
Classifying Relationships Between Object-Oriented Design Patterns

James Noble
Microsoft Research Institute

Macquarie University
Sydney, Australia

kjx@mri.mq.edu.au

Abstract

Since the publication of the Design Patterns book,
a large number of object-oriented design patterns
have been identified and codified. As part of the pat-
tern form, object-oriented design patterns must indi-
cate their relationships with other patterns, but these
relationships are typically described very briefly, and
different collections of patterns describe different re-
lationships in different ways. In this paper we de-
scribe and classify the common relationships between
object oriented design patterns. Practitioners can use
these relationships to help them identity those pat-
terns which may be applicable to a particular prob-
lem, and pattern writers can use these relationships
to help them integrate new patterns into the body of
the patterns literature.

1. Introduction

A design pattern is a “description of communicat-
ing objects and classes that are customised to solve a
general design problem in a particular context” [12,
p.3]. Designers can incorporate patterns into their
program to address general problems in the structure
of their programs’ designs, in a similar way that al-
gorithms or data structures are incorporated into pro-
grams to solve particular computational or storage
problems. A growing body of literature catalogues
patterns for object-oriented design, including refer-
ence texts such as Design Patterns [12] or Patterns
of Software Architecture [5], and patterns compendia
such as the Pattern Languages of Program Design se-
ries [6, 28, 17].

Design patterns do not stand alone — rather each
pattern is related other patterns in a variety of ways,
and the text of each pattern should describe these re-
lationships. Unfortunately, each pattern text book or
catalogue describes relationships between patterns us-

ing its own idiomatic classification of these relation-
ships. This inconsistency can make patterns difficult
to use, because a pattern’s relationships to other pat-
terns is an important part of a pattern’s definition, and
inconsistent definitions make it difficult for readers to
understand the relationships intended by any particu-
lar description.

In this paper, we present a classification scheme
for the relationships between design patterns. This
scheme is based on three primary relationships be-
tween patterns — a pattern uses another pattern, a pat-
tern refines another pattern, or a pattern conflicts with
another pattern. The paper also describes a number of
secondary relationships between patterns, such as a
pattern being similar to another pattern, or one pattern
combining with another pattern, and shows how these
secondary relationships can be expressed in terms of
the primary relationships.

This paper is organised as follows. Section 2
briefly reviews object-oriented design patterns and the
major constituents of the pattern form. Section 3 de-
scribes the structure of our classification scheme, and
enumerates the relationships we describe. Section 4
then presents the primary relationships in our classifi-
cation scheme in detail, and Section 5 describes how
the secondary relationships between patterns can be
expressed in terms of the primary relationships. Sec-
tion 6 concludes the paper.

2. Object-Oriented Design Patterns

A design pattern is an abstraction from a con-
crete recurring solution that solves a problem in a
certain context [12, 5]. Design patterns were devel-
oped by an architect, Christopher Alexander, to de-
scribe techniques for town planning, architectural de-
signs, and building construction techniques and de-
scribed in Alexander’s A Pattern Language � Towns,
Building Construction [1]. Design patterns were first
applied to software by Kent Beck and Ward Cunning-

1



ham to describe user interface design techniques [4],
and were then popularised by the Design Patterns cat-
alogue, which described twenty-three general purpose
patterns for object oriented design. Since Design Pat-
tern’s publication, a large number of other patterns
have been identified and published [5, 3, 2, 6, 28, 17].
More recently, different types of patterns have been
identified, including Composite Patterns [25] and Pat-
tern Tilings [14].

A design pattern is written in pattern form, that is
in one of a family of literary styles designed to make
patterns easy to apply. A design pattern has a name
to facilitate communication about programs in terms
of patterns, a description of the problems for which
the pattern is applicable, an analysis of the forces ad-
dressed by the pattern and the important considera-
tions and consequences of using the pattern, a sam-
ple implementation of the pattern’s solution, and ref-
erences to known uses of the pattern.

Most importantly from the perspective of this pa-
per, a pattern lists other patterns which are in some
way related. The problem addressed by this paper is
that different collections of patterns describe different
relationships between patterns in different ways. For
example, the relationships between object-oriented
design patterns were first analysed by Walter Zimmer,
who studied the relationships between patterns in De-
sign Patterns[12]. According to Zimmer [31], there
are three relationships — one pattern can use another
pattern; a variant of one pattern can use another pat-
tern; and one pattern can be similar to another pattern.
The Design Patterns Smalltalk Companion includes
these three relationships, but introduces a fourth re-
lationship — one pattern can be a specialisation of
another pattern [2]. Patterns of Software Architec-
ture describes three kinds of relationships between
patterns, including Zimmer’s first relationship and in-
troducing two more — one pattern can be a variant
of another pattern; and two patterns can be used in
combination to solve a problem [5]. Meszaros and
Doble’s Patterns for Pattern Writing [18] identify five
relationships between patterns — a pattern can use, be
used by, generalise, specialise, or provide an alterna-
tive to another pattern. Other patterns or collections of
patterns describe other relationships between patterns
and recent work has discussed compositional and re-
flexive relationships between patterns [27, 25, 14].

