = 0
14 public Purse(Mint mint, long balance) {
15 if (balance<0){ throw new IllegalArgtException(); };
16 this.mint = mint;
17 this.balance = balance;
18 }
19

20 // PRE: true
21 // POST: result.mint=prs.mint ∧ result.balance = 0
22 public Purse(Purse prs ) {
23 this.mint = prs.mint;
24 this.balance = 0;
25 }
26

27 // PRE: this.mint=prs.mint ∧ amt≤prs.balance ∧
28 // amt+this.balance≥0
29 // POST: this.balance=this.balancepre+amnt ∧
30 // prs.balance=prs.balancepre- amnt
31 public void deposit(Purse prs, long amnt) {
32 if ( mint!=prs.mint
33 || amnt>prs.balance || amnt+balance<0 )
34 { throw new IllegalArgtException(); };
35 prs.balance -= amnt;
36 balance += amnt; }
37 }
38 }

Fig. 1. The Mint example, code taken from [19], specifications added by us
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Pol 3 The mint can only inflate its own currency.
Pol 4 No one can affect the balance of a purse they don’t have.
Pol 5 Balances are always non-negative integers.
Pol 6 A reported successful deposit can be trusted as much as one trusts the purse one

is depositing into.

An immediate consequence of these policies is that the mint capability gives
its holder the ability to subvert the currency system by “printing money”, and that
“printing money” is only possible, if one holds the mint. This means that while
purse capabilities may safely be passed around the system, the mint capability
must be carefully protected. This also means that protecting the mint suffices in
order to protect the currency.

Several different implementations have been proposed for the mint. Fig.1 contains
an implementation in Joe-E [19], a capability-oriented subset of Java, which restricts
static variables and reflection.

In Fig.1, the policies are adhered to through the interplay of appropriate actions
in the method bodies (e.g. the check in line 15), with the use of Java’s restrictive lan-
guage features (private members are visible to the same class only; final fields cannot
be changed after initialisation; and final classes cannot be extended). The code con-
cerned with the functional behaviour is tangled with the code implementing the policy
(e.g. in deposit, lines 35-36 are concerned with the functionality, while lines 32-34 are
concerned with Pol 2). The implementation of one policy is scattered throughout the
code, and may use explicit runtime tests, as well as restrictive elements (e.g. Pol 2 is
implemented through a checks in line 32, the private and final annotations, and the ini-
tialisation in line 24). Note that an apparently innocuous change to this code — such as
a public getMint accessor that returned a purse’s mint — would be enough to leak the
mint to untrusted code, destroying the security of the whole system, and thus break the
bank!

An alternative implementation of the mint example appears in figure 2. Here, the
Purse objects are used as indices into a map, which is held and administered by the
Mint objects. A similar scattering and tangling of the policies and the functionality may
be observed in this implementation. Policy Pol 2 is implemented through the runtime
tests in lines 17 and 19, though the transfer of moneys in lines 21 and 22, and through
the use of the private modifier on the database field.

Comparison with Hoare-logic style specification In the code from Fig. 1, we have given
an specification in terms of PRE- and POST-conditions, in a style like that of JML. Note
that except for Pol 5, this specification does not imply the capability policies.

No garbage collection of Purses In all above, there is an implicit assumption that no
purses are destroyed. This assumption is necessary because destruction of a purse would
decrease the currency of a mint, in opposition to Pol 3.
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1 // module Malt Purse

2 public final class Purse { }
3

4 // module Malt Mint

5 public final class Mint {
6 private final HashMap<Purse,long> database
7 = new HashMap<>();
8

9 public Purse makePurse(long balance) {
10 Purse p = new Purse();
11 database.put(p,balance);
12 return p;
13 }
14

15 public void deposit(Purse from, Purse into, long amnt) {
16 if ( (amount < 0)
17 || (!database.contains(from))
18 || (database.get(from) < amnt)
19 || (!database.contains(into)) )
20 { throw new IllegalArgtException(); };
21 database.put(from, database.get(from) - amnt);
22 database.put(into, database.get(into) + amnt);
23 }
24 }

Fig. 2. An alternative Mint implementation using a map as a database.
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3 Capability Policies

We use the term capability policy to describe policies which restrict the circumstances
under which objects may have access to services. A range of such capability policies
are discernible from the literature [22, 24, 23].

