When is a property expressed in infinitary logic also pseudo-elementary?

Matthew Harrison-Trainor

University of Waterloo

Notre Dame, 2017

This is joint work with Barbara Csima and Nancy Day. It is also work in progress.

Let R be the reachability relation:

 $(a, b) \in R \iff$ there is a path from a to b.

G is connected iff $G \models \forall a \forall b \ (a, b) \in R$.

Let R be the reachability relation:

 $(a, b) \in R \iff$ there is a path from a to b.

G is connected iff $G \models \forall a \forall b \ (a, b) \in R$.

R is the smallest relation satisfying:

- *R* ⊇ *E*
- R is transitive

Let R be the reachability relation:

 $(a, b) \in R \iff$ there is a path from a to b.

G is connected iff $G \models \forall a \forall b \ (a, b) \in R$.

R is the smallest relation satisfying:

- *R* ⊇ *E*
- R is transitive
- G is connected iff

for all transitive $S \supseteq E$ and all $a, b, (a, b) \in S$.

G is not connected iff

there is a transitive $S \supseteq E$ and a, b such that $(a, b) \notin S$.

Let Δ be a set of sentences in the language of graphs.

Does

$$\Delta \models$$
 "*G* is connected" ?

Let Δ be a set of sentences in the language of graphs.

A class \mathbb{K} of \mathcal{L} -structures is a PC-class if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and an elementary first-order sentence ϕ such that

 $\mathbb{K} = \{\mathcal{M} \mid \text{there is an } \mathcal{L}^* \text{-structure } \mathcal{M}^* \text{ expanding } \mathcal{M} \text{ with } \mathcal{M}^* \vDash \phi\}.$

A class \mathbb{K} of \mathcal{L} -structures is a PC-class if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and an elementary first-order sentence ϕ such that

 $\mathbb{K} = \{\mathcal{M} \mid \text{there is an } \mathcal{L}^* \text{-structure } \mathcal{M}^* \text{ expanding } \mathcal{M} \text{ with } \mathcal{M}^* \vDash \phi\}.$

Example

The class of disconnected graphs is a PC-class.

A class \mathbb{K} of \mathcal{L} -structures is a PC-class if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and an elementary first-order sentence ϕ such that

 $\mathbb{K} = \{\mathcal{M} \mid \text{there is an } \mathcal{L}^* \text{-structure } \mathcal{M}^* \text{ expanding } \mathcal{M} \text{ with } \mathcal{M}^* \vDash \phi\}.$

Example

The class of disconnected graphs is a PC-class. It is also defined by the infinitary sentence:

$$\exists x_1, x_2 \bigwedge_{n \in \mathbb{N}} \forall y_1, \dots, y_n \quad \neg (x_1 E y_1 \land y_1 E y_2 \land \dots \land y_n E x_2).$$

A class \mathbb{K} of \mathcal{L} -structures is a PC-class if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and an elementary first-order sentence ϕ such that

 $\mathbb{K} = \{\mathcal{M} \mid \text{there is an } \mathcal{L}^* \text{-structure } \mathcal{M}^* \text{ expanding } \mathcal{M} \text{ with } \mathcal{M}^* \vDash \phi\}.$

Example

The class of disconnected graphs is a PC-class. It is also defined by the infinitary sentence:

$$\exists x_1, x_2 \bigwedge_{n \in \mathbb{N}} \forall y_1, \dots, y_n \quad \neg (x_1 E y_1 \land y_1 E y_2 \land \dots \land y_n E x_2).$$

The class of non-well-founded linear orders is a PC-class. It is not $\mathcal{L}_{\omega_1\omega}$ -definable.

Let ϕ be a first-order sentence. The class \mathbbm{K} of infinite models of ϕ is a PC-class.

 $\mathcal{A} \models \phi$ is infinite if and only if there is a linear order \leq on \mathcal{A} such that $(\forall x)(\exists y)[y > x]$.

 $\ensuremath{\mathbb{K}}$ also defined by the infinitary sentence

$$\phi \wedge \bigwedge_{n \in \mathbb{N}} (\exists x_0, \ldots, x_n) \left[\bigwedge_{i \neq j} x_i \neq x_j \right].$$

Question

When is a pseudo-elementary class also definable by an infinitary sentence, and vice versa?