We are engaged in a long-term project called
“Found Objects” that aims to organise patterns for
object-oriented design [19, 20, 21, 23]. As part of
this project, we have analysed existing patterns to de-
termine their relationships to other patterns. We have
identified new patterns, and then related these patterns
to the existing patterns in the literature. The clas-

sification scheme for relationships between patterns
presented in this paper was developed to support the
wider goal of organising patterns in the Found Ob-
jects project, by identifying the most important rela-
tionships between patterns.

3. Classifying Relationships between
Patterns

Figure 1 illustrates the structure of our classifica-
tion scheme for relationships between patterns. The
classification scheme is based on three primary re-
lationships between patterns — one pattern uses an-
other pattern; a more specific pattern refines a more
general pattern, and one pattern conflicts with another
pattern when they both propose solutions to a similar
problem. These three relationships are described in
Section 4.

The scheme also describes a number of secondary
relationships between patterns, such as a pattern be-
ing a variant of another pattern, two patterns being
similar, or two patterns combining to solve a prob-
lem. Section 5 presents the secondary relationships,
and describes how they can be expressed in terms of
the primary relationships.

4. Primary Relationships

Our classification scheme is based on three pri-
mary relationships between patterns — uses, refines,
and conflicts. In this section we outline these three re-
lationships, present examples of well-known patterns
which exhibit these relationships, and provide a sim-
ple graphical notation which can illustrate these rela-
tionships between groups of patterns.

4.1. Uses

Almost every pattern form records the patterns
which each pattern uses — that is, patterns which
help another pattern. Typically, a pattern which has
a larger or more global impact on a design will use
patterns which have smaller or more local impacts.

The uses relationship is the only explicit relation-
ship between patterns in Alexander’s original archi-
tectural patterns [1]. Alexander’s patterns are organ-
ised into a pattern language based on this relation-
ship — that is, the patterns are organised so that each
pattern is followed by the other smaller-scale patterns
which it uses, and which should be considered once
the large-scale pattern has been chosen. For example,
the Small Public Squares pattern uses the Pedestrian
Density, Activity Pockets, and Something Roughly in

2



Primary Relationships
Uses One pattern uses another pattern [1, 12, 31]
Refines A specific pattern refines a general pattern [2, 18]
Conflicts A pattern addresses the same problem as another pattern [8, 3]
Secondary Relationships
Used by A smaller pattern is used by a larger pattern [1]
Refined by A general pattern is refined by a specific pattern [18]
Variant A variant pattern refines a more well-known pattern [5]
Variant Uses A variant of one pattern uses another pattern [31]
Similar A pattern is similar to another pattern [31]
Combines Two patterns combine to solve a single problem [5, 8]
Requires A pattern requires the solution of another pattern [7]
Tiling A pattern uses itself [14]
Sequence of A sequence of patterns from the simple to the complex [26, 11]
Elaboration

Figure 1. The Structure of the Classification Scheme

the Middle patterns. The Small Public Squares pattern
is a larger scale pattern because it describes the design
of the entire square; the other patterns are smaller be-
cause they describe the pedestrian traffic in the square,
the edges of the square, and the centre of the square
respectively.

Software pattern forms explicitly record this rela-
tionship — often mixed with others — typically in
a section titled Related Patterns [12] or See Also [5].
For example, the Observer pattern that maintains con-
sistency between multiple views of objects uses the
Mediator pattern to coordinate updates of multiple ob-
jects. In turn, the Mediator pattern uses the Singleton
pattern to ensure that Mediators are not duplicated un-
necessarily. This is most important relationship in
Zimmer’s analysis of the relationships between de-
sign patterns [31] and is explicitly represented in ev-
ery published collection of design patterns [6, 28, 17].

The uses relationship can be used to simplify the
descriptions of more complex patterns by composi-
tion. Riehle has defined a composite design pattern
as “any design pattern which is best described as the
composition of further patterns” [25]. For example,
Riehle describes how the Model-View-Controller pat-
tern [5] can be seen as a composite of the Observer,
Strategy, and Composite patterns: the Observer pat-
tern connects a View to its Model, the Strategy pattern
arranges for a Controller object to handle input on be-
half of a View, and the Composite pattern provides a
hierarchy of Views. Similarly, Dyson and Anderson
have written a collection of small patterns which de-
scribe in detail how to apply the State pattern [8].

