
Becoming Agile: A Grounded Theory of Agile
Transitions in Practice

Rashina Hoda
Department of Electrical and Computer Engineering

The University of Auckland
Auckland, New Zealand
r.hoda@auckland.ac.nz

James Noble
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

kjx@ecs.vuw.ac.nz

Abstract—Agile adoption is typically understood as a one-off
organizational process involving a stage-wise selection of agile
development practices. This view of agility fails to explain the
differences in the pace and effectiveness of individual teams
transitioning to agile development. Based on a Grounded Theory
study of 31 agile practitioners drawn from 18 teams across
five countries, we present a grounded theory of becoming agile
as a network of on-going transitions across five dimensions:
software development practices, team practices, management
approach, reflective practices, and culture. The unique position of
a software team through this network, and their pace of progress
along the five dimensions, explains why individual agile teams
present distinct manifestations of agility and unique transition
experiences. The theory expands the current understanding of
agility as a holistic and complex network of on-going multi-
dimensional transitions, and will help software teams, their
managers, and organizations better navigate their individual agile
journeys.

Keywords-agile software development; transition; self-
organizing; teams; management; culture; theory; grounded
theory;

I. INTRODUCTION

Despite the wide-spread adoption and practice of agile
methods [38], [42], becoming agile continues to be a daunting
journey for many software teams [4], [31]. Adoption barriers
and challenges typically involve organizational culture [24],
[43], people [13], [15], [27], process [15], [43], and tools [41],
[31]. Software teams struggle with their first steps [12], [14],
[29]; trying to institute effective agile practices [6]; or simply
feeling ‘they are not there’ yet in their agile journey [20].
Successfully adopting agile methods is acknowledged to be
both demanding and time consuming [4], [31].

Researchers have proposed a number of structured agile
adoption frameworks [2], [3], [4], [22] based on elaborate
theoretical modeling and abstraction, but with little practi-
cal validation in industrial settings. Typically, these models
prescribe a simultaneous staged adoption of low-level de-
velopment practices and high-level agile values. While an
incremental adoption approach is supported by evidence from
industrial practice [1], there is no consensus on the proposed
adoption stages or their sequence across the various theoretical
models.

Furthermore, the current research focus on staged, struc-
tured adoption is often misaligned with the needs of the

industry looking for practical guidance on agile [31]. For
example, there is no clear explanation on why some teams
seem to be more ‘agile’ than others, even though they all claim
to follow agile development practices and have introduced
them incrementally. This leaves several open questions: What
aspects of software development are affected during industrial
agile adoptions? How do these different aspects interact in
practice? How can we explain the differences in the pace
and effectiveness of different software teams attempting to
become agile? To answer these questions, we need a holistic
understanding of what all it takes to be become a self-
organizing agile team — an understanding that is based on
empirical evidence and grounded in practice.

In this paper, we present a theory of software develop-
ment teams transitioning to agile development. The Theory
of Becoming Agile is based on a Grounded Theory study of
31 practitioners drawn from 18 development teams across
five countries. The theory explains agile transitions as an
ongoing, continuous, long-term transformation, rather than
clearly circumscribed stages of agile adoption. We find that
agile transitions involve complex networks of changes across
five dimensions: software development practices transitioning
from traditional to agile practices; team practices changing
from manager-driven to team-driven; the management ap-
proach transitioning from driving to empowering; the reflective
practices changing from being limited to becoming embedded
as a means of guiding continuous improvement; and culture
changing from hierarchical to open. Critically, the theory
explains that teams transition along these dimensions at dif-
ferent rates, and so can have different levels of agile practice
in different dimensions. Grounded in practical evidence, the
theory of becoming agile offers both a theoretical model for
further research, and practical guidance for software teams
undertaking transitions to agile development.

The rest of the paper is structured as follows: related work
is summarized in section II. The Grounded Theory method
and its application in this study are described with examples
in section III. The results describing transitions across the five
dimensions are presented in section IV. The inter-relationships
between the dimensions of the theory, its application and
verifiability, and comparison with related work are discussed
in section V. The paper concludes in section VI.



II. RELATED WORK

A. Adoption Challenges

A recent review of agile and scrum adoption challenges
reported four major themes: people, organization, project and
process [21]. The people-related adoption challenges included
team size [27], lack of effective communication [15], lack of
customer collaboration [13] and lack of experience with agile
methods [13], [43] among others. The organization-related
adoption challenges included cultural mismatch with agile
methods [19], [13], [43] and lack of capacity to change the or-
ganizational culture [24], [43]. The project-related challenges
included project size [24], [19] while the process-related
challenges included agility degree [15] and anti-patterns [43].

Industrial experience reports and empirical studies of indus-
trial practice continue to report challenges with initial adoption
[12], [14], [29], struggles with regular practice [6], and failed
attempts to adopt agile techniques [20]. Challenges of agile
transitions, such as those related to organizational culture,
management, people, and tools continue to be reported in
industrial practice [12], [31], [41]. At the same time, a number
of adoption frameworks have been proposed, summarized next.

B. Adoption Solutions

A systematic literature review of agile adoption [1] iden-
tified a number of structured agile adoption approaches [2],
[4], [3], [22], most being agnostic to specific agile methods
and focusing on high-level agile values and properties, for
example, flexibility and responsiveness.

Guided by the organization’s potential and readiness for
agile adoption, Sidky and Arthur [2] proposed a four-stage
process to systematically introduce the adoption of a pre-
defined set of agile practices, which has been viewed as
process-heavy and inflexible [17].

Qumer et al. [3] proposed an agile adoption and improve-
ment model (AAIM) consisting of six stages within three
blocks, and an agility measurement model. The levels of the
AAIM model suggest specific agile properties to be intro-
duced, e.g. speed, flexibility, and responsiveness in level one.
In another study, Qumer and Henderson-Sellers [4] proposed
an agile software solution framework (ASSF) consisting of
an agile toolkit aimed at facilitating a customizable and
combinatory agile adoption process.

A model presented by Sureshchandra and Shrinivasavadhani
[22] focuses on distributed contexts. They describe a four-
stage adoption process comprising of a first evaluation stage
to assesses the suitability of the project to a distributed context;
then two stages inception and transition, where concepts such
as self-organization and customer collaboration are introduced;
and finally a steady stage, which defines the completion of the
transition where teams take full ownership of work and are
completely self-organized.

Wufka and Ralph [30] proposed a preliminary process
theory to explain how the interplay between stakeholders (de-
velopers, management and users) drives the need for changes;
the iterations between recognition and response produce the

changes; and the changes take place within the interactions
between the team, the development process, and the software
artifacts. How well this process theory of agility explains the
practical experiences of industrial agile practitioners remains
to be studied.