Background: Pseudo-elementary Classes

There are four variants of pseudo-elementary classes:

- PC
- PC'
- PC_{Δ}
- PC[']_Δ

A class \mathbb{K} of \mathcal{L} -structures is a PC-class if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and an elementary first-order sentence ϕ such that

 $\mathbb{K} = \{\mathcal{M} \mid \text{there is an } \mathcal{L}^* \text{-structure } \mathcal{M}^* \text{ expanding } \mathcal{M} \text{ with } \mathcal{M}^* \vDash \phi\}.$

A class \mathbb{K} of \mathcal{L} -structures is a PC_{Δ} -class if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and an elementary first-order theory \mathcal{T} such that

 $\mathbb{K} = \{\mathcal{M} \mid \text{there is an } \mathcal{L}^* \text{-structure } \mathcal{M}^* \text{ expanding } \mathcal{M} \text{ with } \mathcal{M}^* \vDash T\}.$

Let $\mathcal{L} \subseteq \mathcal{L}^*$ be a pair of languages, with a unary predicate $P \in \mathcal{L}^* \setminus \mathcal{L}$. Given an \mathcal{L}^* -structure \mathcal{A} , we denote by \mathcal{A}_P the substructure of $\mathcal{A} \mid \mathcal{L}$ whose domain is $P^{\mathcal{A}}$ (if this is an \mathcal{L} -structure; otherwise \mathcal{A}_P is not defined).

Let $\mathcal{L} \subseteq \mathcal{L}^*$ be a pair of languages, with a unary predicate $P \in \mathcal{L}^* \setminus \mathcal{L}$. Given an \mathcal{L}^* -structure \mathcal{A} , we denote by \mathcal{A}_P the substructure of $\mathcal{A} \mid \mathcal{L}$ whose domain is $P^{\mathcal{A}}$ (if this is an \mathcal{L} -structure; otherwise \mathcal{A}_P is not defined).

Definition

A class \mathbb{K} of \mathcal{L} -structures is a PC'-class if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$, with a unary relation $P \in \mathcal{L}^* \smallsetminus \mathcal{L}$, and an \mathcal{L}^* -formula ϕ , such that

$$\mathbb{K} = \{ \mathcal{A}_P \mid \mathcal{A} \vDash \phi \text{ and } \mathcal{A}_P \text{ is defined} \}.$$

Let $\mathcal{L} \subseteq \mathcal{L}^*$ be a pair of languages, with a unary predicate $P \in \mathcal{L}^* \setminus \mathcal{L}$. Given an \mathcal{L}^* -structure \mathcal{A} , we denote by \mathcal{A}_P the substructure of $\mathcal{A} \mid \mathcal{L}$ whose domain is $P^{\mathcal{A}}$ (if this is an \mathcal{L} -structure; otherwise \mathcal{A}_P is not defined).

Definition

A class \mathbb{K} of \mathcal{L} -structures is a PC'_{Δ} -class if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$, with a unary relation $P \in \mathcal{L}^* \smallsetminus \mathcal{L}$, and an \mathcal{L}^* -theory \mathcal{T} , such that

$$\mathbb{K} = \{ \mathcal{A}_P \mid \mathcal{A} \vDash T \text{ and } \mathcal{A}_P \text{ is defined} \}.$$

PC	sentence	one sort
PC'	sentence	extra sorts
PC_{Δ}	theory	one sort
PC'_{Δ}	theory	extra sorts

There are some obvious relations:

- Every PC-class is a PC'-class and a PC_{Δ} -class.
- Every PC'-class or PC_{Δ} -class is a PC'_{Δ} -class.

Theorem (Makkai)

Let \mathbb{K} be a class of structures.

- \mathbb{K} is a PC_{Δ} -class if and only if it is a PC'_{Δ} -class.
- If all the structures in 𝕂 are infinite, then 𝕂 is a PC-class if and only if it is a PC'-class.

There is a PC_{Δ} -class which is not a PC'-class.

Proof. Let $A \in \mathbb{N}$ be a set which is not computably enumerable. Let \mathbb{K} be the class of all graphs which have no cycles of length *n* for $n \in A$.

There is a PC_{Δ} -class which is not a PC'-class.

Proof. Let $A \in \mathbb{N}$ be a set which is not computably enumerable. Let \mathbb{K} be the class of all graphs which have no cycles of length n for $n \in A$.

If φ were a sentence in an expanded language defining \mathbbm{K} as a PC'-class, then

 $n \in A \iff \varphi \vdash$ "there are no cycles of length n".

There is a PC_{Δ} -class which is not a PC'-class.