The important point here is that a composite pat-
tern uses the smaller-scale patterns of which it is com-
posed. The description of a composite pattern must

describe how these patterns are combined into the
composite pattern, for example, by using role dia-
grams [25]. Following Zimmer [31], Figure 2 shows
how the structure of uses relationships can be illus-
trated graphically.

Model-View-Controller Strategy

Composite

Observer

Figure 2. The uses relationship in the
Model-View-Controller Pattern

4.2. Refines

The second primary relationship in our classifica-
tion scheme is that one pattern refines another pattern,
that is, one pattern is a specialisation of a more gen-
eral, more simple, or more abstract pattern.

A specific pattern refines a more abstract pattern if
the specific pattern’s full description is a direct exten-
sion of the more general pattern. That is, the specific
pattern must deal with a specialisation of the problem
the general pattern addresses, must have a similar (but
more specialised) solution structure, and must address
the same forces as the more general pattern, but may
also address additional forces. To make an analogy
with object-oriented programming, the uses relation-
ship is similar to composition, while the refines rela-
tionship is similar to inheritance.

For example, in A Pattern Language the Sequence

3



of Sitting Spaces pattern refines the Intimacy Gradi-
ent Pattern [1], even though this is not identified ex-
plicitly in the text. The Intimacy Gradient pattern de-
scribes how a house should be designed so that the
public rooms are closest to the main entrance, while
the private rooms are furthest from the door, while
the Sequence of Sitting Spaces pattern describes how
chairs, alcoves and window seats should be designed
to form an Intimacy Gradient.

This refinement relationship is also found in soft-
ware patterns. For example, in Design Patterns the
Factory Method pattern refines the Hook Method pat-
tern [12]. Hook Methods allow subclasses to override
parts of the behaviour of Template Methods defined
in superclasses. One force addressed by the Hook
Method pattern is the desirability of naming conven-
tions to make clear to later programmers that a par-
ticular method is in actually a Hook Method. Fac-
tory Method refines Template Method, because Fac-
tory Methods are effectively Hook Methods which are
used by subclasses to specify the class of an object
the Template Method in the superclass will create. In
the description of the Factory Method pattern, one of
the main forces addressed by the pattern is the use
of naming conventions to illustrate the a particular
method is in fact a Factory Method.

The refines relationship can be used to identify new
abstract patterns by generalisation — existing pat-
terns which have structure in common can be seen as
refinements of an abstract pattern which factors out
the commonalities. For example, the Iterator pattern
[12], the Type-safe Session pattern [24], the Accumu-
lator pattern [30] and the Pen objects used in many
graphic systems [13] all refine the Curried Object ab-
stract pattern [20]. Figure 3 illustrates this refinement
relationship for the Curried Object pattern.

Iterator

Accumulator

Pen

Typesafe Session

Object
Curried

Figure 3. The refines relationship in the
Curried Object Pattern

The Curried Object pattern describes how one
client object can provide a simplified interface to an-
other server object by using local state to store infor-
mation about the client’s use of the server object, and

adding this information into the messages it receives
before forwarding them on to the Server. Conceptu-
ally, an Iterator provides an interface to a collection
by managing a “current position” in the collection,
and when the iterator is used, the current position is
passed into the collection along with any other argu-
ments to the message. Similarly, a Pen maintains a
“current position” on a graphic medium which repre-
sents the position of the graphics pen, and the Accu-
mulator maintains the “current arguments” to be used
to initialise the server object.

The Design Patterns Smalltalk Companion [2] also
introduces a number of abstract patterns such as Shar-
ing and OO Recursion, and describes other patterns as
refinements of these abstract patterns. For example,
Flyweight refines Sharing, and Chain of Responsibil-
ity refines OO Recursion.

4.3. Conflicts

The third fundamental relationship between pat-
terns in our classification scheme is that they conflict
— that is, that two or more patterns provide mutually
exclusive solutions to similar problems. Most pattern
forms do not provide an explicit section to record this
relationship, but it is often expressed in the related
pattern section along with the uses relationship.

For example, Kent Beck’s Smalltalk Best Practice
Patterns [3] includes an excellent example of two con-
flicting patterns which both address the problem of
how a Smalltalk programmer should access an ob-
ject’s instance variables. The Direct Variable Access
pattern presents one solution — that instances vari-
ables should be accessed directly, because this is easy
to read and compiles efficiently. In contrast, the Indi-
rect Variable Access pattern presents a diametrically
opposed solution — that instances variables should
only be accessed indirectly, via accessor methods, be-
cause this makes it easy to change the representation
of the variable without affecting code that uses it. Fig-
ure 4 illustrates this relationship using the same nota-
tion as Dyson and Anderson [8].