In the case of the Mint example, and apart from Pol 6, which requires separate
studies [27], the policies from the previous section are concerned with the following
services:

S 1 Transfer of money between purses.
S 2 Affecting the balance of a purse.
S 3 Affecting the currency of a mint.

Policy Pol 1 expresses conditions for S 1: the service is protected by the respective
purses. Policies Pol 4 and Pol 5 express conditions for S 2: the service is protectedby
the purse, and the balance is always positive. Finally, Pol 2 and Pol 3 express conditions
for S 3: the service is protected by the mint, and the currency can only increase.

Capability policies generally have the following characteristics:

– They are program centered: they talk about properties of programs rather than prop-
erties of specifications or protocols.

– They are fine-grained: they can talk about individual objects, while coarse-grained
policies only talk about large components such as file servers or the DOM.

– They are open. Open requirements must be satisfied for any use of the code ex-
tended in any possible manner — e.g. through dynamic loading, inheritance, sub-
classing, mashups, mixins, reflection, intercession, or any other extension mecha-
nism supported by the programming language. This is in contrast to closed specifi-
cations that need only be satisfied for the actual code snippet itself.

– They have necessary as well as sufficient elements. Sufficient elements essentially
promise that execution of a code snippet in a state satisfying a given pre-condition
will reach another state which satisfies some post-condition [10]. Necessary ele-
ments promise that if execution of a code snippet reaches a certain state, or changes
state in a certain way, or accesses some program entity, then the code snippet must
satisfy some given properties.

4 Execution Observations for the Semantics of Capability Policies

In this section we introduce execution observations, the concepts necessary to give pre-
cise meaning to policies. In our yet unpublished report [8] we describe their manifesta-
tion in a “capability-safe” Java-subset and give precise definitions. We believe that such
execution observations can easily be defined for a range of different programming lan-
guages and paradigms. In this paper, we bring out the most salient issues of execution
observations.



7

Modules and Linking To model the open nature of capability policies, we need to
describe both the program we are checking, and potential extensions of that program
(through subclasses, mashups, imports etc). For this we use modules, M, to denote pro-
grams, and ∗ to describe the combination of two programs into one larger program.

Adherence to policies often relies on the correct use of restrictive features. We sup-
port the method and class annotations private and final. The type rules of Java for-
bid access to private fields or methods outside their classes, forbid extensions of final
classes, forbid redefinitions of final methods in subclasses, and forbid assignment to
final fields outside their constructor [8].

The ∗ operator links modules together into new modules. Thus, MPurse∗MMint is a
module. Linking performs some compatibility checks, and therefore ∗ is only partially
defined. For example, because the field balance is private, MPurse ∗M′ would be unde-
fined, if M′ contained the expression newPurse.balance. The operation ∗ is only defined
if it gives rise to a well-formed module.

Code Modules are not directly executable, but are necessary for the execution of code
snippets. We use the variables code, code′ to range over code snippets.

Runtime Configurations and Code Execution Execution takes place in the context of
runtime configurations κ ∈ RTConf . A configuration is a stack frame and heap. A
stack frame is a tuple consisting of the following four components: the address of the
receiver, a mapping giving values to the formal parameters, the class identifier, and
the method identifier of the method being executed. A heap is a mapping from object
addresses to objects.

Execution of a code snippet code for a module M takes a configuration κ and returns
a value v and a new configuration κ′. We describe this through a large step semantics,
of the shape M, κ, code ; κ′, v′.