Arguably the only empirically generated agile adoption and
transition framework was proposed by Gandomani and Nafchi
[40] resulting from their Grounded Theory study based on our
guidelines [33], [34]. It described the desired characteristics of
an applicable transition framework to be iterative, continuous,
gradual and business value based; and the key adoption and
transition activities as: practice selection, adaptation, assess-
ment, retrospective meeting and adjustment, modelling a plan-
do-check-act (PDCA) approach [44] to agile transitions.

Overall, prior research seems pre-dominantly concerned
with: defining the adoption stages, with a focus on evaluation
and introduction stages [2], [3], [4], [22]; the abstract, higher-
order properties or principles of agility (e.g. responsiveness,
adapting to change, speed) [3], [30]; and abstract theoretical
modeling [30] in some cases leading to some practical valida-
tion [2], [3]. And yet, pre-defined, stage-based adoption frame-
works may struggle to explain the acknowledged differences
in the pace and effectiveness of individual agile transitions [4].
Overall, the dominant research focus on theoretical modeling
seems to be mostly misaligned with the needs of the industry
looking for practical guidance on holistic agile transitions [31].

III. RESEARCH METHOD

We adopted the Grounded Theory (GT) method [8], [9]
and its various procedures for data collection, analysis, theory
formulation and reporting. GT allows the researcher to uncover
the primary concerns of the participants through identification
of common patterns and themes that emerge from the constant
comparison of data across participants at increasing levels of
abstraction [23], [33], [34]. The distinguishing feature of GT
is the absence of a clear research hypothesis upfront, rather
the researcher attempts to uncover the main concern of the
participants in the process. In this case, the focus was on
the experience of transitioning to agile development and the
associated challenges and strategies in real-world settings. GT
was employed as the research method for several reasons:
(a) Agile methods emphasize people and interactions and GT

is well suited to study human and social aspects;
(b) GT facilitates research on relatively less investigated areas

and the topic of agile transitions requires more empirical
evidence;

(c) GT is increasingly being employed to study agile software
teams as it facilitates the investigation of social and human
aspects [5], [16], [18], [34], [35]; and

(d) Being grounded in empirical evidence, GT allows the re-
searcher to try and reconcile research rigor with industrial
relevance, an issue highlighted as the ‘grand challenge of
agile research’ [31], [38].

The following sub-sections present descriptions of the GT
procedures applied in this study, including examples to eluci-
date their application.

2



A. Data Collection

We conducted semi-structured interviews with 31 agile
practitioners from New Zealand, Australia, USA, India, and
Portugal and observed development teams in situ at some par-
ticipating companies in India. Participants with industrial agile
experience were recruited through a general call for partici-
pation posted on popular agile user groups, social networking
sites and local communities, such as the Agile Professions
Network, Auckland and the Agile Software Community of
India (ASCI). A variety of roles and designations were covered
in order to achieve a rounded perspective.

Table 1 presents the participant demographics. The first
column refers to participant numbers P1-P31 to maintain
participant anonymity as per the human ethics guidelines. The
second column lists their roles, e.g. developers, scrum masters,
testers, business analysts etc. The third column refers to the
project domain, e.g. healthcare, banking, shipping, marketing,
and development; while the remaining columns list their years
of total professional experience (TX), agile experience (AX),
organizational sizes (OS), team sizes (TS), country of work
(CN), and agile methods used (e.g. scrum, XP, combinations,
under MD).

The interviews lasted approximately an hour on an average
and were conducted at the participants’ workplaces (e.g. in
New Zealand and India) or through Skype video calls (e.g.
for participants in the USA, Australia, and Portugal). A set of
guiding interview questions were designed to cover three main
areas: (a) professional background: e.g. please tell me briefly
about your professional background; (b) questions related to
self-organizing practices: e.g. do you think your team is self-
organizing and why/why not? Please give some examples; and
(c) questions related to work allocation: e.g. how does task
assignment work in your team? However, the interviews were
semi-structured to allow for the participants’ main concerns
around becoming agile to emerge.

B. Data Analysis

We employed Grounded Theory’s data analysis and syn-
thesis procedures i.e., open coding and constant comparison
method to synthesize data from the interviews by identifying
the patterns in the dataset. The word open here refers to keep-
ing an open mind when analyzing the data i.e. not being biased
by previous literature and/or personal researcher experiences;
and coding refers to the task of data analysis [8], [9], [10].
Thus, open coding involves thoroughly analyzing the data to
capture as many key points and concepts as possible. Details
of open coding and other GT procedures can be found in a
dedicated paper on the topic [33]. However, to explain these
procedures as applied in this study, we present an example of
working from the raw data of an interview transcript to the
findings for one of the categories: management approach.

First, we obtained the key points from the interview
transcripts. Key points are the summarized points from
sections of the interview [37]. We then assigned a code to the
key point. A code is a phrase that summarizes the key point
in two or three words. One key point can lead to several codes.

TABLE I
PARTICIPANT DEMOGRAPHICS

P# Role Domain TX AX OS TS CN MD

P1 BA Marketing 6 2 XL 6 USA S
P2 PM Business 10 6 M 8 NZ S/K
P3 Dev Health 2 2 XS 5 PGL S/XP
P4 BA Banking 9 3 L 10 USA S/XP
P5 S. Dev Business 4 3.5 M 8 NZ S/K
P6 Dev Health 3 1 L 6 IND S
P7 QA Banking 6 2 L 6 IND S
P8 PM Business 14 1 L 7 USA S
P9 S. Dev Banking 5 3 L 8 OZ S/XP
P10 SM Utilities 8 2.5 M 7 NZ S/K
P11 PM Utilities 10 2 M 7 NZ S/K
P12 Dev Freight 3 2 L 10 IND S
P13 PM Business 10 1.5 L 14 IND S
P14 Dev Finance 3 1.5 L 8 IND S/L
P15 ERP Finance 3 2.5 L 12 IND S/L
P16 S. Dev Marketing 10 5 XL 6 USA S
P17 Dev Finance 3 2 L 8 IND S
P18 Dev Finance 3 2 L 8 IND S
P19 Dev Freight 3 1.5 L 8 IND S
P20 Dev Marketing 3 2 XL 8 USA S
P21 S. Dev IT 5 4 XS 10 IND M
P22 S. Dev IT 5 4 XS 10 IND M
P23 Dev Telecom 2.5 1 XS 8-10 IND S/XP
P24 Dev Telecom 3 1.5 XS 8-10 IND S/XP
P25 S. Dev Telecom 6 1 XS 8-10 IND S/XP
P26 Dev Telecom 6 4 XS 8-10 IND S/XP
P27 Dev Telecom 1.5 0.3 XS 8-10 IND S/XP
P28 S. Dev Food 5.5 5.5 XS 5 IND K
P29 S. Dev Food 5 5 XS 5 IND K
P30 S. Dev Food 2.5 2.5 XS 5 IND K
P31 Dev Food 2.5 2.5 XS 5 IND K

P#: participant number; Dev: developer, PM: project manager, SM: scrum
master, QA: quality analyst, BA: business analyst, ERP: enterprise support;

TX: total experience (in years); AX: agile experience (in years); OS:
organizational size (XS<100; S<1K; M<5K; 100K<L<10K; XL>100K) TS:
team size; Con.: country (PGL=Portugal; OZ= Australia; IND=India); MD:

method (S=Scrum; K=Kanban; L=Lean, M=Mixed Methods.)