Indirect Variable Access

Direct Variable Access

Figure 4. The conflicts relationship in the
Variable Patterns

Considering patterns from Design Patterns, the

4



Decorator pattern conflicts with the Strategy pattern
in that both patterns can be used to modify the be-
haviour of other objects — for example, both patterns
have been used to add graphical borders or icons to
window objects in different window system frame-
works [12, p.180]. The Prototype and Factory Method
patterns also conflict, because they provide two alter-
native solutions to the problem of subclasses redefin-
ing the classes of objects created in superclasses.

When reading or applying a pattern language, this
relationship can be exploited in two ways — when
looking for patterns, if a pattern seems as if it may be
applicable, then the conflicting patterns should be ex-
amined because they present alternative choices, but
once one pattern has been chosen, the other conflict-
ing patterns can be ignored.

It is interesting to note that Alexander’s pattern
language does not use this relationship explicitly, in-
deed, Alexander claims every pattern can be used with
any other pattern [1]. In practice, Alexander’s pattern
language includes a number of conflicting patterns,
for example the House for a Small Family, House for
a Couple, and House for One Person patterns describe
three mutually exclusive kinds of houses.

5. Secondary Relationships

In describing the relationships between patterns,
pattern writers often use a number of other relation-
ships between patterns. We classify these relation-
ships as secondary relationships, because we have
been able to express them in terms of the primary re-
lationships. In this section we present the secondary
relationships we have classified. Some of these rela-
tionships, such as used by and refined by, are simply
inverses of primary relationships, but other relation-
ships, such as variant of and combines with, are more
complex.

5.1. Used By

The used by relationship is the inverse of the uses
relationship, and can be analysed in the same way as
that relationship. For example, because Mediator uses
Singleton, Singleton is used by Mediator [12]. Simi-
larly, Iterator is used by Interpreter and Visitor.

Some pattern forms, including Alexander’s, ex-
plicitly include a section to record the used by rela-
tionship, to give the context of more general patterns
within which a particular pattern is likely to be in-
stantiated. Other pattern forms occasionally record
this relationship within the related patterns sections
or omit it all together.

5.2. Refined By

The refined by or generalises relationship is the in-
verse of the refines relationship, and can be analysed
in the same way as that relationship. For example, if
Factory Method refines Template Method, then Tem-
plate Method is refined by Factory Method, and so
on.

Most existing pattern forms only record the refined
by relationship occasionally, if at all.

5.3. Variants

A pattern is a recurring solution to a design prob-
lem. Because every problem is different, a pattern
will be instantiated differently every time it appears.
In practice, some kinds of problems and solutions will
occur more regularly than others, so some ways of in-
stantiating patterns are more common in practice than
others. These common patterns of instantiation are
called pattern variants, and some pattern forms, in
particular Patterns of Software Architecture, explicitly
identify pattern variants, either as separate patterns or
as parts of other main patterns [5].

We decompose the variant relationship by treating
each variant as a separate pattern. Not all variations
are sufficiently important to be identified explicitly as
variants in the language — but where variants are dig-
nified with a particular name, or are substantially dif-
ferent from the main pattern, that is they extend the
main pattern’s structure or make different tradeoffs
between forces, and , then they are worth document-
ing as variant patterns in their own right.

This decomposition makes clear that the variant re-
lationship is used in two distinct ways in the patterns
literature. Most pattern variants are solution variants,
that is, they provide alternative solutions to the same
problem, as described above. A few pattern vari-
ants are problem variants, that is, they describe how
a single pattern can provide a solution to a number
of different problems. We analyse the relationships
between problem and solution variants differently, as
follows.

5.3.1 Solution Variants

Most pattern variants describe variant solutions to a
common problem. For example, the Adaptor pattern
has two main variant solutions — a Class Adaptor and
an Object Adaptor [12]. The Adaptor pattern “con-
verts the interface of an

�
Adaptee � class into another

�
existing incompatible Target � interface clients expect.
Adaptor lets classes work together that couldn’t oth-
erwise, because of incompatible interfaces” (Design

5



Adaptor

Object Adaptor Pluggable Adaptor

Two-way AdaptorClass Adaptor

Figure 5. Adaptor pattern variants

Patterns [12, p. 139]). In this way, the Adaptee class
can be used as a server by client objects which ac-
cess it through the Target interface, without requiring
modification of the client objects. The two variants
of the adaptor problem provide two solutions to this
problem: a class adaptor extends the Adaptee class so
that it implements both its own interface and the Tar-
get interface, typically by using multiple inheritance,
while an object adaptor introduces a new object which
implements the Target interface by delegating to the
Adaptee. Class and Object Adaptors trade off forces
in different ways — for example, a class adaptor can
change the interface of only one concrete Adaptee
class, while an object adaptor can adapt an Adaptee
class and all of its subclasses. In the Design Patterns
book, these two adaptor variants are described within
the text of the overall adaptor pattern, but have indi-
vidual structure diagrams, consequences, implemen-
tation issues, and sample code.