Reached and Arising Snapshots When verifying adherence to policies, it is essential
to consider only those snapshots (i.e., configuration and code pairs) which may arise
through the execution of the given modules. For example, if we considered any well-
formed snapshots (well-formed in the sense of the type system), then we would be
unable to show that Pol 5 is obeyed by the mint example. Namely, Pol 5 guarantees
that balances are always positive: configurations where the balance is negative are well-
formed, but will never actually arise in the execution of the program.
Reach(M, κ, code) is the set of snapshots corresponding to the start of the execu-

tion of the body of any constructor or method called in the process of executing code in
the context of M and κ. For example, (κ2, this.mint := prs.mint; this.balance := 0) ∈
Reach(M, κ1, p1.deposit(p2); p3 = newPurse(p2)). Note thatReach(M, κ, code), cor-
responds to the complete body of a method; for example, (κ3, this.balance := 0) /∈
Reach(M, κ4, p3 = newPurse(p2)) for any κ3 and κ4. Reach(M, κ, code) is always
defined, even though it may be infinite if execution of M, κ, code does not terminate.
Arising(M) is the set of snapshots which may be reached during execution of some

initial snapshot, κ0, code0. Similarly toReach(M, κ, code), the function Arising(M)
is always defined.
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Accessible and Used Objects As we have already discussed, objects protect services,
i.e. some policies may require that services are only accessible through certain objects.
Therefore, availability of a service is predicated on accessibility of the corresponding
object. Therefore we need to model accessibility of objects.

We distinguish betweenAccAll(M, κ) — the set of all objects which are accessible
from the frame in κ through any path — and AccPub(M, κ) — the set of all objects
accessible through paths which include only public fields, and private fields of objects
of the same class as this.

The notation z :κ c indicates that z is the name of an object which exists in the heap
of κ and belongs to class c — with no requirement that there should be a path from the
frame to this object.

The notation κ ∈ c expresses that the currently executing method in κ comes from
class c, while κ ∈ M expresses that the class of the currently executing method is
defined in module M.
Used(M, κ, code) is the set of all addresses used during execution of code in the

configuration κ.

Paths, Pure Expressions, and Predicates Capability policies are program-centered,
therefore in order to express their semantics we need to be able to talk about all program
entities, such as paths. For example, mint, prs.mint are paths.
Paths are interpreted in the context of runtime configurations,
d·c : Path −→ RTConf −→ Value

so that dpcκ = v if p is a path and ∅, κ, p ; κ, v.
Functions and predicates are interpreted in the expected manner
d·c : Func Id ×Var Id∗ −→ RTConf −→ Value
d·c : Pred Id −→ P (V alue∗)

involving any necessary unfoldings of the definitions. Therefore,
df(p1, ...pn)cκ=dfFbody[p1/x1, ....pn/xn]cκ, where fBody is the function definition
of f , with free variables x1,... xn. Finally, dP (p1, ...pn)cκ = dP c(dp1cκ, ...dpncκ).

Defining the currency In the Mint example, and using the code from Fig. 1, the function
Currency is defined as follows

Currency(mnt) =
∑

p∈Ps(mnt) p.balance

where Ps(mnt) = {p | p : Purse ∧ p.mint = mnt}

On the other hand, using the code from Fig. 2, the Currency is defined as follows

Currency(mnt) =
∑
{ p | mnt.database.contains(p) }mnt.database.get(p)

5 Semantics of the Mint policies

We now turn our attention to the precise meaning of the first five policies from the
Mint example. (We do not address the sixth policy as our formalisation does not yet
incorporate trust). We discuss the policies in order of increasing complexity of their
specification, rather than in numerical order.
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Note that in the following we are specifying the policies regardless of whether the
code is taken from Fig. 1, or from Fig. 2. We have already given definitions for Currency
as defined in Fig. 1 and in Fig. 2. Wrt to the term prs.balance, when taking the Fig. 2
version, the term dprs.balancecκ is a shorthand for dmnt.database.get(prs)cκ where
mnt is such that mnt.database.contains(prs).

