Patterns for Essential Use Cases

Robert Biddle, James Noble, Ewan Tempero

Computer Science,

Victoria University of Wellington, New Zealand.

{robert, kjx,ewan}@mcs.vuw.ac.nz

July 24, 2001

Abstract

Essential use cases are an effective way to analyse
the usability requirements for a system under devel-
opment. Essential use cases are quite stylised — writ-
ing good essential use cases is somewhat of a secret
art. This paper casts the basics of writing essential
use cases into the pattern form. Readers of this paper
will be able to write better essential use cases quickly,
making it easier to specify usable systems.

Introduction

Systems need to be usable. If people can’t use sys-
tems we design, they will avoid, circumvent, dispar-
age, and sabotage them.

In the good old days of computing, people were so
pathetically thankful to have any kind of computer
system at all that they were quite happy to wait in
long queues, pick up printouts several days after their
jobs were submitted, type programs on chiclet key-
boards, and do all sorts of stupid stuff. Unfortunately
for us development types, these days are over. In an
increasingly large number of systems, the usability of
a system is paramount: If you build it, they won’t
come if they can’t use it.

This lesson has been writ large recently following
the failures of several high-profile internet commerce
web sites — if the site isn’t usable, no-one will use
it. But it holds true even for administrative systems
established by government departments or large cor-
porations or consumer and embedded systems: if us-
ing the system requires a lot of effort, the people who
need to use it will find some other way of achieving
their goals, often at your expense.

The discipline of Usage-Centred Design has been
introduced to incorporate usability into software en-
gineering development processes. Described in Con-
stantine & Lockwood’s Software for Use [8], Usage
Centred Design is based on essential use cases, and

draws from ideas from object-oriented methodology
[11, 15, 7, 2] as well as task analysis and prototyping
techniques common to human-computer interaction
designers. A key feature of Usage-Centred Design
is that the design practitioner acts as an advocate
for users, ensuring concern for usability is maintained
throughout the development cycle.

Essential use cases are quite stylised, and writing
good essential use cases is somewhat of a secret art.
This paper casts the basics of writing essential use
cases into the pattern form. The patterns are divided
into two groups. The first group is presented in full
detail and consists of six basic patterns. The first
four patterns describe how to identify the actors in a
system, and find and prioritise use cases. The next
two patterns describe how to write dialogues for each
use case, and how to check those dialogues using role-
plays. Figure 1 summarises the problems dealt with
by this collection of patterns, and the solutions they
provide. In the interests of space, only the bare bones
of the second group of patterns are presented. These
cover the mechanics of writing essential use cases, or-
ganising them, and finding them.

The content of these patterns is not novel, rather,
this paper is an attempt to cast some of the tech-
niques of Usage-Centred Design (drawn particularly
from Software for Use) into a pattern form.

Example

The patterns in this paper use examples drawn from a,
simple booking system for an arts centre. The initial
brief for this system is as follows:

Design a program for a booking office of an
arts centre. There are several theatres, and
people may reserve seats at any theatre for
any future event. People need to be able to
discuss seat availability, where seats are lo-
cated, and how much they cost. When people
make a choice, the program should print the

Pattern Problem

Solution

Where to you start use-case mod-

Actors elling?

Start with the people (and other systems)
who will actually use the system.

How do you determine what the
system should do?

Candidate Use Case
List

List Candidate Use Cases for each Ac-
tor.

How can you manage a large

Focal Use Cases .
number of candidate use cases?

Choose focal use cases to drive the design.

How do you know when your can-

Use Case Diagram didate use case list is complete?

How do you get a complete set of

CRUD Use Cases o
use cases?

Draw a use case diagram to show how ac-
tors and use cases are related.

Apply CRUD analysis to each of the ap-
propriate domain concepts.

How do you get a complete set of

ti .
Reporting Use Cases use cases for reporting?

Ensure you have at least twenty reporting
use cases.

How can you describe what each

Use Case Dialogues .
use case involves.

Write essential use case dialogues for each
use case.

How can you check that use case

Use Case Roleplay dialogues are correct?

Act each use case before an audience of the
development team.

Figure 1: Summary of the Patterns

Usable System
CRUD Use Cases
Reporting Use Cases
Actors Candidate Use Use Case UseCase UseCase
Cases Diagram Dialogs Roleplay
Focal
Use Cases
Request Monitor Alarm Report
2 Confirming
Prompting Step

Figure 2: The beginnings of a pattern language. The arrows show the uses relationship between patterns.

Usable System represents the whole set of patterns.

price, record the selection, and print out a
ticket.

Typically, we would expect to have much more infor-
mation (either more text, or at least the opportunity
to talk to the project sponsor). We will introduce
more details as the example progresses.

Form

The patterns are written in modified electric Portland
form. Each begins with a question (in italics) describ-
ing a problem, followed by a bullet list of forces and
discussion of the problems the pattern addresses. A
boldface “Therefore:” introduces the solution (also

italicised) followed by the consequences of using the
pattern (the positive benefits first, then the negative
liabilities, separated by a boldface However:), an
example of its use, and some related patterns.

Known Uses

It is standard to list known uses for each of the pat-
terns. In the case of our patterns, the known uses are
all much the same so we have elected to discuss them
here.

The patterns we describe have shown up in a num-
ber of projects we have been involved in, including
Siemens Step7Lite project (for a programming envi-
ronment, for programmed logic controllers), projects
for managing telecommunications plant and manag-
ment of service requests, and industry and academic
courses.

1 Finding Use Cases

The first patterns describe how to find the use cases
in your system. The first four patterns are about
exploring the territory, making a rough map of the
ground which you will cover in more detail using later
patterns. These patterns are also about scoping —
making decisions about what is (and what is not) in-
side the system to be built. The last two patterns
are really only proto-patterns. We have noticed it is
quite easy to miss use cases for the really common, al-
most boring, situations, and we have found these two
patterns to be useful in avoiding this kind of mistake.