The Design Patterns book also describes another
two variants of the Adaptor pattern, although in less
detail than the Class Adaptor and Object Adaptor. A
Pluggable Adaptor builds interface adaption into the
Target object so that it can be configured to support a
range of Adaptee interfaces, and a Two-way Adaptor
is a Class Adaptor which adapts two Adaptee inter-
faces to each other — that is, the two interfaces are si-
multaneously play the roles of the Target and Adaptee
interfaces in the Class Adaptor pattern.

We decompose the relationship between solution
variant patterns into the refines and conflicts relation-
ships. We treat a solution variant as a separate pattern
which refines the main pattern and conflicts with the
other variants. A solution variant pattern refines the
main pattern because solution variants provide spe-
cialised solutions to the problem addressed by the
main pattern, and conflicts with other variants because
solution variants are usually mutually exclusive.

Figure 5 illustrates the relationships in a pattern
language fragment containing the Adaptor pattern and
its variants. The main Adaptor pattern introduces the
common problem — adapting the interface of an ob-

ject. The four solution variants are refinements of the
main Adaptor pattern, linked by the refines relation-
ship — a Class Adaptor is a more specific solution to
the general problem of interface adaption, as is an Ob-
ject Adaptor, and a Pluggable Adaptor is a more spe-
cific version of an Object Adaptor. Class and Object
Adaptor are conflicting patterns, because they are mu-
tually exclusive solutions to any given adaption prob-
lem. The Two-way Adaptor also uses the main Adap-
tor pattern: this is discussed in Section 5.8 below.

5.3.2 Problem Variants

Although most pattern variants describe variant so-
lutions to a common problem, some pattern variants
describe variant problems which share a common so-
lution. For example, the Proxy pattern is described
both in Design Patterns and Patterns of Software Ar-
chitecture, and each description introduces a number
of variants — four in Design Patterns, and these four
plus another three in Patterns of Software Architec-
ture. The Proxy pattern is used to “Provide a surro-
gate or placeholder for another object

�
the Subject � to

control access to it” (Design Patterns [12, p. 207]). A
Proxy object provides the same interface as the orig-
inal Subject object, but intercepts any messages di-
rected to the Subject. A Proxy object can therefore be
used in place of the Subject by a client which are de-
signed to access the Subject, without the client being
aware the Subject has been replaced by a Proxy.

Because a Proxy intercepts any message directed
to its Subject, a Proxy can handle or override these
message. The main Proxy pattern describes how these
messages can be intercepted — that is, it describes
a solution — but it does not describe a single prob-
lem which this solution resolves. Rather, the many
variants of the Proxy pattern each describe a different
problem to which Proxy provides the solution. For
example, a Virtual Proxy creates expensive objects on
demand so that they will only be created if necessary,
a Remote Proxy is a local representative for an object
on a remote machine so that other local clients can ac-

6



Remote Proxy
Protection Proxy
Cache Proxy
Synch Proxy
Counting Proxy
Virtual Proxy
Firewall Proxy

Member Access Proxy
DoesNotUnderstand Proxy
Delegating Proxy

Interprocess Proxy
Intermachine Proxy

Proxy

Figure 6. Proxy pattern variants

cess the object without knowing about details of inter-
process communication, and a Protection Proxy pro-
vides a level of security by checking the access rights
of the client sending messages to the proxy. Patterns
of Software Architecture makes this explicit in its in-
troduction to the Proxy Pattern — “Introducing such a
placeholder can serve many purposes, including en-
hanced efficiency, easier access and protection from
unauthorised access” [5, p. 263].

As with the Adaptor pattern, we decompose the
Proxy pattern into a number of related patterns, form-
ing a pattern language fragment [23]. The main Proxy
pattern introduces the common solution — providing
a placeholder for an object. Each problem variant
is then captured as a separate pattern which uses the
main Proxy pattern. The main pattern uses rather than
refines the variants because the main pattern is a com-
mon solution employed by each variant, rather than
a specialisation of every variant. We do not need to
record a conflicts relationship between different prob-
lem variants, because these variants all address differ-
ent problems.

In fact, Proxy also has a number of solution vari-
ants, so the relationships between the various Proxy
pattern variants are more complex than this. Figure 6
shows the overall structure of the Proxy fragment.
Each solution variant refines the main Proxy pattern
and conflicts with mutually exclusive variants.

5.4. Variant Uses

Zimmer [31] distinguishes between two forms of
the uses relationship, “X uses Y in its solution” —
where all instantiations of pattern X use pattern Y —
and “Variant of X uses Y in its solution” — where
some instantiations of pattern X will use pattern Y,
and others will not. For example, an instantiation
of the Visitor pattern will always use the Double-
Dispatch pattern, but may or may not use the Itera-
tor pattern — in Zimmer’s terms, a variant of Visitor
would use Iterator. Similarly, a variant of Composite
may use Visitor or Iterator [31].