The fifth policy Pol 5, “Balances are always non-negative integers”, is akin to a class
invariant [20, 28, 33]. We can express the policy directly by requiring that a module
M satisfies Pol 5, if for all M′ legal extensions of M, and snapshots (κ, ) arising
through execution of the augmented program M ∗M′, the balance is positive in κ.

M |= Pol 5
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀prs :κ Purse.
dprs.balancecκ ≥ 0

Note that the arising snapshots are considered in the context of the extended module
M ∗M′, where M′ is universally quantified. This reflects the open nature of capability
policies, and allows calling methods and accessing fields defined in M but also in M′

before reaching the snapshot (κ, code).
Note also that Arising(M ∗ M′) catches snapshots at the beginning of a method

execution. Therefore, if a method were to temporarily set balance to a negative value,
but restored it to a positive value before returning, would not violate Pol 5.

The third policy Pol 3, stating “The mint can only inflate its own currency”, could mean
that the currency of a mint never decreases, or that the mint cannot affect the currency
of a different mint. As we shall see later on, the second interpretation is a corollary of
Pol 2; here we analyse the first interpretation:

M |= Pol 3
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀mnt :κ Mint.
M ∗M′, κ, code ; κ′, v

=⇒
dCurrency(mnt)cκ ≤ dCurrency(mnt)cκ′

Namely, we require that for any arising snapshot (κ, code), and any execution origi-
nating from (κ, code) and leading to a new configuration κ′, the Currency at the old
configuration is less than or equal to the currency at the new configuration. Therefore,
in the conclusion we talk about the values of functions in the old configuration (i.e.
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dCurrency(mnt)cκ) as well as those in the new configuration (i.e. dCurrency(mnt)cκ′ ).
Conclusions which are in terms of the old as well as the new state are common in stan-
dard approaches to program specification. Pol 3 describes a monotonic property, and is
therefore related to history invariants [14].

The first policy. Pol 1 states “With two purses of the same mint, one can transfer money
between them”. We can understand Pol 1 to mean that if p1 and p2 are purses of the
same mint, then the method call p1.deposit(p2,m) will transfer the money. In section
6, we shall present two other possible meanings for this policy. We write this first inter-
pretation of Pol 1 as:

M |= Pol 1A
iff

∀M′.∀ (κ, p1.deposit(p2,m)) ∈ Arising(M ∗M′).
∀p1, p2 :κ Purse. dp1.mintcκ = dp2.mintcκ ∧ dp2.balancecκ ≥ m

∧ M ∗M′, κ, p1.deposit(p2,m) ; κ′, v
=⇒

dp1.balancecκ′= dp1.balancecκ+m ∧ dp2.balancecκ′ = dp2.balancecκ−m.

The specification Pol 1A again ranges over all module extensions, M′. This policy is
stated as a sufficient condition, and is related to a Hoare triples,3. The quantification
over modules M′ requires that the code M′ can do nothing to break the behaviour of the
deposit method from M, thus either requiring the use of restrictive features (e.g. forcing
the method deposit to be final, or the class Purse to be final, or package confined), or
the use of contracts, where subclasses are implicitly expected to satisfy the superclass’s
contract,

The fourth policy Pol 4, “No one can affect the balance of a purse they don’t have”,
says that if some runtime configuration affects the balance of some purse prs, then the
original runtime configuration must have had access to the prs itself.

M |= Pol 4
iff

∀M′, (κ, code) ∈ Arising(M ∗M′). ∀prs :κ Purse.
M ∗M′, κ ; κ′, v

3 The corresponding Hoare triple would be

{ p1.mint = p2.mint ∧ p1.balance = k1 ∧ p2.balance = k2+m }
p1.deposit(p2,m)

{ p1.balance = k1+m ∧ p2.balance = k2 }
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∧ dprs.balancecκ 6= dprs.balancecκ′

=⇒
dprscκ ∈ Used(M ∗M′, κ, code)

Note that in contrast to the previous policies, and in contrast to the standard approach to
program specification, the premise of the policy is in terms of both the old configuration
(here dprs.balancecκ and the new configuration (here dprs.balancecκ′ ).