Raw data: “I think it [self-organization] is fifty-fifty.
So my personal default position with my team is to try
and allow them to self-organize but there is a need for
me right now to monitor those activities that they don’t
revert to practices that are compulsive. So my team is still
transitioning...”
Key Point: encouraging empowerment but monitoring during
transitioning
Code: encouraging empowerment (transitioning)
Code: monitoring teams (transitioning)

In the above example, encouraging empowerment and mon-
itoring teams were codes derived from the raw transcripts,
where the former summarized the idea of encouraging au-
tonomy in the team – a self-organizing trait; and the latter
capturing the idea of monitoring the team activities to avoid

3



Fig. 1. Emergence of category Transitioning Management Approach from
underlying codes and concepts.

reversion to traditional ways of working – a more traditional
management approach. Particular aspects of a code can be
captured in brackets as properties. ‘Transitioning’ was cap-
tured as a property of the codes. In other words, it reminds us
that the original context of the raw data was referring to the
fact that the teams were in the process of transitioning into
agile methods and self-organization. The codes arising out of
each interview were constantly compared against the codes
from the same interview, and those from other interviews. This
is GT’s constant comparison method [8]. Using the constant
comparison method, we grouped these codes to produce a
higher level of abstraction called concepts. In this example,
the concept that emerged was ‘adapting’ which captured how
managers monitored and assisted their team at times while at
other times tried to encourage empowerment, adapting to the
team’s response to increasing levels of autonomy.
Concept: adapting (to team’s level of autonomy)

Other concepts arising in a similar manner included driving
referring to the management approach that encompassed the
traditional traits of driving team decisions; and empowering
referring to the managers encouraging and expecting high
levels of team autonomy from more experienced teams.

The constant comparison method was repeated on the
concepts to produce a third level of abstraction called cate-
gories. The driving, adapting, and empowering management
approaches were seen to vary with the teams’ relative level of
agile experience such that managers on relatively new agile
teams were seen to practice a driving approach; those with
more autonomous teams were seen to practice an empower-
ing approach; and those with teams becoming increasingly
autonomous were seen to practice the adapting approach.
Thus, the category derived to capture these transitions was
transitioning management approach. Figure 1 depicts how the
category transitioning management approach emerged from
some of the underlying codes and concepts.
Category: transitioning management approach

Similarly, the other four categories were identified, i.e.
transitioning: software development practices, team practices,
reflective practices and culture practices as the dimensions of
change in agile transitions.

The final step of GT’s data analysis process is theoretical
coding which involves conceptualizing how the categories

relate to each other, and formulating a set of inter-related
hypotheses to be represented as a theory [10], [11], [23].
Glaser [11] suggests several common structures of theories,
referred to as theoretical coding families, such as: the six
Cs (contexts, causes, consequences, contingencies, conditions,
and covariance); degree; and process. Further details of open,
selective, and theoretical coding and other GT steps such as
memoing and sorting can be found in GT’s seminal texts
[10], a recent review [23] and a dedicated paper [33] on the
application of GT in software engineering. The theoretical
coding family best suited to our findings was the process
family [11] which enables the findings to be represented a
process; in this case, the process of becoming agile.

IV. DIMENSIONS OF BECOMING AGILE

In this section, we describe the five main categories iden-
tified in this study as the five dimensions, development
practices, team practices, management approach, reflective
practice, and culture, along with grounded examples and
quotes from the underlying data. The hypotheses (i.e. inter-
relationship between the categories) and the formulation of
the overall theory is described and discussed in section V.

A. Transitioning Software Development Practices

Fig. 2. Transitioning Software Development Practices

Teams new to agile methods were getting acquainted with
basic agile development practices such as the iterative and
incremental delivery model. They often began by retaining
many of their earlier ways of working. Often, individuals
were perceived to be change resistant, although the resistance
typically dampened over time:

“Obviously challenges are there and I can say people are
resistant to changes...for example not everybody is willing to
attend the meetings often...so it takes a while for them, for the
rhythm to set...At the initial stages it is difficult but as time
passes it gets easier.” – P15, ERP, India

As they gained more experience, teams seemed to grasp the
finer details of the agile development better, and moved away
from their earlier practices and toward agile practices:

“Transition happens slowly. Initially they don’t understand
anything, sprint planning, demo, if demo [is] required? How
would I point [estimate] the story? What will happen if I put
3 [points]? We need to explain [to] them. Initially learning,
then we start applying.” – P25, Senior Developer/Tech Lead,
India

Teams that had progressed further along in their agile prac-
tice were seen to use agile artifacts and practices such as pair
programming, user stories and tasks, testing, frequent releases,
daily stand up meetings, and in some cases, retrospectives.

Overall, the software development practices transition from
being mostly traditional to a hybrid of traditional and agile to
finally, mostly agile practices as teams became accustomed

4



with agile methods. Significantly, these were not the only
changes observed; transitions were identified in team practices,
management approaches, reflective practices, and culture.

B. Transitioning Team Practices

Fig. 3. Transitioning Team Practices

In relatively new agile teams, individuals were seen to be
risk-averse, preferring a manager-driven approach over a team-
driven one. For example, team members did not seem to mind
the delegation of tasks; rather they felt safer when management
assigned tasks, as the team members did not have to volunteer
or take decisions on their own.
“We really don’t feel that we get delegated [tasks], but we feel
one less job.” – P13, Project Manager, India

Project and task management practices such as requirements
specification, prioritization, and clarification were mostly
driven by managers in collaboration with the customers and
did not involve the team. In some cases, the managers and
subject matter experts completed the effort estimations in
collaboration with the customer while the development team
focused on the task implementation.