Our pattern classification scheme does not make

this distinction, rather, we use only the primary uses
relationship. There are several reasons why we han-
dle variant uses in this way. The first reason is philo-
sophical — since patterns are ultimately guidelines or
rules of thumb, and are meant to be tailored to suit
a specific problem and the context of their use, any
part of a pattern may be omitted or varied when the
pattern is instantiated [1, 12]. The second reason is
that we identify the important pattern variants explic-
itly, treating them as first class patterns as described
in Section 5.3 above, so that this relationship can be
classified as a full uses relationship with the variant
pattern, rather than a variant uses relationship with
the main pattern, assuming the variation is significant.
The third reason is pragmatic — we are interested in
classifying the relationships between patterns to help
us organise patterns, and the uses relationship must be
considered whether the use is mandatory or optional.
Treating the two relationships in common when or-
ganising patterns into a pattern language or system
does not preclude the text of individual patterns from
making finer distinctions.

5.5. Similarity

Zimmer also introduces a similarity relationship
between patterns, “ X is similar to Y” [31]. This rela-
tionship is derived from comments in the related pat-
terns section of Design Patterns, and it seems to be a
catch-all category for relationships between patterns
which are not captured by the other relationships.

This relationship is often used to describe patterns
which are similar because they address the same prob-
lem, that is, some of the patterns Zimmer would clas-
sify as being similar we would classify as conflicting,
such as Abstract Factory, Prototype, and Builder. The
similarity relationship seems to be much broader that
just conflicts, however, as it is also used to describe
patterns which have a similar solution technique, such
as Strategy and State, or which are occasionally used
together, such as Flyweight and Strategy.

We express these kind of relationships using more
specific arrangements of primary relationships as ap-

7



propriate. For example, patterns which have similar
solution techniques can be treated as solution variants,
that is, as refining a more abstract pattern (see 5.3.1),
and patterns which are used together can be related by
the primary uses relationship.

5.6. Combines

Patterns of Software Architecture [5] and Paul
Dyson’s Patterns for Abstract Design [7] introduce
a combines relationship between patterns, where two
patterns combine to solve a single problem which is
not addressed directly by any other pattern. For ex-
ample, from Patterns of Software Architecture, the
Proxy and Forwarder-Receiver patterns can be com-
bined to implement a transparent peer-to-peer com-
munication service [5, p. 17]; from Patterns for Ab-
stract Design, the Domain Abstraction Classes and
Framework Implementation classes patterns can be
combined to implement a software framework, and
the Abstract Mechanistic Behaviour and Abstract Sig-
nificant Roles patterns can be combined to implement
an abstract design.

In simple cases, we can model this relationship di-
rectly by the uses primary relationship, where one pat-
tern is a larger scale pattern that addresses the whole
problem and the other pattern is a smaller scale pat-
tern which provides a solution to a subproblem. For
example, in the Proxy and Forwarder-Receiver pat-
tern combination, the Forwarder-Receiver pattern de-
scribes how to implement a communications substrate
which is used by the Proxy pattern. We classify these
patterns so that the Proxy pattern uses the Forwarder-
Receiver pattern.

In more complex cases, such as the two other ex-
amples above, we consider that this relationship really
points to a lack in the patterns themselves — although
these patterns combine to provide a solution to a prob-
lem, the actual problem and the way these patterns
combine to solve it is being represented by the com-
bines relationship, and is not captured explicitly in a
pattern. In these cases, we ensure that the problem is
identified explicitly by locating an existing pattern or
introducing a new pattern which addresses the prob-
lem directly, outlines the whole solution, and uses the
patterns that combine to solve it.

For example, the Domain Abstraction Classes and
Framework Implementation classes patterns combine
to implement a software framework. The Patterns for
Abstract Design include a Software Framework pat-
tern which uses the other two patterns, so the com-
bines relationship is already expressed by the uses re-
lationship here. The Abstract Mechanistic Behaviour
and Abstract Significant Roles patterns combine to

implement an abstract design, but Dyson does not in-
clude an “Abstract Design” pattern. To model this re-
lationship, we would introduce Abstract Design as an
explicit pattern which uses the Abstract Mechanistic
Behaviour and Abstract Significant Roles patterns.

The underlying intuition here is that patterns use
a number of other patterns to provide the solution to
the problem they address. All patterns can be con-
sidered to combine with every other pattern which
is used-by another (often larger-scale) which pattern
uses them, to solve the problem the larger-scale pat-
tern addresses.