Proof. Let $A \in \mathbb{N}$ be a set which is not computably enumerable. Let \mathbb{K} be the class of all graphs which have no cycles of length n for $n \in A$.

If φ were a sentence in an expanded language defining $\mathbb K$ as a PC'-class, then

 $n \in A \iff \varphi \vdash$ "there are no cycles of length *n*".

This would mean that A is computably enumerable. So \mathbb{K} is an elementary class but not a PC'-class. In fact, we have:

$$\mathsf{PC} \subsetneqq \mathsf{PC}' \subsetneqq \mathsf{PC}_\Delta = \mathsf{PC}'_\Delta .$$

We will show later that the second containment is strict.

Background: Infinitary Logic

 $\mathcal{L}_{\omega_1\omega}$ is the infinitary logic which allows countably infinite conjunctions and disjunctions.

Definition

The $\mathcal{L}_{\omega_1\omega}$ -formulas are built up inductively as follows:

- atomic formulas
- $\neg \varphi$, where φ is an $\mathcal{L}_{\omega_1\omega}$ -formula
- $(\exists x) \varphi$, where φ is an $\mathcal{L}_{\omega_1 \omega}$ -formula
- $(\forall x) arphi$, where arphi is an $\mathcal{L}_{\omega_1 \omega}$ -formula
- if $(\varphi_i)_{i\in\omega}$ are $\mathcal{L}_{\omega_1\omega}$ -formulas, then so is $\bigwedge_{i\in\omega}\varphi_i$
- if $(\varphi_i)_{i\in\omega}$ are $\mathcal{L}_{\omega_1\omega}$ -formulas, then so is $\bigvee_{i\in\omega}\varphi_i$

A formula is computable if the conjunctions and disjunctions are over computable sets of formulas.

There is a computable infinitary sentence which describes the class of torsion groups. It consists of the group axioms together with:

$$(\forall x) \bigvee_{n \in \mathbb{N}} nx = 0.$$

Example

There is a computable infinitary formula which describes the dependence relation on triples x, y, z in a \mathbb{Q} -vector space:

$$\bigvee_{(a,b,c)\in\mathbb{Q}^{3}\setminus\{(0,0,0)\}}ax + by + cz = 0$$

There is a computable infinitary sentence which says that a \mathbb{Q} -vector space has finite dimension:

$$\bigvee_{n\in\mathbb{N}} (\exists x_1,\ldots,x_n)(\forall y) \ y \in \operatorname{span}(x_1,\ldots,x_n).$$

Example

There is a computable infinitary sentence which says that a \mathbb{Q} -vector space has infinite dimension:

$$\bigwedge_{n\in\mathbb{N}}(\exists x_1,\ldots,x_n) \operatorname{Indep}(x_1,\ldots,x_n).$$

An $\mathcal{L}_{\omega_1\omega}$ -sentence φ is a \mathbb{A} -formula if it can be written in normal form without any infinite disjunctions.

More concretely, the A-formulas are defined inductively as follows:

- every finitary quantifier-free sentence is a M-formula
- if φ is a \mathbb{A} -formula, then so are $(\exists x)\varphi$ and $(\forall x)\varphi$
- if $(\varphi_i)_{i\in\omega}$ are \bigwedge -formulas, then so is $\bigwedge_{i\in\omega}\varphi_i$.

New Results

Theorem (Interpolation Theorem)

Suppose ϕ_1 is a \mathbb{A} -sentence and ϕ_2 is an $\mathcal{L}_{\omega_1\omega}$ -sentence with $\phi_1 \models \phi_2$.

There is a \bigwedge -sentence θ such that $\phi_1 \models \theta$, $\theta \models \phi_2$, and every relation, function and constant symbol occurring in θ occurs in both ϕ_1 and ϕ_2 .

Theorem (Interpolation Theorem)

Suppose ϕ_1 is a \mathbb{A} -sentence and ϕ_2 is an $\mathcal{L}_{\omega_1\omega}$ -sentence with $\phi_1 \models \phi_2$.

There is a \bigwedge -sentence θ such that $\phi_1 \models \theta$, $\theta \models \phi_2$, and every relation, function and constant symbol occurring in θ occurs in both ϕ_1 and ϕ_2 .

Corollary

Let \mathbb{K} be a class of \mathcal{L} -structures closed under isomorphism. If \mathbb{K} is both a PC_{Δ} -class and $\mathcal{L}_{\omega_1\omega}$ -elementary, then it is defined by a \mathbb{A} -sentence.