1.1 Actors

Where do you start use-case modelling?

® You have to start modelling somewhere.

e There may be many stakeholders involved in the
development.

e Time to market may require very rapid develop-
ment.

e Technological issues may be overriding.

e It may be very important that you interface to
legacy systems.

e Stakeholders may have different priorities than
users.

e Use cases are based on user’s needs.
Every analysis, design, or modelling exercise has

to begin somewhere, however, it is often not obvious
where you should start. Begin at the beginning is very

fine advice if you are telling a story or reading a novel;
but the “beginning” of a development project is not
necessarily the best place to start modelling for that
project. Typically, projects begin when one or more
stakeholders agree upon the need for development,
but the needs or dreams of the stakeholders may not
be a good place to start. For example, they may spec-
ify particular, detailed solutions (“the booking system
should run on those new WAP phone computers from
Nokia”) rather than the real requirements (“theatre
session times must be accessible over the internet”).

More seriously, although for political reasons the
stakeholders may nominally agree on the importance
of a particular project, they may strongly disagree on
what the system should be for, what it will do, what
is required for it to be a success, and so on. Stake-
holders can also booby-trap a development project
before it gets started by insisting that time-to-market
requirements preclude any analysis, modelling, or de-
sign; or the system may need to interface to fickle
external systems; or meet strict technological or re-
source challenges.

Therefore: Start with the people (and other sys-
tems) who will actually use the system.

One of the most important tasks in defining a sys-
tem is to work out what the system is (and conversely,
what it is not). We do this by considering the Actors
of the system, that is the people (and other systems)
that are outside the system we will build, but that
interact directly with it.

First, by brainstorming, textual analysis, inter-
viewing clients, and similar activities, come up with
a list of the kinds of people who will use the system.
Once you have the list, briefly determine the char-
acteristics of each user. Most especially, you need
to attempt to understand users’ goals or intentions
when using the system, and then characterise differ-
ent kinds of actors in detail. For example, consider:

e actors’ knowledge of the domain

o their expected knowledge of the system you will
design

e whether they will use the system often or seldom

e any special support requirements

If external systems are important, you should also
list the system actors, that is, the important sys-
tems to which you have to interface. You should then
characterise the system actors, describing their char-
acteristics, typically by referring to existing manuals
or protocol definitions.

Finally, you should roughly prioritise the actors in
terms of their importance to the system as whole.

Example

In considering who would be using the Arts Centre
Booking System (ACBS), an important issue imme-
diately becomes apparent: will this system only be
used by Arts Centre staff, or will it be available to
customers (for example, as a kiosk or web site)? The
answer to this question will significantly impact the
nature of the system, and so it is best that it be an-
swered quickly.

In the case of our example, there is not enough
information to answer this question, and so we would
have to go back to the sponsor to find out. We will
assume that the system will only be used by Arts
Centre staff.

Just listing the staff in the Arts Centre gives a good
idea of the likely actors. Such a list might include: the
people at the ticket booth who actually sell the tick-
ets (ticket sellers), the person who cares about how
well events go, such as the attendance rates for per-
formances (business manager), the person who is in
charge of what events are on and what performances
there are (event manager), the person in charge of the
arts center (managing director), the person in charge
of finances (accountant), and possibly other people
in the organisation (administration staff). And of
course there are also the arts centre patrons, who
clearly have an interest in what the system does.
From this list, we can come up with a first cut at
our list of actors.

Ticket Seller: This is the person who sells tick-
ets, makes reservations, and answers customers’
queries about events in the Arts Centre. Peo-
ple playing this role will often be casual staff,
and so cannot be assumed to have much knowl-
edge of the domain. On the other hand, they
are employees and so some minimal level of do-
main knowledge can be assumed (for example,
through staff training). They will not be ex-
pected to know anything about computer sys-
tems, but they will use the system very fre-
quently.

We have already determined that arts centre pa-
trons will not directly use the system, however
they will have expectations of the ticket seller,
which will translate to the ticket seller’s expec-
tations of the system.

Event Manager: This is the person who decides
what events are booked into the arts centre,
when performances happen (or not), where they
are held, and what the seating layout is. Peo-
ple playing this role will have a lot of knowl-
edge about events and related aspects of the job,

but cannot be assumed to have much knowledge
about computer systems. They will use the sys-
tem several times a week, but probably not as
often as once a day.

Business Manager: The business manager proba-
bly doesn’t want to touch the system at all, and
so will get someone else to actually produce the
reports he needs from the system. Nevertheless,
this does not mean there is no Business Man-
ager Actor, but rather there is someone playing
that role. For that reason, either this actor will
not have much knowledge about the domain (in
this case, what the business manager’s concerns
are), or will not have much knowledge about the
system (or possibly both).

Accounting System: By talking to the Accoun-
tant, we discover that her only interest in the
proposed system is to get the sales information,
and by preference would like it to be delivered
directly to the existing accounting system. As-
suming this system has the ability to interface to
other computing systems, it would be a system
actor for the proposed system.

Looking over the list, we can see that it is already
rougly sorted in priority order.

Consequences

Just determining who are the actual users of the
system can answer some important questions about
what the system will have to (or not have to) do.
Finding out who else cares about what the system
does, even if they will never use it directly, can also
quickly identify important functionality. Very few
systems are built to be independent of any existing
systems, and interfacing with existing systems is of-
ten the source of many frustrating problems, so it is
important to identify these systems early. What the
client thinks is important is, of course, important to
you, but if this is not what the users want, then you
should know about it as soon as possible.

However:

Identifying actors takes time and effort, not only
from modellers but also from stakeholders, and, of
course, the actual users. Getting access to users can
be difficult, especially if they are not employees of the
stakeholders’ institutions, and many actors will not
relish being the objects of analysis. Modelling users
can also irritate stakeholders if they don’t consider
users a high priority. They may much prefer their
money was spent on something useful, like program-
ming,.