This was in stark contrast to the treatment of the same ac-
tivities in some other teams. As they gained experience, some
teams displayed mixed traits such that project management
practices were at times manager-driven and at other times
incorporated the team to a greater extent.
“The estimation of tasks are done by [the] tech[incal] lead and
sometimes I do it...we try to get the team to reach consensus
on estimation, [this] is an area where we could be better...” –
P2, Project Manager, New Zealand

Task assignment in such teams also took the shape of as-
sisted assignment where team members were regularly assisted
by their technical leads or project managers in assigning tasks
with a view to improve individual autonomy over time.
“Here we get assistance from the scrum master on how to
assign tasks like he discusses with the teams and explains on
the effort, functions and time factors...Once we are confident
we can self-assign ourselves in future.” – P19, Developer,
India

Sometimes the task assignment varied between self-
assignment and manager-driven delegation, depending on how
willing the individuals were to accept and assert autonomy.
“It [task assignment] is a bit of both. Like sometimes “Hey,
[tech lead] could you look into that” and sometimes we go
forward check it and decide how to split them up...People
are starting to take their responsibilities...” – P5, Senior
Developer, New Zealand

We found examples of project managers encouraging in-
creased autonomy in task assignment. For example, P2 added
elements of cross-functionality to the team’s key performance
indicators (KPI) in order to motivate the team members to
attempt cross-functionality via task assignment.

“And I actually set a formal goal for the KPIs...You should
be operating outside of your comfort zone and taking on big
development even though you are a good database guy.” – P2,
Project Manager, New Zealand

Thus, these teams with increasing experience with auton-
omy were seen to be largely manager-assisted, with managers
moving between driving the team practices on some occasions
and following the team on others.

In contrast, the team practices in the teams most experi-
enced with autonomy were largely team-driven, including self-
assignment:
“Almost all tasks are exclusively self-assigned.” – P10, Scrum
Master, NZ

The importance attached to self-assignment was such that
it was seen as a defining characteristic of autonomous, self-
oganizing agile teams.
“Yes, I consider my team to be self-organizing...the scrum
master doesn’t force the member of the team saying you take
this task and you take this task etc...Its open to the team that
they come forward as they know their expertise so we take our
own tasks...” – P7, Tester, India

Similarly, most of the project management practices such
as requirements specification, clarification, prioritization, and
estimation were also team-driven.
“It is just the developers...I do [estimate] occasionally depend-
ing on the project where I need to incorporate some decisions.
I know my decisions are off...my team tends to estimate a little
bit better.” – P10, Scrum Master, NZ
“We don’t wait for them [team leads]...We directly contact the
client if they are online...I think we are now used to it.” – P30,
Senior Developer, India

Thus, we found that as the teams became more receptive to
increasing autonomy the team practices, such as task assign-
ment and estimation, changed from being manager-driven to
becoming manager-assisted and eventually team-driven over
time.

C. Transitioning Management Approach

Fig. 4. Transitioning Management Approach

Managers also must transition to agile development, both
leading and responding to transitions in their teams. We use
the term ‘manager’ here to refer to people in a variety of
management roles including scrum masters, project managers,
subject matter experts (SMEs) and team leads.

Initially, managers were driving requirements elicitation
and clarification, task assignment, and problem solving on
behalf of the team. They were often seen to be driving
customer collaboration: eliciting requirements from customers
and seeking clarifications on behalf of the team.
“He [manager] is the first point of the contact between
product owner, dev[elopement] team, scrum master and the
stake-holders. The client will be sharing anything only to the

5



manager [as] he may not know the development team.” – P6,
Software Engineer, India

Furthermore, the manager was looked up to as the problem-
solver, motivating the team as they transitioned into agile
methods:
“...we just leave the problem to the SMEs where he finds a way
to alter the plans depending on the degree of the challenge...As
we are the starters [pilot team] for agile [methods] we tend
to get motivated a lot from the managers. That has driven us
to greater extent.” – P13, Project Manager, India

As teams gained experience with increasing levels of au-
tonomy, the managers were seen to change their management
approach to adapting between traditional monitoring activities
and empowering traits of agile management.
“I think it [self-organization] is fifty-fifty. So my personal
default position with my team is to try and allow them to
self-organize but there is a need for me to right now monitor
those activities that they don’t revert to practices that are
compulsive. So my team is still transitioning...” – P2, Project
Manager, New Zealand

Managers acknowledged the changing needs of their teams
and their tendency to revert to old ways of working and
in practice, adapted their management style to the team’s
changing conditions.
“My team is very easily distracted by what is going on outside
the project...that is where unfortunately I have to sometimes
revert to classic style management...command and control
mode” – P2, Project Manager, New Zealand

In teams that were more accepting of autonomy, managers
were seen to practice an empowering style of management.
“Our project manager enables and empowers the team to do
their tasks. She is the one who clears operational or process
related blocks that hinder [the] completion of a task.” – P16,
Senior Developer, USA

The managers perceived their role to be one of a supporter,
expecting autonomy from their team, and steering the team in
the right direction.
“Well just the usual kind of coffee maker you know. I mean
effectively in a scrum team that’s what you do, you support
people and you encourage them to take responsibilities...you
can’t neglect or abandon [them] but you need to push them
in the right way.” – P10, Scrum Master, NZ

They often perceived themselves to be the unseen force that
guided the team but whose absence did not stall things as the
team drove the decision making.
“For me self-organizing team is something that wouldn’t
notice if I disappeared (laughs).” – P10, Scrum Master, NZ

Since the manager was no longer driving the team practices,
the empowering management approach encompassed other
aspects such as encouraging teams, removing external imped-
iments, keeping the team abreast of progress and changes, and
helping the team focus by screening them from disturbances.
“Even if you are self-organizing team you need someone
who cuts the interferences from the outside.” – P9, Senior
Developer, Australia

An empowering management approach also meant that the

managers practiced subtle forms of authority such as making
their presence known to instill a sense of responsibility among
the team members.
“I think authority [is] maybe required but that’s for isolated
circumstances...stuff like testing a task is tedious for the people
as they lack experience in it...I have a board near my desk so
when people come up to the board looking for a task so I can
let them know that I actually watch them when they pick up a
testable task.” – P10, Scrum Master, NZ

In stark contrast to the driving management approach where
managers represented their relatively new agile teams to the
customers, managers in self-organizing teams expected direct
team-customer collaborations, stepping away from being a
mediator and giving over control to the team.
“I do not interfere in the relationship between my team
members and the clients as I don’t want to jeopardize the
communication between them.” – P10, Scrum Master, NZ

The transitioning management approach corresponding to
the level of team autonomy was well summarized in this quote
by one of the participants:
“I think if the team is experienced in agile, then he [the
manager] has to enable team members to self-assign tasks.
But if team is pretty new to agile, he has to guide them in fol-
lowing the agile methodology. He should try to remove blocks
whenever possible. He should motivate more and appreciate
when things are done in the right way.” – P20, UI Developer,
USA

Thus, we found that as the teams gain more experience in
practicing agile and become more receptive to autonomy, the
managers changed their management approach from driving
the team practices to adapting to dynamic team conditions
and then to empowering the teams.