The second policy. Pol 2, stating “Only someone with the mint of a given currency
can violate conservation of that currency.”, is similar to Pol 4, in that it mandates that a
change (here a change in the currency) may only happen if the originating configuration
had access to an entity (here access to the mint).

M |= Pol 2
iff

∀M′, (κ, code) ∈ Arising(M ∗M′). ∀mnt :κ Mint.
M ∗M′, κ, code ; κ′, v

∧ dCurrency(mnt)cκ 6= dCurrency(mnt)cκ′

=⇒
dmntcκ ∈ Used(M ∗M′, κ, code)

Policy Characteristics The meanings of policies given in the previous section vary, but
they share common characteristics:

– They refer to a fixed module M, and all its legal extensions M′.
– They specify that execution of some code, under some conditions, guarantees some

conclusions.
– Both conditions and conclusions may refer to properties of the state before as well

as after execution.
– The code may be universally or existentially quantified, or explicitly given.

6 Alternative interpretations of the Mint Policies

Because our policy descriptions have precise semantics — unlike the informal English
policies from the original Mint example — a single English policy can have a number
of plausible interpretations in our notation. We explore some of these alternatives here;
we were surprised how many different interpretations we uncovered while analysing
this example.
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The first policy revisited. Pol 1 states “With two purses of the same mint, one can
transfer money between them”. In section 4.2 we proposed as possible meaning that the
call p1.deposit(p2) will transfer the money. This is perhaps an over-specification, as it
prescribes how the transfer is to take place — by calling the p1.deposit(p2) method. Al-
ternatively, we may want to require only that it is possible for the transfer to take place,
without constraining the program design. We can define a second, more general version
of the policy, which only requires the existence of a code snippet that performs the trans-
action, provided that purses p1 and p2 share the same mint, that p2 has sufficient funds,
and that they are both accessible in κ without reading private fields (AccPub(M, κ)).

Module M satisfies policy Pol 1B
iff

∀(κ, ) ∈ Arising(M). ∀p1, p2 :κ Purse.
dp1.mintcκ=dp2.mintcκ ∧ dp2.balancecκ ≥ m

∧ dp1cκ, dp2cκ ∈ AccPub(M, κ)
=⇒

∃ code. ∀M′.
M ∗M′, κ, code ; κ′, v

∧ dp1.balancecκ′= dp1.balancecκ+m
∧ dp2.balancecκ′ = dp2.balancecκ−m.

Note that this policy requires that execution of the code has the required properties for
all extending modules M′.

A third possible meaning of Pol 1 is that deposit can be called successfully only if
the two purses belonged to the same mint:

Module M satisfies policy Pol 1C
iff

∀M′. ∀(κ, p1.deposit(p2))∈Arising(M ∗M′).
M ∗M′, κ, p1.deposit(p2,m) ; κ′, v

=⇒
dp1.mintcκ = dp2.mintcκ

The requirement M∗M′, κ, p1.deposit(p2,m) ; κ′, v is crucial in the premise, in that
it ensures that execution does not lead to an error (our current definition of the language
Cj does not support exceptions). Note, also, that in this specification the conclusion is
only concerned with properties observable in the original configuration, κ, while the
premise is concerned with properties observable in κ as well as κ′. This reflects the
deny nature of the policy.
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Finally, a fourth, and more straightforward meaning of Pol 1 would mandate that
the balance of a purse p1 may change only if deposit was executed on p1 or with p1 as
an argument. This can be expressed as follows:

Module M satisfies policy Pol 1D
iff

∀M′.∀(κ, code) ∈ Arising(M ∗M′). ∀p1 :κ Purse.
M ∗M′, κ, code ; κ′, v

∧ dp1.balancecκ 6= dp1.balancecκ′

=⇒
∃κ′, s.t.