Discussion

Note that we consider only the so-called direct actors,
that is actors that use the system itself. Often there
can be indirect actors who use the system on behalf
of another person; we may note these down but don’t
concern ourselves primarily with them. Conversely, a
shallow analysis can miss hidden actors, such as users
that install and maintain the system, who may not
be part of the main purpose of the system but who
will interact with it directly.

Starting with actors may help result in a usable
system, but may do little to placate stakeholders.
Some kind of modelling or analysis of stakeholders
goals and requirements, and on-going project-wide
risk analysis are important practices for all projects,
however, they are separate activities from (and do not
substitute for) beginning the modelling by analysing
the goals and characteristics of the poor people who
will actually have to put up with the system as part
of their lives.

1.2 Candidate Use Case List

How do you determine what the system should do?

e You have to start modelling somewhere.

e There may be many stakeholders involved in the
development.

¢ Time to market may require very rapid develop-
ment.

e Users don’t describe much about the require-
ments of a system.

e Stakeholders’ ideas of what the system should do
are often informally stated.

e The system must meet users’ needs.

e Users often cannot say what they want the sys-
tem to do.

e There needs to be some way to get an estimate
of the size of the system for planning.

e There has to be some way to decide what’s nec-
essary for the system and just those features that
would be nice.

e Stakeholders may have different priorities than
users.

e Stakeholders may have unrealistic expectations.
e Technological issues may be overriding.
Users are unfortunately part of the problem, not

part of the solution. Knowing that you have to build
a system that will be usable by particular users often

makes your job harder rather than easier, since hav-
ing to worry about the people that will use a system
is just another problem on top of all the technical or
managerial issues of making any sort of system work.

So, just knowing the actors doesn’t help work out
what a system should actually do. What you need
to know is what the actors need to accomplish with
the system, what are their intentions or goals, and
what responsibilities are incumbent on the system to
support them.

Similarly, lists of requirements (“wish lists”) pro-
duced by stakeholders or the marketing department
are often very informal, imprecise, and irregular, mix-
ing large and small, detailed and vague, important
and irrelevant information all in one document.

Of course, stakeholders still want you to stop muck-
ing about and deliver the system yesterday.

Therefore: List Candidate Use Cases for each

Actor.

Consider each Actor in turn, starting with the
highest priority actor, and write a list of posisble
(candidate) use cases for each actor.

A use case is one complete case of system use. In
other words, a use case describes a single sequence
of interaction between an actor and a system. From
the actor’s point of view, the new system should seem
to be a “black box”, which exhibits only behaviour,
with no internal workings visible. A candidate case
should be short and sweet, with just enough to be
meaningful. Some examples are:

e making text bold
e printing out your work
e rebooting a PC

Any non-trivial system will have a lot of use cases,
and it will take a while to nail down which ones ac-
tually apply to your system, so identify as many can-
didate use cases as quickly as possible. A candidate
use case is just what it says — something that may
become a use case, but there’s no commitment to it
being so at this stage.

Actually finding or determining the use cases is
not easy, and involves all the vagueness and uncer-
tainty of analysis. To find use cases, you can use do-
main knowledge, textual analysis of wish lists or other
documents, standards, other systems, and interview
stakeholders and people working in the domain. Most
importantly, you must look at the potential users of
the system (already modelled as actors) and try to
understand them and their goals and intentions.

Example

Looking at the text and our list of actors, we can
quickly come up with an initial set of use cases:

Ticket Seller: Issue ticket, Show seat availability,
show seat location, show seat price

Event Manager: Add event, Schedule
mance, Modify performance information

perfor-

Business Manager: Print report

Accounting System: Produce sales information

This is just a first cut, based on the text we had
available. We can easily add to this list, for example
by applying the patterns in section 3. In doing so, we
would also consider renaming what we have to make
them more consistent. A larger set of use cases is
shown in figure 3.

Consequences

A list of use cases can give you a fairly good idea
about what the system needs to do, and it usually
fairly easy to quickly come up with a set that’s repre-
sentative of what’s actually wanted by the stakehold-
ers. Finding use cases should involve stakeholder and
user team members, and incorporating these people
into the process has the advantage that they will be-
come better disposed towards the project (provided
they are treated with a modicum of respect).

Use cases are informal enough to allow good com-
munication with the stakeholders, giving them the
feeling that they understand what the system will
actually do. This increases their confidence in the
project. Use cases are also quite specific in detailing
what the system has to do, thus reducing misunder-
standing and ambiguity that is often associated with
informal requirements.

The list of use cases also gives a good idea of size of
the system overall. Because each use case should have
the same granularity, describing roughly the same
“amount” of interaction with the system, a collection
of use cases will give a better idea of the complexity of
a system than a list of randomly-sized requirements.
They can also be used to derive test cases, to estimate
effort (by tracking the number of use cases completed
versus time spent in any stage), and to guide docu-
mentation.

However: identifying candidate use cases for ac-
tors does take time and effort away from more ob-
viously “productive” development or from users’ and
stakeholders’ revenue-earning work. Listing use cases
can seem pointless to stakeholders who already “know

what the system should do!” especially if they al-
ready have other kinds of lists of requirements for
the system, and if it turns out that those lists are
wrong.

See Also

Use cases were first described by Jacobson for describ-
ing Danish telecommunications systems at Erricson
[11]. There are number of other books describing use
cases and their use in software development [13, 7, 1].
Other related patterns are listed in section 3.