D. Transitioning Reflective Practices

Fig. 5. Transitioning Reflective Practices

Reflection and learning are two key principles guiding agile
teams and are manifested in practices such as retrospectives
and training as well as in informal or personal endeavours.
We discovered a marked difference in these practices and the
attitude of individuals in relatively new agile teams versus
those with more experience.

In particular, new agile teams were limited in their reflective
practices. New teams were strongly implementation focused
and while learning opportunities through trainings were avail-
able to new teams, such learning-focused tasks were often
seen as time consuming activities, intruding on the software
implementation time.
“We also had times where a whole team lacks in one specific
area of the project. It is not a big deal as we had to go through
training sessions to understand and work but the problem is
time consumption.” – P13, Project Manager, India

6



As teams gained more experience, the learning and reflec-
tion became more focused on improving agile practices and
working toward becoming more self-organizing.
“We are now working on process improvements. Previously
we did not have planning poker, but we introduced it.” – P25,
Senior Developer, India

In teams with more agile experience, learning and reflective
practices were more commonly prevalent and strongly em-
bedded in regular practice. For example, while retrospective
are a standard scrum practice, we noted that very few new
teams performed retrospectives, while nearly all the experi-
enced teams regularly held retrospectives to drive continuous
improvement.
“So after completing the tasks we have a retrospective meeting
on what has gone wrong and right and it serves as inputs for
our next iteration.” – P9, Senior Developer, Australia
In some cases, we also found evidence of reflective practice
on an organizational level, intentionally customizing the agile
method to their specific contexts and constraints, exhibiting a
wider reflective mindset:

“We have hired an experienced scrum expert to overlook the
process. After every release, we try to see what went wrong
and what went right and make changes in the next release to
avoid issues.” – P16, Senior Developer, USA

In other cases, learning opportunities were created in the
form of organization-wide initiatives. How well such opportu-
nities were harnessed by the teams and individuals varied.

“There are many initiatives from organisation as
well...Somebody who just learned new technology, he
just speaks on Saturdays once a month. First half is theory
and second half is hands-on...everybody would come and
learn.” – P22, Senior Developer, India

Overall, new agile teams tended to be highly limited in their
learning and reflective practice, focusing more on implementa-
tion. With experience, the reflective practices became focused
on driving agile practice improvements and in some cases,
became effectively embedded in the team’s and individuals’
regular practice and in the wider organizational mindsets.

E. Transitioning Culture

Fig. 6. Transitioning Culture

Organizational culture is often cited as one of the most
challenging factors in agile adoption [19], [13], [24], [43].
We found evidence to suggest that it is not simply the
organizational culture at large, but also the team culture and
individual traits, that dictate the work culture of a given team.
In other words, different teams within the same organization,
i.e. with similar organizational culture, could have significant
differences in their levels of team and individual autonomy and
in the other dimensions (e.g. reflective practices). We define
this combined effect of organizational, team and individual
culture as the operational culture or simply, culture.

Some teams worked within hierarchical organizational cul-
tures, where information flow and operational decision making
was passed down from senior management and customers
to individual team members, typically via subject matter
experts or tech leads. Similarly, issues arising, such as missed
deadlines, were relayed from the team to the managers and
then to the product owner who in turn informed the clients.
“...in case if we are unable to deliver [on time] we will
document the reason (software failure, resources etc.) ... After
getting the approval from the managers we will follow up the
same to the product owner who in turn provides necessary
explanation to the clients.” – P6, Software Engineer, India

Other teams were seen to exist in organizational cultures that
were evolving away from a traditional, hierarchical culture and
towards a more open and inclusive culture. Such teams were
mostly able to communicate and collaborate directly with their
customers, however, a main point of contact or a customer
representative was usually also present. Some other teams had
highly open organizational cultures marked by direct lines of
communication and a clear absence of hierarchy.
“Also there is no defined communications hierarchy or process
defined.” – P16, Senior Developer, USA

How effectively the teams harnessed this freedom depended
on the individual teams and the individuals within a team,
however.
“...we can organize meeting with the clients ourselves. It is
purely upon the individual to get the work done on time.” –
P1, Business Analyst, USA

An absence of hierarchy in decision-making was similarly
present in open organisation cultures. More autonomous teams
were able to contribute to decision making, controlling the
amount and type of work they committed to within an iter-
ation; and deciding whether or not to take on any additional
work requested by the customers without involving the man-
agement:
“So we can decide whether we can make this addition or to
reject it...This is not done by any external influence but it is
purely us.” – P7, Tester, India

Thus, the operational culture of the teams was found to
be largely hierarchical for some teams and evolving towards
becoming more open in others, with increasing levels of
autonomy afforded by the organizational culture; and accepted
and asserted by the team and individual cultures.

V. HYPOTHESES AND APPLICATION

A grounded theory is more that just a set of descriptive cat-
egories: it should also describe the key relationships between
those categories, i.e. a set of inter-related hypotheses [11],
[23]. We have presented the main categories of the grounded
theory of becoming agile as a network of on-going transitions
across the five dimensions of: development practices, team
practices, management approach, reflective practices, and
culture over time. In this section we describe the relationships
between those categories, i.e. the hypotheses, and analyse
how changes in one dimension influences changes in other
dimensions. By considering progression along each dimension,

7



Fig. 7. A Grounded Theory of Agile Transitions as a Network of on-going Transitions across Five Dimensions: Software Development Practices, Team
Practices (TP), Management Approach (MA), Reflective Practices, and Culture; with self-organizing roles [34] enabling the TP and MA transitions.

we demonstrate how the theory can be used to identify the
strengths and weaknesses of a team’s agile practice, and
explain how the theory can be applied by actual teams. Finally
we outline the threats to validity and verifiability.

A. Relationships Between Dimensions

Figure 7 shows the dimensions in the theory (within solid
boxes) as described in the previous section and their inter-
relationships between dimensions (hypotheses H1-H4, repre-
sented by arrows). We now discuss these hypotheses in more
detail:

H1: The transition of a team’s software development prac-
tices from traditional towards agile is necessary (though not
sufficient) for the changes in the team practices and the
management approach to occur. A team’s transition to agile
development typically begins with the core agile software
development practices: pair programming, unit testing, etc.
Changes in other dimensions such as the team and manage-
ment practices follow changes in development practices. This
is supported by the fact that all the changes in the team
practices and management approach were observed in the
context of teams who were further along in their transition
to the agile development practices.

H2: The transitions in the team practices and the man-
agement approach tend to reflect and adapt to each other.
The success of a particular management approach, e.g. an
empowering approach, is incumbent upon the team practices
transitioning in the same direction, e.g. becoming team-driven.
The different team practices and management approaches
continue to oppose or support each other until an equilibrium
of sorts can be maintained such that a majority of the team
practices support the management approach and vice-versa;
and together they transition towards agile development within
autonomous self-organizing teams. A self-organizing agile
team is supported and maintained by a number of particular
team roles [34]. Teams start off with managers playing many
of these roles, e.g. mentor, coordinator, translator. Over time
these are passed over to, and taken up by, the team as the
management style transitions from driving to empowering and
the team practices change from being manager-driven to team-

driven. Thus, the self-organizing roles are the mechanisms
by which the team practices and the management approach
transition towards self-organization.