5.7. Requires

Patterns for Abstract Design also introduces a re-
quires relationship between patterns — one pattern
requires a second pattern if the second pattern is a
prerequisite for solving the problem addressed by the
first pattern [7]. For example, the Software Frame-
work, Abstract Significant Roles and Abstract Mech-
anistic Behaviour patterns all require the Defined Do-
main pattern — that is, the Defined Domain pattern
must have been applied before the other patterns can
be applied successfully.

In general, we consider that this relationship can
be modelled quite adequately by the uses primary re-
lationship. The distinction between requires and uses
seems to be based primarily on the order in which the
patterns should be applied — if one pattern requires
a second pattern, the second pattern must be applied
before the first pattern can be used to produce its so-
lution. This is also the case with the general uses re-
lationship, since if one pattern uses a second pattern,
the second pattern must be applied before the solution
described by the first pattern will be complete. For
this reason, we model the requires relationship with
the primary uses relationship.

5.8. Tiling

Some patterns can be applied repeatedly to solve
a single problem. Lorenz has identified some partic-
ular examples of this as Pattern Tilings [14] — for
example, Interpreter and Visitor patterns can be in-
stantiated repeatedly to implement a reflexive system.
Other patterns can also be tiled — for example, an
Iterator can iterate over other iterators [29], and the
Two-Way Adaptor pattern variant described in Sec-
tion 5.3.1 above can be seen as a tiling of the Adaptor
pattern, because the Class Adaptor pattern is applied
twice, once for each direction.

We express pattern tiling by introducing additional
variants of the patterns which are applied reflexively.

8



Two-way Composite

Cascade

Two-Dimensional Composite

Lambda Composite

Composite

Figure 7. Composite pattern tiling variants

As with more typical solution variants, a reflexive
variant refines the main pattern, however a reflexive
variant also uses the main pattern. With this approach,
a pattern which can be tiled is simply one which uses
itself, and pattern tiling does not need to be treated as
a “fundamental reflexive relationship” within the pat-
tern language [14].

Introducing explicit tiling variant patterns can also
make clear that complex patterns can be tiled in a
number of different ways. For example, Figure 7
shows that the Composite pattern can be tiled in four
different ways. Briefly, a Two-Way Composite de-
scribes a graph structure with pointers in both direc-
tions, which can be used in dataflow programming
[16]; a Cascade is tree of composites where each layer
in the tree contains different types of objects [10]; a
Two-dimensional composite is a composite where ev-
ery component node acts as a Root node in a second
composite, as in a tree of heavyweight widgets each
containing a tree of lightweight gadgets [9]; and a
Lambda Composite involves two superimposed com-
posites, where one composite provides a more ab-
stract view of the second composite, as used in the
Trestle window system [15]. Each of these variants
both refines and uses the main Composite pattern.

5.9. Sequences of Elaboration

We recognise a sequence of elaboration as a se-
quence of patterns, which begins with small, simple,
low-level patterns, with few negative consequences,
and proceeds through a number of patterns of increas-
ing complexity to large scale architectural patterns
which have large negative consequences for the com-
plexity and performance of the system. Often a stand-
alone collection of patterns or a fragment of a pattern
language will form a sequence of elaboration.

For example, the Do-It-Yourself Reflection pattern
collection [26] contains a sequence of patterns from
the small, local Property List pattern which affects a

single object, via the Anything pattern to the larger
scale Configured Object Registry. The Object Sys-
tem pattern [22] completes this sequence by describ-
ing how Do-It-Yourself reflection can be used to de-
fine the architecture for an entire system. Many chap-
ters in Fowler’s Analysis Patterns are structured as se-
quences of elaboration [11].

Sequences of elaboration are quite adequately de-
scribed by the primary relationships between the pat-
terns in the sequence — typically, the smaller patterns
in the sequence are refined by the larger patterns, and
the larger patterns use the smaller patterns in the se-
quence. These relationships imply opposite orderings
on the patterns when the sequences (see Figure 8).

Property List

Object System

Configured Object Registry

Anything

Figure 8. Sequence of Elaboration

The uses relationship is typically ordered from a
composite pattern to a pattern which uses it — in se-
quences of elaboration, from larger patterns to smaller
patterns. In contrast, the refinement relationship is
typically ordered from more general patterns to more
specialised patterns — in sequences of elaboration,
this implies that the more general and more applicable
small scale patterns should be presented first. Based
on our experience, and on the sequences of elabora-
tion we have found in the literature, we consider that
sequences of elaboration should treat the refines rela-
tionship as more important than the uses relationship,
and so sequences of elaboration should be presented

9



beginning with the simple patterns, and then proceed-
ing on to the more complex patterns.