1.3 Focal Use Cases

How can you manage a large number of candidate use
cases?

e Even a small system can have a large number of
candidate use cases.

e Some use cases will be central to the system
while others are only peripheral

¢ Different use cases can take more (or less) effort
to implement.

e Different use cases can be more (or less) risky to
implement.

e Some use cases are more important to users than
others

e Some use cases are more important to stakehold-
ers than others

e Some actors are more important to to stakehold-
ers others

Candidate essential use cases are quite small, each
describing one course of use of a system. Because of
this, there can be a large number of them, perhaps
40-50 for a small system, and 200-300 for a medium
sized system. This raises another problem: how do
you manage and prioritise these use cases. In partic-
ular, how do you know where to start with the next
part of design. Some use cases are more equal than
other use cases. They may take more time (or impose
more risk) to implement, they may be more impor-
tant to actors (say because they will be performed
more frequently than other use cases), or they may
be more important to stakeholders (for their own im-
penetrable reasons). How can you placate the devel-
opers (who already think this is too big and too hard
to build) while still honouring the stakeholders (who
are paying for this, after all).

Therefore:
design.

Choose focal use cases to drive the

It’s not easy choosing what to work on first. Every-

one has their own idea of what’s important. That’s
why we don’t say “important”, we say “focal”: we
choose to focus on these use cases to drive the de-
sign. Focal use cases are typically those that are the
most important to users, but also include use cases
to cover the main responsibilities to the stakeholders
and cover risks expressed by development.

To identity focal use cases, you can print out the
list of every use case, and then rapidly work through
the list several times, each time giving each use case
a score (say from 1 to 5) for one particular aspect
of importance, such as: frequency of use, importance
to stakeholders, risk to development, actor priority
etc. Several developers can quickly rank each aspect
in parallel, although its useful to have two or three
estimates of each aspect. Then, add up the scores for
each aspect, sort the use cases on different combina-
tions of aspect scores (a spreadsheet is helpful here)
and then choose the order that seems to make the
most sense. The top 10% of use cases (to a maxi-
mum of 20) are your focal use cases.

In making this decision, it can be useful to work
towards a minimally useful system, that is, one that
can be useful to some of the users. The reason for
this is that some use cases identified as focal may
depend on other use cases. For example, “purchase
ticket” cannot be done without any tickets to pur-
chase, implying that a use case like “add event” will
be needed as well. On the other hand, if you are
planning an iterative development, it may not mat-
ter if intermediate iterations of the system are not
minimally complete, as long as the functionality can
be supplied in later iterations.

Example

Even a simple version of our Arts Centre Booking
System could have 50 use cases, but a version that
might still be useful may only need to implement a
dozen of them. For example:

Ticket Seller: List Event Performances, Purchase
Tickets, Report Availability of Seats, Report
Event Details, Show Location of Seats

Event Manager: Add Event, Schedule New Perfor-
mance

This doesn’t allow reserving of seats, cancelling of
events, or reporting on ticket sales, but would still
give a very good idea of what the final system might
be capable of.

Consequences

Ranking use cases and finding focal use cases gives
you a good idea about where to go next in your de-
sign. It helps in reducing the risk by concentrating on
use cases that are most likely to produce a design that
will be of most use. The non focal use cases will ei-
ther not impact the design much when implemented,
or will not impact the usefulness of the system if not
implemented.

However: Prioritising use cases can give a false
sense of security: the system is described by all the
use cases, not just the focal ones. Making some use
cases a higher priority implies making others lower
priority, and risking alienating any stakeholders who
champion those use cases.

See Also

The Extreme Programming Planning Game [4] is an
incremental take on the same idea, in which pro-
grammers and customer representatives (stakehold-
ers) constructively argue over which use cases to pri-
oritise in any given iteration. From a usage-centered
perspective, there is a danger in this process: if the
customer is not a user, then noone represents the in-
terests of the users — in the same way that noone
represents the interests of a child while its mother
and father argue about the divorce. An important,
explicit responsibility of a usage-centered design prac-
titioner is to balance the competing interests of devel-
opers, stakeholders, and users — with the key priority
going to users.

1.4 Use Case Diagrams

How do you know when your candidate use cases list
is complete?

¢ You can keep modelling forever, but clearly with
diminishing returns.

e If you stop too soon, you may miss important
things.
e If you stop too late, you waste resources.

e It’s easy to get lost in the detail of the models
you are building.

e You need to convince stakeholders and other
team members that the modelling is done.

Systems analysis would be a great job if we never
had to deliver anything. On a project of any size, you
can keep modelling forever, but (seen from outside)
continued modelling has clearly diminishing returns.

e fathentication Detdsete Seding Plin froen Theare

=
=]

Ticket Seller

T4

Suciwss hlsmager

O Create Hiwr Seating Pl
Add Seating Plinto Theatrs

Eepmm Tickets

-

Shoner Location of Seats

Eeserve Seats

Gt Seat Prices

Figure 3: A use case diagram, showing the system boundary.

Stakeholders don’t want to pay for unnecessary mod-
elling — but then again, they may consider any mod-
elling unnecessary. So, how can you know when you
have enough the use cases — so that you can stop?
Conversely, how do you know when you don’t have
enough use cases — so that you don’t end up re-
visiting obvious things that you’ve missed? Answers
to these questions will need to convince other teams
members, stakeholders, and so on, so how should
you present you use case models to make these ar-
guments?

Therefore: Draw a use case diagram to show how
actors and use cases are related.

A use case diagram shows stick figures for the ac-

tors in with the system, and ovals for each use case.
We write the descriptions of the users beside them,
and the names of the use cases inside the ovals. The
users involved in particular use cases are connected to
those cases by lines. Draw a box (the “system box”)
outline around all the use cases, to make clear the
boundaries of the system to be designed.

A use case diagram is quite simple, but can serve a
subtle purpose. By depicting the users and the set of
use cases, the diagram can be a useful focus for activi-
ties to check the use case model. The box around the
use cases makes the “black box” nature of the sys-
tem clear, and the lines between users (outside the
system) and use cases (within the system) highlight
the ways in which users interact with the system.