H3: Transitions in team and management practices are
necessary (though not sufficient) for changes in the team’s
reflective practices. Reflective practices were effectively em-
bedded only in teams whose development practices, team
practices, and management practices had already transitioned
significantly. Effective and regular reflective practice at a team
and individual level can be considered a higher-order practice
attained by highly autonomous, self-organizing teams.

H4: All changes are influenced by a combination of the
organizational, team and individual culture. A shift away from
a hierarchical culture toward an open culture supports the other
four dimensions. Since a change in the organizational culture
involves multiple stakeholders across the organization, not all
of whom may perceive benefits in adopting agile or even be
directly related to software development, this dimension is
arguably the most challenging to change. On the other hand,
an initial organizational culture that is itself more agile will
effect the individual and team cultures and their transitions.

The theory depicted in Figure 7 is not a linear progression
of events for software teams to become self-organizing agile
teams. Rather, the theory describes a complex network of
multi-dimensional changes that occur over time as a team
transitions. A new team embarking on their agile journey
can expect these transitions: we hypothesize that teams could
choose to be guided by the theory to transition more efficiently
and effectively. Next, we present an example of its application.

B. Applying the Theory to Explain the Uniqueness of Agile
Transitions

Agile transitions are a set of relevant changes across a
multi-dimensional network. The unique configuration of any
software team on this network and their progress along the
five dimensions can explain why individual agile teams present
distinct manifestations of agility and unique transition experi-
ences.

To elucidate the uniqueness of agile transitions using our
theory, we present an example of applying of our theory to

8



map two specific teams that participated in this study: Team
T1 represented by P23-P27 and Team T2 represented by P21-
22, both from the same organization. Figure 8 visualises the
unique position of these two teams along the five dimensions
in a radar diagram. (A similar mapping approach was rec-
ommended by Boehm and Turner, although mapping against
a very different model [7].) The innermost level represents
low (L), the central level represents medium (M), and the
outermost level represents high (H) levels of progress along
each dimension, based on the descriptions of each dimension
in Section IV.

Fig. 8. An Example of Applying the Theory of Becoming Agile to Map
the Uniqueness of Agile Transitions across Five Dimensions using samples
teams T1 and T2.

For example, the ‘low’ for team practices refers to manager-
driven practices, ‘medium’ refers to manager-assisted prac-
tices, and ‘high’ refers to team-driven practices (as shown in
Figure 3 and described in Section IV.B). The other dimensions
can be evaluated similarly against their respective definitions.
In this exercise, we mapped the agility of T1 and T2 against
the theory’s dimensions, by observing and discussing their
practices with the team, and then comparing them with the
descriptions of each dimension in Section IV.

Team T1 Transitions: The software development practices
of this team rated highly according to that dimension. The
development practices were predominantly agile: two-weekly
sprints, daily stand-ups, sprint planning meetings, and the use
of planning poker for team-based estimations were reported
by multiple team members. The team practices dimension
is classified as medium, that is manager-assisted, because
user stories were assigned by managers to the team lead,
but the individual team members were free to select from
the pool of technical tasks associated with the user stories,
using JIRA as a tool. Similarly, the management approach
was also medium, working in tandem with the team practices,
with the manager adapting to the evolving needs of the team:
encouraging autonomy while maintaining a level of control
through direct code reviews and quality checks.

Seen across the reflective practice dimension, this team
had a positive attitude to learning and focused on using
retrospectives to some extent. Finally, the overall culture was
also medium, i.e. evolving, reflecting the combined influence
of a reasonably high individual and team culture of openness

with an organizational culture that was evolving.
Team T2 Transitions: The software development practices

of Team T2 were a hybrid of agile and their previous practices
(i.e. medium), as the team was in the process of fixing its
iteration length between two and three weeks, conducting peer-
reviews, and only performed pair programming when they
considered it was especially necessary. The team practices
dimension were also medium, as members asserted autonomy
in certain areas (e.g. estimations) but were largely manager-
assisted in others. For example, self-assignment was limited
to exchanging tasks and helping peers complete their tasks, as
compared to Team T1 who generally self-assigned tasks.
“Yes we can [self-assign]. If developer have some tasks and
he is stuck and he couldn’t finish and at that time, we could
pick that task.” - P22, Senior Developer, India
The management approach was adapting, involving some level
of monitoring as members were asked to justify the time
spent on some occasions, similar to Team T1’s management
approach. Team T2 was mostly implementation-focused, how-
ever, and their reflective practices were rather limited.

It is interesting to note that the culture of the two teams was
different, even though both are part of the same organization.
This is supported by the empirical evidence from the two
teams which suggested that the actual influence of the orga-
nizational culture varied with the level of autonomy asserted
by different teams and individuals in practice. In other words,
while the external environment was largely similar for both the
teams, how much the organizational culture influenced them
depended on their respective team and individual cultures.
Thus, Team T1 which exhibited higher individual and team
autonomy was able to enjoy a somewhat more open culture
than Team T2.

Software teams, managers and agile coaches can use the
theory of becoming agile to assess their position along the
five dimensions as described in the above two team examples
and illustrated in Figure 8, and so track their transitions over
time in order to motivate continuous improvement.

C. Comparing to Related Work

Prior related work pre-dominantly comprises of structured,
staged frameworks for agile adoption [2], [3], [4], [22]. Some
of these, for example [2], recommend a linear progression
across set levels of agility and have faced criticisms on account
of high complexity, overheads, and low flexibility [17]. Others,
for example [3] and [4], have been seen as mostly abstract,
lacking concrete details of potential industrial application [40].
The framework proposed by Sureshchandra and Shrinivasavad-
hani [22] is exclusively focused on the specific context of
distributed teams and is therefore limited in its application.
The Grounded Theory based framework proposed by [40]
adopts a Scrum approach to generic ‘agile practices’ adoption,
working through a handful of practices iteratively. Based on
data collected mostly from managers and administrators, it can
be seen as an abstract organizational framework to orchestrate
planned agile transformations. Our theory, on the other hand,
differs from these approaches in that it:

9



• explains agile transitions as an ongoing, continu-
ous, long-term transformation, rather than circumscribed
stages of agile adoption as presented in [2], [3], [4];

• explains the multi-dimensional nature of this complex
journey across five different dimensions instead of along
a single, linear axis of a set of generic agile practices
[40]; And unlike any other framework:

• emphasizes a key distinction between the efforts to en-
courage autonomy (via the management approach) and
the actual acceptance and assertion of autonomy (via the
team practices) and describes the self-organizing roles
[34] as a means to achieve the desired dual shift in
perspectives.