6. Conclusion

In this paper, we have described how the relation-
ships between object-oriented design patterns can be
classified. Our classification scheme is based on three
primary relationships between patterns — a large
scale pattern uses a small scale pattern, a more spe-
cialised refines a more general pattern, and a pattern
conflicts with other patterns which provide different
solutions to the same problem. A variety of secondary
relationships between patterns — variant uses, simi-
larity, combination, generalisation, and so on — can
then be expressed in terms of the primary relation-
ships, sometimes requiring patterns to be decomposed
into variants or the introduction of extra higher level
patterns.

This classification scheme can be used to analyse
existing patterns, to organise them based on the anal-
ysis, and to improve new patterns which are being
written. First, existing patterns can be inspected, and
their interrelationships described using our classifica-
tion scheme — this paper provides numerous exam-
ples of such analysis. Second, the patterns themselves
can then be catalogued or classified based on their re-
lationships to other patterns — for example, we are
currently working on classifying the patterns from
Design Patterns into a pattern language based on the
patterns’ relationships [23]. Finally, if the relation-
ship of a new pattern to other patterns are described in
terms of this classification scheme, it should be easier
for readers of the new pattern to understand that pat-
tern’s relationships to other new or existing patterns.

Acknowledgements

Thanks to Geoffrey Outhred who suggested the
idea for this paper, and kindly commented on drafts.

References

[1] C. Alexander. A Pattern Language. Oxford University
Press, 1977.

[2] S. R. Alpert, K. Brown, and B. Woolf. The De-
sign Patterns Smalltalk Companion. Addison-Wesley,
1988.

[3] K. Beck. Smalltalk Best Practice Patterns. Prentice-
Hall, 1996.

[4] K. Beck and W. Cunningham. Using pattern lan-
guages for object-oriented programs. Technical
report, Tektronix, Inc., 1987. Presented at the
OOPSLA-87 Workshop on Specification and Design
for Object-Oriented Programming.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, and M. Stal. Pattern-Oriented Software Architec-
ture. John Wiley & Sons, 1996.

[6] J. O. Coplien and D. C. Schmidt, editors. Pattern Lan-
guages of Program Design. Addison-Wesley, 1996.

[7] P. Dyson. Patterns for Abstract Design. PhD thesis,
University of Essex, 1997.

[8] P. Dyson and B. Anderson. State objects. In Martin
et al. [17].

[9] P. Ferguson and D. Brennan. Motif Reference Manual.
O’Reilly & Associates, Inc., 1993.

[10] T. Foster and L. Zhao. Cascade. In PLOP Proceed-
ings, 1997.

[11] M. Fowler. Analysis Patterns. Addison-Wesley, 1997.
[12] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides.

Design Patterns. Addison-Wesley, 1994.
[13] A. Goldberg and D. Robson. Smalltalk-80: The

Language and its Implementation. Addison-Wesley,
1983.

[14] D. H. Lorenz. Tiling design patterns — a case study.
In ECOOP Proceedings, 1997.

[15] M. S. Manasse and G. Nelson. Trestle reference man-
ual. Technical Report 68, DEC Systems Research
Center, 1991.

[16] D.-A. Manolescu. A data flow pattern lanuguage. In
PLOP Proceedings, 1997.

[17] R. C. Martin, D. Riehle, and F. Buschmann, editors.
Pattern Languages of Program Design, volume 3.
Addison-Wesley, 1998.

[18] G. Meszaros and J. Doble. A pattern language for
pattern writing. In Martin et al. [17].

[19] J. Noble. Found objects. In EuroPLOP Proceedings,
1996.

[20] J. Noble. Arguments and results. In PLOP Proceed-
ings, 1997.

[21] J. Noble. Basic relationship patterns. In EuroPLOP
Proceedings, 1997.

[22] J. Noble. The object system pattern. In EuroPLOP
Proceedings, 1998.

[23] J. Noble. Organising patterns into languages: To-
wards a pattern language for object oriented design.
Submitted for publication, 1998.

[24] N. Pryce. Type-safe session. In EuroPLOP Proceed-
ings, 1997.

[25] D. Riehle. Composite design patterns. In ECOOP
Proceedings, 1997.

[26] P. Sommerlad and M. Rüedi. Do-it-yourself reflec-
tion. In EuroPLOP Proceedings, 1998.

[27] W. F. Tichy. A catalogue of general-purpose software
design patterns. In TOOLS USA 1997, 1997.

[28] J. M. Vlissides, J. O. Coplien, and N. L. Kerth, ed-
itors. Pattern Languages of Program Design, vol-
ume 2. Addison-Wesley, 1996.

[29] S. A. Yeates. Design of a garbage collector using de-
sign patterns. In TOOLS Pacific 25, 1997.

[30] P. M. Yelland. Creating host compliance in a portable
framework: A study in the use of existing design pat-
terns. In OOPSLA Proceedings, 1996.

[31] W. Zimmer. Relationships between design patterns.
In Pattern Languages of Program Design. Addison-
Wesley, 1994.

10