Using the diagram, explicitly ask yourself the fol-
lowing questions:

¢ Is there an actor representing every kind of user
who will use the system?

e Is there a system actor for every external system
with which this system needs to communicate?

e Can each actor do everything they need to do
using only the use cases they are related to?

e Are any obvious use cases missing? For example,
use case models are often symmetric: if there are
use cases for creating bookings, printing booking
receipts, printing performance receipts, and can-
celling performances, perhaps there should also
be use cases for cancelling bookings and creating
performances.

Unless you are on a small system (if you have not
more than 15-20 use cases) draw one use case diagram
for each actor (or for a few related actors), rather
than one diagram for the whole system.

Example

Figure 3 shows a use case diagram for the Arts Centre
Booking System.

Consequences

A use case diagram provides a gestalt view of the
system, showing not just the parts of the system,
but also gives a feel for how the parts might inter-
act. It is also useful for new team members coming
onto a project, and convincing stakeholders who have
problems with written documents but like pictures.
More importantly, the process of drawing and star-
ing at a diagram can help you get to grips with the
model in its entirety, to find missing or duplicate use
cases, missing actors, and so on. Large organisations
with formal development processes or ISO certifica-
tion typically require sign-offs and these diagrams can
prove convincing here.

However: Models are never really complete, so
drawing diagrams may again give a false sense of se-
curity. Drawing pretty diagrams can become an end
in themselves, rather than a tool for assisting mod-
elling, especially if you are proud of your prowess with
a CASE tool.

See Also

UML Distilled [9] briefly introduces use case dia-
grams. Software for Use describes more complex use
case diagrams in more detail [8]. Jacobson et al. use
a system box [11].

1.5 CRUD Use Cases

How do you get a complete set of use cases?

e There are many use cases, even in a small system.

e Many use cases are infrequently used and “non
critical” to understanding what the system will
do in general, but are nonetheless necessary for
a complete description.

Even for a small system, there can be a larger num-
ber of use cases than you might initially expect. A
common mistake for people to make is to identify one
use case they know they need, but miss related use
cases. For example, there may be a use case to dis-
play all the details about a particular kind of record,
but no use cases that actually create records. They
will also completely miss a set of use cases that apply
to a concept in the domain model.

Therefore: Apply CRUD analysis to each of the
appropriate domain concepts.

Look at the use cases you have, and determine
whether any of them correspond to a Create, Read,
Update, or Delete (CRUD) of class in the domain
model. If you find any in this category, check whether
any of the other CRUD use cases are needed.

Now consider the rest of the classes in the domain
model and check with they should also have CRUD
use cases.

Rename these uses cases if the standard names
don’t make sense.

Example

Consider “Event” in the ACBS. One reasonable use
case would be “Display Event Details”. Structurally,
this is “Read Event”. If we have this as a use case,
then we might want the following: “Create Event”,
“Delete Event”, and “Update Event”.

There may also be related use cases. For exam-
ple, another way to Create something is to Copy it
(e.g., “Reschedule Event”), and there may be more
than one way to Delete something (e.g., “Cancel
Event”, where the Event details are not actually re-
moved from the system).

It might make sense to rename some of the use
cases (“Modify Event details” instead of “Update
Event”).

Consequences

Applying CRUD analysis can quickly get many rel-
evant use cases without requiring a lot of effort. In
fact, CRUD analysis is amenable to automation.

However:

You can quickly get a huge number of use cases,
many of which are not immediately needed (and so
should receive low priority). For example, Delete use
cases can often be left out of early releases.

Not all of the CRUD use cases are needed for ev-
ery concept so CRUD analysis should not be applied
blindly.

Not all classes in the domain model should have
CRUD analysis applied to them. For example, “Time
Period” may be a sensible class to have, but this con-
cept is never required on its own in the application,
so there is no need for use cases just to deal with it.

See Also

Alistair Cockburn talks about CRUD use cases and
how to present them. He advocates grouping them
all as a single use case, e.g., a “Modify” use case
[7]. We prefer to analyse each use case individually
because even trivial CRUD use cases should represent
a valid use of the system, and because each use case
can be measured and tracked individually throughout
development.

1.6 Reporting Use Cases

How to you get a complete set of use cases for report-
ing information?

e Reporting is very important for lots of systems

e Reporting is boring for implementors, so they
can underestimate the effort required to produce
reports.

e Reporting can be boring to model, too.

e Reporting is often boring to many of the users
or stakeholders, while simultaneously crucial to
the others.

e Reporting often has value for indirect or hidden
actors
Therefore: FEnsure you have at least twenty report-
ing use cases.

Even though reporting is boring, if it’s impor-
tant to someone, you have to model it. We suggest
analysing the problem, domain model, brainstorm-
ing, and so on, until you have at least twenty report-
ing use cases. This number is arbitrary, but is suf-
ficiently large that you should get a feeling for most
types of reports the system must produce. Thus, you
are unlikely to miss important type you capture all
the important cases someone will need to report on,
and ensure your effort estimates are correct if you

are using use cases to drive estimation. Often, af-
ter struggling to find twenty reports, the next thirty
come very easily!

Example

Figure 3 only has two reporting use cases (“Oc-
cupancy Report” and “Report Monthly Sales”) al-
though some others may also be regarded as reports
(for example, “Report Seat Availability”. Other re-
porting use cases might include: “Occupancy Report
by Theatre”, “Occupancy Report by Event, “Occu-
pancy Report by Performance”, “Occupancy Report
by Week”, all of which would be of interest to the
Business Manager. However similar kinds of reports
(almost certainly organised differently) would be use-
ful to the busy Ticket Seller having to answer ques-
tions of the form “Are the plenty of free seats for
tomorrow’s performance of Dracula?”.

Consequences

Actually finding 20 reporting use cases isn’t neces-
sary, the main point is that just being force to try to
come up with 20 (or whatever the number really is)
reporting use cases almost always produces use cases
that weren’t already listed, but instantly recognisable
as crucial to the system.