• shows that reflective practices are higher-order practices,
and so the last to transition.

• suggests that the influence of culture on agile transitions
is a combination of the organizational, team and individ-
ual cultures.

• explains that different teams progress along the five
dimensions at different rates, thereby explaining their
distinct manifestation of agility and unique transition
experiences.

• provides a theoretical model for future research, and,
• offers practical guidance to agile teams to self-assess their

agility and track their transition.

D. Verifiability and Threats to Validity

Any grounded theory is limited in that it will be a mid-
ranged substantive theory, applicable to the contexts studied
[9], [10], which in turn are dictated by access to research
participants. In order to obtain willing participants, we found it
essential to guarantee that all identifying details — not just of
the individual participants, but also their companies, and third-
party clients — would be kept confidential to the researchers,
under human ethics guidelines governing this study.

While the aim of a GT study is to generate new theory and
not to test existing ones [9], [23], [25], [33], the verifiability of
the theory can be inferred from the soundness of the research
method, and from evidence that the theory is derived from the
underlying data by means of that method [33]. This is why
we have explained our study procedures in depth in Section
III, and why the presentation of the theory, particularly the
core categories in Section IV, contains quotations from our
participants (albeit excerpted) and in some cases, descriptions
of our observations of development projects. These details
make evident how our theory fulfills the standard GT eval-
uation criteria: the generated categories fit the underlying data
(see example in Figure 1); the theory is able to work (i.e.
explain the participant’s main concerns, see application in
Figure 8); the theory has relevance to the domain, i.e. agile
software development; and is modifiable with new data [10],
[23], [33]. In particular, while GT studies typically do not
claim generalization, the resulting theory should be modifiable
in other contexts, making the GT method one of the most
agile research methods available [33]. What this means is
that we do not claim this theory to be absolute or final. We

welcome extensions to the theory based on unseen aspects or
finer details of the present dimensions or potential discovery
of new dimensions from future studies.

VI. CONCLUSION
In this paper, we present the Theory of Becoming Agile,

which explains how development teams transition to agile
practices. The theory is the result of a Grounded Theory
study involving 31 agile practitioners from 18 teams across
five countries. Rather than a single change, or even a staged
progression along a linear axis, our Theory of Becoming Agile
considers an agile transition to take place within a multi-
dimensional network of on-going changes in different areas
of practice. We identified five dimensions of transitions as
follows:

• As teams gain experience in agile software development,
their software development practices transition from tra-
ditional → hybrid → agile practices.

• As teams gain experience with accepting and asserting
autonomy, their team practices transition from manager-
driven → manager-assisted → team-driven.

• As managers gain more experience with agile devel-
opment, their management approach transitions from
driving → adapting → empowering.

• As the teams gain experience across the agile software
practices, team practices, and management approach,
their reflective practices transition from being limited →
focused → embedded.

• As the organization offers increasing autonomy (and the
team and individuals accept that autonomy) their culture
transitions from being hierarchical → evolving → open.

We also explained the inter-relationships between these
dimensions:

• A transition in software development practices from tra-
ditional to agile cascades to the other transitions.

• Transitions in the team practices and management ap-
proach tend to reflect and adapt to each other, moving
towards self-organization.

• The above transitions are necessary though not sufficient
for a transition in the reflective practices.

• All transitions are influenced by a combination of orga-
nizational, team and individual culture.

Crucially, our theory explains that teams do not progress
along these dimensions at the same pace. This theory explains
why some teams are more ‘agile’ than others, even when both
teams are practicing the same software development practices,
because these practices are just one of the dimensions in the
model. We hypothesize that teams will be able to use the model
to assess their progress across the five dimensions, and thus
to guide and monitor their ongoing agile transitions.

ACKNOWLEDGEMENT

Our sincere gratitude to all the agile practitioners who par-
ticipated in this research. This study was conducted as per the
guidelines of the University of Auckland Human Participants
Ethics Committee (UAHPEC), Application Reference #7867.

10



REFERENCES

[1] A. Rohunen, P. Rodriguez, P. Kuvaja, L. Krzanik, & J. Markkula,
“Approaches to agile adoption in large settings: a comparison of the
results from a literature analysis and an industrial inventory”, In Inter-
national Conference on Product Focused Software Process Improvement,
Springer Berlin Heidelberg, pp. 77-91. 2010.

[2] A. Sidky, J., Arthur, “A Disciplined Approach to Adopting Agile
Practices: The Agile Adoption Framework”. Innovations in Systems and
Software Engineering, vol 3, pp.203–216, 2007.

[3] A. Qumer, B. Henderson-Sellers, T. McBride, “Agile Adoption and
Improvement Model”, In: Rodenes, M. (ed.) Proceedings of European
and Mediterranean Conference on Information Systems (EMCIS), 2007.

[4] A. Qumer, B. Henderson-Sellers, “A Framework to Support the Evalua-
tion, Adoption and Improvement of Agile Methods in Practice.” Journal
of Systems and Software, vol. 81, pp. 1899–1919, 2008.

[5] A. Martin, R. Biddle, J. Noble, “The XP customer role: a grounded
theory”, In: Agile 2009, IEEE Computer Society, Chicago, 2009.

[6] A. Marchenko & P. Abrahamsson, “Scrum in a multiproject environ-
ment: An ethnographically-inspired case study on the adoption chal-
lenges”, In Agile, 2008 Conference, pp. 15–26, IEEE, 2008.

[7] B. Boehm, R. Turner, “Rebalancing your Organization’s Agility and
Discipline”, Extreme Programming and Agile Methods-XP/Agile Uni-
verse, Springer, Berlin, Germany, pp.1–8, 2003.

[8] B. Glaser, Basics of grounded theory analysis: emergence vs forcing.
Sociology Press, Mill Valley, CA, 1992.

[9] B. Glaser, A.L. Strauss, The discovery of grounded theory. Aldine,
Chicago, 1967.

[10] B. Glaser, Theoretical Sensitivity: Advances in the Methodology of
Grounded Theory. Sociology Press, 1978.

[11] Glaser, B. The Grounded Theory Perspective III: Theoretical Coding.
Sociology Press, Mill Valley, CA, 2005.

[12] B. Moravcová, & F. Legény, ““Agile Adoption” in IT Companies-
Building a Change Capability by Qualitative Description of Agile
Implementation in Different Companies”, In International Conference
on Exploring Services Science, pp. 251–262, Springer International
Publishing, 2016.