(κ′, ) ∈ Reach(M ∗M′, κ, code)
∧ κ′ = ( , ,Purse, deposit)

∧ (dthiscκ′ = dp1cκ ∨ dprscκ′ = dp1cκ)

The assertion (κ′, ) ∈ Reach(M∗M′, κ, code) ∧ κ′ = ( , ,Purse, deposit) guarantees
that execution of the snapshot (κ, code) will reach a point where it calls the method
deposit from Purse. The assertion (dthiscκ′ = dp1cκ ∨ dprscκ′ = dp1cκ) guarantees
that the receiver or the first argument of that method call will be dp1cκ.

The second policy revisited. Pol 2, “Only someone with the mint of a given currency
can violate conservation of that currency.” mandates that a change in the currency may
only happen if the originating configuration had access to the mint. In section 4.2 we
took “access to” to mean that the code executed eventually would read the mint object
(i.e. that the mint was in the set Used). We see three alternative interpretations for the
meaning of having access to:

1. dmntcκ ∈Used(M, κ, code), i.e. that execution of code in the context of κ will at
some point use the object mnt.

2. dmntcκ ∈AccAll(M, κ), i.e. that κ has a path from the stack frame to mnt which
involves any fields.

3. dmntcκ ∈ AccPub(κ, code), i.e. that κ has a path from the stack frame to mnt
which involves only public fields, or private fields from the same class as the current
receiver.

This means there are two further ways in which Pol 2 may be understood:

M |= Pol 2B
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀mnt :κ Mint.
M ∗M′, κ, code ; κ′, v



14

∧ dCurrency(mnt)cκ 6= dCurrency(mnt)cκ′

=⇒
dmntcκ∈AccAll(M ∗M′, κ)

M |= Pol 2C
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀mnt :κ Mint.
M ∗M′, κ, code ; κ′, v

∧ dCurrency(mnt)cκ 6= dCurrencyκ′(mnt)cκ
=⇒

dmntcκ∈AccPub(M ∗M′, κ)

Our interpretation of Pol 2 in section 4.2 uses the first choice. In [8], we prove
that MMint ∗ MPurse |= Pol 2A. Moreover, we prove lemmas which guarantee that
mnt :κ Mint and dmntcκ ∈ Used(M, κ, code) imply that dmntcκ ∈ AccAll(M, κ).
Ttherefore any code which satisfies Pol 2A also adheres to Pol 2B. This gives that
MMint ∗MPurse |= Pol 2A.

What about Pol 2C? It gives a stronger guarantee than Pol 2B, and therefore is
to be preferred over Pol 2B, however, MPurse ∗MMint does not satisfy Pol 2C. More
importantly, without the concept of package and package-local classes, or some concept
of ownership, it is impossible to write an implementation for Purse so that it satisfies
Pol 2C. The following example shows why:

1 class CentralBank {
2 private final Mint myMint = new Mint();
3

4 public void inflate() {
5 Purse tmpPurse = new Purse(myMint,1000000000)
6 }
7 }

A CentralBank has a mint. The inflate method creates a new temporary purse
containing a billion dollars from thin air — perhaps this method should have been
called quantitativeEasing. Now consider a client of a CentralBank object — the
finance minister say. The finance minister does not have a public access to the mint
(because the central bank is supposed to be independent!) so by Pol 2C she should not
be able to inflate the currency. If, however, the finance minister calls myCentralBank
.inflate then the currency will be inflated all the same.

Discussion We leave the question as to the “correct” meaning of the policies open. Our
contribution is the provision of the tools with which to give precise meaning to policies,
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and the clarification of the differences. However, the “correct” meaning is determined
by the use of the policies in the wider setting, for example, in the application of the
policies to prove properties of the use of the mint/purse system, e.g. in the escrow
example [21].