However:

Sometimes it is too easy to come up with lots of
reporting use cases, when only some of them will ac-
tually be needed in the system.

2 Detailing Use Cases

Once you have a list of candidate use cases, then you
need to go through each one and describe them in
detail. Of course you start with the focal ones first
— indeed, you can detail the focal cases before you’ve
finished the “whole” use case model.

2.1 Essential Use Case Dialogues

How can you describe what each use case involves.

e You have a prioritised list of actors — but this
doesn’t help you work out what the system
should do.

¢ You have a list of candidate use cases — but
this list doesn’t provide much detail. How can
you tell what needs to be implemented for each
use case.

e You don’t have the details of the system’s design
because you haven’t designed it yet.

10

e You don’t want to spend too much time or effort
writing useless documentation.

e You don’t want to limit your implementation op-
tions.

¢ Time to market may require very rapid develop-
ment.

e Technological issues may be overriding.

e Abstraction is a difficult, learned skill.

Even when you've completed your Candidate
Use Case List (1.2), identified the Focal Use
Cases (1.3), and perhaps checked some Use Case
Diagrams (1.4), you still don’t really have much
detail about what the use cases will involve: what in-
formation needs to be provided by actors, and what
behaviour needs to be provided the system to suc-
cessfully implement the use case.

The names of use cases only give you a rough idea
of what the system is supposed to do. You still need
to determine the detail of the interaction with the
system. However you don’t want to have to make
decisions relating to technology (such has what I/O
devices will be available, user interface requirements,
and so on), despite pressure by the stakeholders to
use particular technology (they will probably change
their minds by the time implementation starts). And
on top of that, you still have to come up with the
details quickly.

To address these issues, you need to provide more
detail about each use case; but, how much detail is
too much? You could write detailed descriptions of
what each use case will involve, but this will take lots
of effort, produce a large amount of dense documen-
tation that will be hard to manage, and probably of
little use to the eventual development team.

Furthermore, to be able to write detailed descrip-
tions of the interaction of each use case requires that
you have already decided how each use case will be
designed, if not already implemented — whether this
will be handled by a computer system, by a worker
as part of a business process, by an application pro-
gram, a web site, or a WAP phone. Unfortunately, if
you are solely responsible for analysis (say the design
is being outsourced to a graphics house and the im-
plementation to India), then you don’t want to have
to do design that will be replaced later. If you are
responsible for design, you can’t really begin that un-
til you have worked out what goals the design should
meet to be usable — that is, what users need to do
to complete each use case.

Therefore:
each use case.

Write essential use case dialogues for

Essential use cases are part of Usage-Centered De-

11

sign, as developed by Larry Constantine and Lucy
Lockwood [8]. The term “essential” refers to essen-
tial models that “are intended to capture the essence
of problems through technology-free, idealized, and
abstract descriptions”. Constantine and Lockwood
define an essential use case as follows:

An essential use case is a structured nar-
rative, expressed in the language of the ap-
plication domain and of users, comprising a
simplified, generalized, abstract, technology-
free and implementation independent de-
scription of one task or interaction that is
complete, meaningful, and well-defined from
the point of view of users in some role or
roles in relation to a system and that em-
bodies the purpose or intentions underlying
the interaction.

Constantine and Lockwood give the examples
shown in figures 4 and 5. The dialogue in figure 4
is for a conventional use case, described in terms of
actions and responses. The dialogue in figure 5 is
for an essential use case, described in terms of inten-
tions and responsibilities. The steps of the essential
use case are more abstract, and permit a variety of
concrete implementations. It is still easy to follow
the dialogue, however, and the essential use case is
shorter.

So we document each use case with a “use case dia-
logue”. We write use cases on index cards, so we also
call these dialogues “use case cards”. A use case di-
alogue documents the chronological steps in the use
case as the user and the system interact. We typi-
cally document the use case card with the users part
on the left hand side, and identify this as the “user in-
tention” , which reminds us to focus on the users real
goals for the step. On the right hand side, we identify
the system “responsibility”, stressing that the system
too has goals incumbent upon it. The division down
the centre can be regarded as the “interface” between
the user and the system, and serve as reminder that
interaction is communication across this division.

We write the steps of the interactions under the
assumption that the actor has already chosen to do
this use case and has already told the system that the
are doing it, so we don’t need to include a separate
step to start the use case.

We prefer essential use cases to conventional use
cases because they allow a certain independence from
technology choices in later or subsequent implemen-
tation, and also allows us to make progress quickly,
without having to make difficult decisions otherwise
necessary. Also, we believe their emphasis on system

gettingCash

User Action | System Response

insert card
read magnetic stripe
request PIN
enter PIN
verify PIN
display transaction menu
press key
display account menu
press key

prompt for amount
enter amount

display amount

press key

return card
take card

dispense cash
take cash

Figure 4: A conventional use case for getting cash
from an automatic teller system. (From Constantine
and Lockwood.)

gettingCash

User Intention | System Responsibility
identify self
verify identity
offer choices
choose
dispense cash
take cash

Figure 5: An essential use case for getting cash from
an automatic teller system. (From Constantine and
Lockwood.)

responsibility leads to better traceability between re-
quirements and design.

12

Schedule new perfyrmance
Secds Erent

Showy corrent

pertormance s

= Cnﬂy ﬁfﬁiﬂtfs t‘ﬁ’p
g " Pectorpmgn ce

f i Lo cord de{ugi o neco
e rtprpman

Conllrm 1 néw SJ\QOQAZQ

Figure 6: A use case card showing the essential use
case details for Schedule new performance.

Example

Figure 6 shows an example of a use case card.

Consequences

Essential use cases dialogues capture the core require-
ments of each use case, but without getting into tech-
nological details. Because of this, they are short,
quick to write, and easy to manage.

Essential use cases are smaller (and thus quicker to
write, review, and modify) than longer, more detailed
use cases (for example, the more traditional use cases
used in the Rational Unified Process [10]).