Question

If $\mathbb K$ is both a PC-class and $\mathcal L_{\omega_1\omega}\text{-elementary},$ then is it defined by a computable // -sentence?

Theorem

Let \mathbb{K} be a class definable by a computable \mathbb{A} -sentence in a finite language.

Then \mathbb{K} is a PC' class.

Corollary

Every computably axiomatizable class in a finite language is a PC' class.

Let R be the reachability relation:

 $(a, b) \in R \iff$ there is a path from a to b.

G is connected iff $G \models \forall a \forall b \ (a, b) \in R$.

R is the smallest relation satisfying:

- *R* ⊇ *E*
- R is transitive
- G is connected iff

for all transitive $S \supseteq E$ and all $a, b, (a, b) \in S$.

G is not connected iff

there is a transitive $S \supseteq E$ and a, b such that $(a, b) \notin S$.

The class of graphs with no cycles of prime length is a PC' -class.

Example

The class of graphs with at least one cycle of length p for each prime p is a PC'-class.

Theorem Let \mathbb{K} be a class definable by a \mathbb{A} -sentence. Then \mathbb{K} is a PC_{Δ} class. Theorem Let \mathbb{K} be a class definable by a \mathbb{A} -sentence. Then \mathbb{K} is a PC_{Δ} class.

Corollary

Let \mathbb{K} be a class of structures. The following are equivalent:

- \mathbb{K} is both a PC_{Δ}-class and $\mathcal{L}_{\omega_1\omega}$ -elementary.
- *K* is defined by a *∧*-sentence.

Theorem (Mal'tsev, Tarski)

If \mathbb{K} is a PC'_{Δ} -class which is closed under substructures, then it axiomatized by a set of universal sentences.

Theorem (Mal'tsev, Tarski)

If \mathbb{K} is a PC'_{Δ} -class which is closed under substructures, then it axiomatized by a set of universal sentences.

Theorem

Let \mathbb{K} be a class of structures. The following are equivalent:

- K is a PC'-class which is closed under substructures,
- K is axiomatized by a computable universal theory.

Orderable groups are a PC-class.

They are also universally axiomatizable by saying that every finite subset can be ordered in a way that is compatible with the group operation.

There is a c.e. universal theory T whose models are a PC'-class but not a PC-class.

The language of T will be the language of graphs.

There is a c.e. universal theory T whose models are a PC'-class but not a PC-class.

The language of T will be the language of graphs.

Fix an enumeration of the sentences ϕ_n in finite languages \mathcal{L}_n expanding the language of graphs.

There is a c.e. universal theory T whose models are a PC'-class but not a PC-class.

The language of T will be the language of graphs.

Fix an enumeration of the sentences ϕ_n in finite languages \mathcal{L}_n expanding the language of graphs.

For every finite graph G, we can decide effectively whether there is an expansion of G to a model of ϕ_n .

There is a c.e. universal theory T whose models are a PC'-class but not a PC-class.

The language of T will be the language of graphs.

Fix an enumeration of the sentences ϕ_n in finite languages \mathcal{L}_n expanding the language of graphs.

For every finite graph G, we can decide effectively whether there is an expansion of G to a model of ϕ_n .

For each n, let C_n be a cycle of length n.

Let T be the theory which says that there is no cycle of length n for exactly those n where C_n has an expansion to a model of ϕ_n .

There is a c.e. universal theory T whose models are a PC'-class but not a PC-class.

The language of T will be the language of graphs.

Fix an enumeration of the sentences ϕ_n in finite languages \mathcal{L}_n expanding the language of graphs.

For every finite graph G, we can decide effectively whether there is an expansion of G to a model of ϕ_n .

For each n, let C_n be a cycle of length n.

Let T be the theory which says that there is no cycle of length n for exactly those n where C_n has an expansion to a model of ϕ_n .

T is c.e., universal, and different from each PC-class.

Conjecture

Let \mathbb{K} be a class of structures. The following are equivalent:

- K is a PC-class closed under substructures,
- *K* is axiomatized by a universal theory *T* and we can decide in polynomial time for each universal formula φ whether *T* ⊢ φ.

Conjecture

Let \mathbb{K} be a class of structures. The following are equivalent:

- \mathbb{K} is both a PC'-class and $\mathcal{L}_{\omega_1\omega}$ -elementary.
- *K* is defined by a computable *∧*-sentence.

Thanks!