7 Related Work

Object capabilities were first introduced [22] seven years ago, and many recent studies
manage or verify safety or correctness of object capability programs.

Google’s Caja [25] applies sandboxes, proxies, and wrappers to limit components’
access to ambient capabilities. Sandboxing has been validated formally: Maffeis et al.
[16] develop a model of JavaScript, demonstrate that it obeys two principles of object
capability systems and show how untrusted applications can be prevented from inter-
fering with the rest of the system. Alternatively, Taly et al. [35] model JavaScript APIs
in Datalog, and then carry out a Datalog search for an “attacker” from the set of all
valid API calls. This search is similar to the quantification over potential code snippets
in our model. Murray and Lowe [26] model object capability programs in CSP, and use
a model checker to ensure program executions do not leak information.

Karim et al. apply static analysis on Mozilla’s JavaScript Jetpack extension frame-
work [12], including pointer analyses. Bhargavan et al. [3] extend language-based sand-
boxing techniques to support “defensive” components that can execute successfully
in otherwise untrusted environments. Meredith et al. [18] encode policies as types in
higher order reflective π-calculus.. Politz et al. [29] use a JavaScript typechecker to
check properties such as “multiple widgets on the same page cannot communicate.”
— somewhat similar in spirit to our Pol 4. Lerner et al. extend this system to ensure
browser extensions observe “private mode” browsing conventions, such as that “no
private browsing history retained” [15]. Dimoulas et al. [6] generalise the language
and typechecker based approach to enforce explicit policies, that describe which com-
ponents may access, or may influence the use of, particular capabilities.

The WebSand [4, 17] and Jeeves [40] projects use dynamic techniques to monitor
safe execution of information flow policies. Richards et al. [31] extended this approach
by incorporating explicit dynamic ownership of objects (and thus of capabilities) and
policies that may examine the history of objects’ computations. While these dynamic
techniques can restrict or terminate the execution of a component that breaches its se-
curity policies, they cannot guarantee in advance that such violations can never happen.
While information flow policies are concerned with the flow of objects (and thus also
capabilities) across the program code, our work is more concerned with the identifica-
tion of the objects which protect the services.

A few formal verification frameworks address JavaScript’s highly dynamic, prototype-
based semantics. Gardner et al. [9] developed a formalisation of JavaScript based on
separation logic and verified examples. Xiong and Qin et al. [39, 30] worked on simi-
lar lines. Swamy et al. [34] recently developed a mechanised verification technique for
JavaScript based on the Dijkstra Monad in the F* programming language. Finally, Jang
et al. [11] developed a machine-checked proof of five important properties of a web
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browser — again similar to our simple deny policies — such as “cookies may not be
shared across domains” by writing the minimal kernel of the browser in Coq.

8 Conclusions and Future Work

In this paper, we have advocated that capability policies are necessary for reasoning
about programs using object capability security. We have argued that capability policies
are program centred, fine grained, open, and contain necessary as well as sufficient
conditions.

These novel features of the policies require novel features in specifications. We
have proposed execution observations, and developed a capability specification style,
which incorporates universal and existential quantification over program code, explicit
naming of snapshots before, after and during execution, and their use in premises and
in conclusions. We have used our approach to specify most of the Mint example.

We have shown how efforts at specifying policies precisely can uncover ambiguities
in policies’ interpretations, and can help find additional implicit policies that can be
made explicit. We have proposed another five policies for the Mint, and formulated
then in our language.

In further work, we want to refine the execution observations, to develop a programmer-
friendly notation for specifications, to consider the specification of the further policies
we uncovered as well as other policies from the literature, and to extend our toy lan-
guage to encompass further salient programming language features. We also want to
develop a formal logic to support reasoning about code’s adherence to capability poli-
cies. We need to model trust (or the lack of it) between components, so we can model
systems composed both trusted and untrusted code. Finally, inspired by the original
Mint work, we want to consider the specification and verification of capabilities in
other programming languages, in particular, languages without static types.
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