However:

You still have to write them, which takes time and
effort. Finding the “correct” level of abstraction in
which to write a use case — enough detail so that it
makes sense, but not too much so that it determines
the details of the interface design — can be difficult,
and so can take several attempts for some use cases.

See Also

Writing dialogues can lead you to revise the list of
use cases and use case diagrams. Consider the bod-
ies of each use case — if two use case bodies are the
the same, they should probably be the same use case,
so eliminate one of them. If one case seems to need
more than one body, you probably need different use
cases. Two use cases that are similar can be mod-
elled by Specialisation (4.3) or Inclusion (4.2);
the possible errors that can occur during a use case
can be modelled by Extensions (4.1) or Condi-
tions (4.4).

Use case cards were inspired by CRC cards [3, 14,
5]. They are also similar to the Story Cards used to

schedule Extreme Programming iterations [4]. Wirfs-
Brock introduced the idea of the two-column format
[16].

2.2 Use Case Roleplay

How can you check that use case dialogues are cor-
rect?

e Use cases dialogues need to be correct and con-
sistent.

e Incorrect use cases can waste development effort.

e Every team members needs a shared understand-
ing of the use cases.

Once you have written some essential use cases,
you need to verify that they make sense, that they
describe all the communication that is needed for an
actor user and the system to carry out the use case,
and that they don’t include any unnecessary imple-
mentation details. You don’t just write use cases for
the fun of it: the point of the use case model is to
direct the development effort, so inconsistencies or
errors in use cases can cause problems if they are not
caught later on. It’s important different team mem-
bers have the same understanding of use case dialogs,
or inconsistencies and errors are more likely to be in-
troduced.

Therefore: Act each use case before an audience

of the development team.

In a use case roleplay, one person takes the role
of the user, and another person takes the role of the
system. They then proceed to act out the interaction,
using the use case body as a script. Other people
critically observe the role play. Although use cases
should not be very long, use case roleplay is quite
useful for checking the use case.

There are several things to watch for in use case
role play. One is continuity, to make sure that both
user and system understand when they have some-
thing to do, and to make sure they understand what
needs to be done. Confused pauses can indicate mis-
understanding, which can often highlight unresolved
issues in describing the use case. Another thing to
watch for is assumed information. Sometimes the
user or the system will mention information they are
relying on, yet would not actually know. It is impor-
tant to check these details, because they can again
show that the use case has not yet been fully de-
scribed.

13

Example

The following gives a representative example of how
a roleplay proceeds. In particular it gives examples
of the kinds of errors that crop up.
Report Seat Availability

The scene: The ticket seller (“user”) is using the
computer “system” to determine whether the seats re-
quested by the Arts Centre patron for a performance
are in fact available.
Take 1:

User: I say which performance I want and the sys-
tem shows me the performance details.

CUT! — it’s the system’s job to say what the
system does. This is often just an error made by
the role-player, but can also indicate confusion
as to where the system boundary is.

Take 2:
User: I say which performance I want.

System: I display the performance details and say
whether or not the seats are available.

CUT! — the seats haven’t been specified yet.
Take 3

User: I say which performance I want.

User pauses waiting for a response, then Looks
over to the person playing the system, who is still
looking at the use case card, and doesn’t realise
he’s being cued.

System?

System: You’re supposed to say what seats you
want to know about too. Points at card.

User: Oh, right

CUT. The roleplay does not allow anyone to hide
— all participants have to engage with what the
use case is about.

Take 4:
And so on...

Consequences

Use case roleplays highlight problems in your use case
dialogues, so you are able to detect and correct them
early. The audience of the roleplay can both see how
the dialogue should work, and ask questions to ensure
everyone understands the use case.

However:

Roleplaying is another checking practice that is
subject to diminishing returns: pedants can make

the whole process much more annoying and time-
consuming that it needs to be, small errors in use
cases are not that bad as they can be easily detected
later, and many people object to the ritual humili-
ation of standing up and performing in front of the
rest of the team. These kind of group activities can
also be soured by managerial involvement, either by
a culture of “enforced fun”, or worse by turning in-
ternal consistency checks in to excuses for evaluating
and firing staff members.

Discussion

Using roleplay to assist use case checking is not
strictly necessary, but it does harness several human
skills. Tt uses the abilities of the people playing the
roles to identify with the roles, which can often cause
them to focus more intently on the user intention
or the system responsibility, and to detect problems.
It also uses the ability of a critical audience to fol-
low the dialog, and brings into play skills developed
in understanding stories. These skills help people to
detect discontinuities or assumptions, and so detect
possible problems in the use case. Use case roleplay
makes adds more fun and variety into the activity,
and these also heighten attention.

See Also

Use case roleplays were inspired by CRC Card Role-
plays [14, 5]. Further discussion on use case roleplay
can be found in [6]. Our use of roleplay is similar to
Wirf-Brock’s use of “conversations” to evaluate use
cases [17].

3 Use Case Dialog Patterns

Once you start writing use cases you’ll realise that
lots of kind of use cases come up over and over again
— that there are actually patterns in the dialogue
bodies of essential use case themselves. This section
lists a number of these patterns. In the interests of
space, we give only the bare bones of each pattern.

3.1 Alarm Use Case

How do you have the system inform the user about
something?

e The system needs to draw actor’s attention to a
change in its internal state.

e The system is about to break a business rule.

e The notification should be asynchronous, that is,
actors should not have to trigger the use case.

14

Therefore: Write a use case that begins with the
system taking the responsibility to warn the user.

Example

Warn of start of performance

User Intention System Responsibility

Signal “performance
about to start”

Show name, theater, and
times of performance

Consequences

The system takes responsibility for initiating the
use case.

The system can pass information about the
alarm to the actor.

The actor does not have to interrupt their cur-
rent task immediately to respond to the alarm.

e The actor can ignore the alarm.