[13] C. de O. Melo, V. Santos, E. Katayama, H. Corbucci, R. Prikladnicki,
A. Goldman, and F. Kon, “The evolution of agile software development
in Brazil”, Journal of the Brazilian Computer Society, vol. 19, no. 4,
pp. 523–552, 2013.

[14] D. Goodman, & M. Elbaz, M, “It’s Not the Pants, it’s the People in the
Pants”, Learnings from the Gap Agile Transformation: What Worked,
How We Did it, and What Still Puzzles Us. AGILE’08 Conference, pp.
112–115, IEEE, 2008.

[15] E. V. Kelle, J. Visser, A. Plaat, and P. V. D. Wijst, “An Empirical Study
into Social Success Factors for Agile Software Development”, 2015
IEEE/ACM 8th International Workshop on Cooperative and Human
Aspects of Software Engineering, pp. 77–80, 2015.

[16] E. Whitworth and R. Biddle, “The social nature of agile teams”, In:
Agile 2007, IEEE Computer Society, USA, 2007.

[17] H.C. Esfahani, “Transitioning to Agile: A Framework for Pre-Adoption
Analysis using Empirical Knowledge and Strategic Modeling, PhD
Dissertation, Graduate Department of Computer Science. University of
Toronto, Canada 2012.

[18] G. Coleman, R. O’Connor, “Using grounded theory to understand
software process improvement: a study of Irish software product com-
panies”, Inf Softw Technol 49(6), pp. 654–667, 2007.

[19] G. M. Kapitsaki and M. Christou, “Where Is Scrum in the Current Agile
World?” Proceedings of the 9th International Conference on Evaluation
of Novel Approaches to Software Engineering, pp. 101–108, 2014

[20] J. McAvoy & T. Butler, “A failure to learn in a software development
team: the unsuccessful introduction of an agile method”, In Information
Systems Development, pp. 1–13, Springer US, 2009.

[21] J. Lopez-Martinez, R. Juárez-Ramírez, C. Huertas, S. Jim & C. Guerra-
Garc, “Problems in the Adoption of Agile-Scrum Methodologies: A
Systematic Literature Review”. In 2016 4th International Conference in
Software Engineering Research and Innovation (CONISOFT), pp. 141–
148, IEEE, 2016.

[22] K. Sureshchandra, J. Shrinivasavadhani, “Adopting Agile in Distributed
Development” In: Proceedings of the 2008 IEEE International Con-
ference on Global Software Engineering, IEEE Computer Society,
Washington, pp. 217–221, 2008.

[23] K. J. Stol, P. Ralph, B. Fitzgerald, “Grounded theory in software
engineering research: a critical review and guidelines”, In Proceedings
of the 38th International Conference on Software Engineering, pp. 120-
131, ACM, 2016.

[24] L. Kompella, “Agile methods, organizational culture and agility: some
insights”, Proceedings of the 7th International Workshop on Cooperative
and Human Aspects of Software Engineering -CHASE 2014, pp. 40–47,
2014.

[25] M. D. Myers, “Qualitative research in information systems”, MIS
Quaterly 21, 2, pp.241–242, 1997.

[26] M. Fowler and J. Highsmith, The agile manifesto. Softw. Dev. 9 (8), pp.
28–35, 1991.

[27] M. Hummel, C. Rosenkranz, and R. Holten, “The Role of Communi-
cation in Agile Systems Development: An Analysis of the State of the
Art”, Business and Information Systems Engineering, vol. 5, no. 5, pp.
343–355, 2012.

[28] M. L. Markus and D. Robey, “Information Technology and Organiza-
tional Change: Causal Structure in Theory and Research”, Manage.
Sci., vol. 34, no. 5, pp. 583–598, 1988.

[29] M. Pikkarainen, O. Salo, R. Kuusela, & P. Abrahamsson, “Strengths
and barriers behind the successful agile deployment—insights from the
three software intensive companies in Finland”, Empirical software
engineering, 17(6), 675–702, 2012.

[30] M. Wufka and P. Ralph, “Explaining Agility with a Process Theory of
Change”, In Agile Conference (AGILE), pp. 60–64, 2015.

[31] P. Gregory, L. Barroca, H. Sharp, A. Deshpande, & K. Taylor, “The
challenges that challenge: Engaging with agile practitioners’ concerns”,
Information and Software Technology, 77, pp. 92–104, 2016.

[32] P. Ralph, “Software engineering process theory: A multi-method
comparison of Sensemaking-Coevolution-Implementation Theory and
function-behavior-structure theory”, Inf. Softw. Technol., vol. 70, pp.
232–250, 2016.

[33] R. Hoda, J. Noble, S. Marshall, “Developing a grounded theory to ex-
plain the practices of self-organizing Agile teams”, Empirical Software
Engineering, vol. 17(6), pp. 609–639, 2012.

[34] R. Hoda, J. Noble, S. Marshall, “Self-organizing roles on agile software
development teams” IEEE Transactions on Software Engineering, vol.
39(3), pp. 422–444, 2013.

[35] R. Hoda, L.K. Murugesan, “Multi-level agile project management chal-
lenges: A self-organizing team perspective”, Journal of Systems and
Software, vol. 117, pp. 245–257, 2016.

[36] S. Augustine, Managing Agile Projects. Prentice Hall PTR , 2005.
[37] S. Georgieva, and G. Allan, “Best practices in project management

through a grounded theory lens”, Electronic Journal of Business Re-
search Methods 6, 1, pp. 43–52, 2008.

[38] S. Stavru, “A critical examination of recent industrial surveys on agile
method usage”, The Journal of Systems and Software, 94, pp. 87–97,
2014.

[39] T. Dingsøyr, S. Nerur, V. Balijepally, N.B. Moe, “A decade of agile
method- ologies: Towards explaining agile software development”, J.
Syst. Softw. 85 (6), pp. 1213–1221, 2012.

[40] T. J. Gandomani & M. Z. Nafchi,“An empirically-developed framework
for Agile transition and adoption: A Grounded Theory approach”,
Journal of Systems and Software, vol. 107, pp. 204–219, 2015.

[41] T. J. Gandomani, H. Zulzalil, A.A.A. Ghani, A.B.M. Sultan, & M. Z.
Nafchi, “Obstacles in moving to agile software development methods;
at a glance” Journal of Computer Science, 9(5), 620, 2013.

[42] VersionOne, 10th Annual state of agile software development,
http://stateofagile.versionone.com/ (last accessed 10th August 2016

[43] V. Eloranta, K. Koskimies, T. Mikkonen, and J. Vuorinen, “Scrum
Anti-Patterns—An Empirical Study” 2013 20th Asia- Pacific Software
Engineering Conference (APSEC), vol. 1, pp. 503–510, 2013.

[44] W. E. Deming, “Out of the Crisis”, The MIT Press, Cambridge,
Massachusetts, 2000.

11