If the alarm is important, you may need to include
a Confirming Step (3.6):
Warn theater performance undersold

User Intention System Responsibility

Signal “performance un-
dersold”

Show name, theater,
time or performance,
and percentage of seats
sold

Confirm warning

This variant has the following different conse-
quences to the main pattern:

e The actor cannot continue with their current
task: they must interrupt it to confirm the
alarm.

e The actor cannot ignore the alarm.

Alarm use cases can often indicate (potential) vi-
olations of business rules — say that a performance
should not continue if less than 15% of seats have
been sold by the time it starts.

3.2 Requesting Use Case

How do you write a use case when the user needs to
know something from the system?

Therefore: Write a use case where the actor de-
scribes the information they require, and then the sys-
tem presents that information.

Example

Get Seat Prices

User Intention System Responsibility

Offer performances
Choose performance

Show prices for chosen
performance

3.3 Monitoring Use Case

How do you write a use case where the user often
needs to know about a relatively small amount of im-
portant information from the system.

Therefore: Write a use case where the system
presents that information.

Example

Show Today’s Performances

User Intention ‘ System Responsibility

Show
mances

today’s perfor-

3.4 Commanding Use Case

How do you have the user get the system to do some-
thing?

Therefore: Write a use case where the user pro-

vides information on the request, and the system has
the responsibility for performing the command.

Example

Print performance schedule

User Intention System Responsibility

Chose
dates

start and end

Print schedule of perfor-
mances from start to end
date

15

3.5 Prompting Step

How should you write a use case when the system
knows some information that would help the use make
a decision?

Therefore: Give the system the responsibility of
offering that information before the user makes the
decision.

Example

Reserve seats for performance

User Intention System Responsibility

Offer unreserved seats

Choose seats

3.6 Confirming Step

How should you write a use case when it is important
that correct information is communicated between the
actor and the system?

Therefore: Require the actor or system to confirm
the information.

Example

Pay for reservation

User Intention System Responsibility

Present reservation de-
tails

Offer payment methods
Choose payment method

Supply payment de-
tails

Confirm method and de-
tails

Accept payment

Confirm booking

4 Organising Use Cases

In this section, we briefly list a number of patterns
which will describe how to model relationships be-
tween use cases, based on the UML and Usage-
Centered Design relationships.

4.1 Extension

How do you model errors and exceptions in use cases?

Therefore: Use extending use cases.

4.2 Inclusion

How do remove commonality between use cases?

Therefore: Make a new use case containing the
common steps, and include it in the use cases that
have the common steps.

4.3 Specialisation

How do you handle more general and more specific
use cases that do the same kind of thing?

Therefore: Use specialisation.

See Also

Prefer inclusion to specialisation.

4.4 Conditions

How do you model use cases than can only operate
under certain circumstances?

Therefore: Use pre- and post-conditions to control

when use-cases are permissible.

See Also

Prefer extensions to conditions. Pre- and post-
conditions should match in a complete model.

Conclusions

In this paper, we have presented a number of patterns
for writing essential use cases for a system. Many
of these patterns may also be applicable to conven-
tional use cases, although we believe the patterns are
more evident in the essential form of the use case.
Clearly a number of the patterns we have discussed
here need more development, and we are investigat-
ing other possible patterns.

Acknowledgements

Thanks to Larry Constantine, Lucy Lockwood, and
participants from KoalaPLoP 2001 Workshop C —
Saluka Kodiuwakku, Pauline Khoo, and John Hosk-
ing — for their comments on this paper.

16

References

1]

2]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Frank Armour and Granville Miller. Advanced
Use Case Modeling: Software Systems, Volume 1.
Addison-Wesley, 2001.

Kent Beck. Extreme Programming Ezplained: Em-
brace Change. Addison-Wesley, 1999.

Kent Beck and Ward Cunningham. A laboratory
for teaching object-oriented thinking. In Proc. of
OOPSLA-89: ACM Conference on Object-Oriented
Programming Systems Languages and Applications,
pages 1-6, 1989.

Kent Beck and Martin Fowler. Planning Extreme
Programming. The XP Series. Addison-Wesley, 2000.

David Bellin and Susan Suchman Simone. The CRC
Card Book. Addison-Wesley, 1997.

Robert Biddle, James Noble, and Ewan Tempero.
Use case cards and use case roleplay, 2001.

Alistair Cockburn.
Addison-Wesley, 2001.

Writing effective use cases.

Larry L. Constantine and Lucy A. D. Lockwood.
Software for Use: A Practical Guide to the Models
and Methods of Usage Centered Design. Addison-
Wesley, 1999.

Martin Fowler and Kendall Scott. UML Distilled: A
brief guide to the standard object modeling language.
Object Technology Series. Addison-Wesley, second
edition, 2000.

Ivar Jacobson, Grady Booch, and James Rumbaugh.
The Unified Software Development Process. Addison-
Wesley, 1999.

Ivar Jacobson, Mahnus Christerson, Patrik Jonsson,
and Gunnar Overgaard. Object-Oriented Software
Engineering. Addison-Wesley, 1992.

James Noble. Classifying relationships between
object-oriented design patterns. In Douglas D.
Grant, editor, Proceedings of the 1998 Australian
Software FEngineering Conference, pages 98-109,
November 1998.

Doug Rosenberg and Kendall Scott. Use case driven
object modeling with UML: A practical approach.
Addison-Wesley, 1999.

Nancy Wilkinson. Using CRC Cards - An Informal
Approach to OO Development. Cambridge Univer-
sity Press, 1996.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren
Wiener. Designing Object Oriented Software. Pren-
tice Hall, 1990.

Rebecca J. Wirfs-Brock. Designing scenarios: Mak-
ing the case for a use case framework. The Smalltalk
Report, 3(3), 1993.

Rebecca J. Wirfs-Brock. The art of meaningful con-
versations. The Smalltalk Report, 4(5), 1994.

