Extending automorphisms of normal algebraic fields

Matthew Harrison-Trainor

University of California, Berkeley

AMS Sectional Meeting, Charleston, SC, March 2017
This is joint work with Russell Miller and Alexander Melnikov.

I will be talking about the effective versions of the following facts about fields:

- Every embedding of a field F into an algebraically closed field K extends to an embedding of \overline{F} into K.
- Every automorphism of a field F extends to an automorphism of \overline{F}.

First we will review some effective field theory.
Let F be a computable field.

Definition

The *splitting set* S_F of F is the set of all polynomials $p \in F[X]$ which are reducible over F. If S_F is computable, we say that F has a splitting algorithm.

Theorem (Rabin’s embedding theorem)

There is a computable algebraically closed field \overline{F} and a computable field embedding $\iota: F \to \overline{F}$ such that \overline{F} is algebraic over $\iota(F)$.

For any such \overline{F} and ι, the image $\iota(F)$ of F in \overline{F} is Turing equivalent to the splitting set of F.

Theorem (Kronecker)

If F has a splitting algorithm, then every finite extension of F has a splitting algorithm.
We want to know:

- When does a computable embedding of a field F into an algebraically closed field K extend to a computable embedding of \overline{F} into K?
- When does a computable automorphism of a field F extend to a computable automorphism of \overline{F}?

Friedman, Simpson, and Smith, and Dorais, Hirst, and Shafer analyzed these questions using Reverse Mathematics. We can state their results in terms of effective algebra.
For embeddings into algebraically closed fields:

Theorem (Friedman-Simpson-Smith; Dorais-Hirst-Shafer)

Let F be a computable field and let $\iota: F \to \overline{F}$ be a computable embedding of F into its algebraic closure.

If F has a splitting algorithm, every computable embedding of F into a computable algebraically closed field K extends to a computable embedding of \overline{F} into K.

Even if F does not have a splitting algorithm, every computable embedding of F into a computable algebraically closed field K extends to a low embedding of \overline{F} into K.
For extensions of automorphisms:

Theorem (Friedman-Simpson-Smith; Dorais-Hirst-Shafer)

Let F be a computable field and let $\iota: F \to \overline{F}$ be a computable embedding of F into its algebraic closure.

If F has a splitting algorithm, every computable automorphism of F extends to a computable automorphism of \overline{F}.

Even if F does not have a splitting algorithm, every computable automorphism of F extends to a low automorphism of \overline{F}.

We will try to answer the question: is it necessary to have a splitting algorithm?
Theorem (HT-Miller-Melnikov)

Let F be a computable field and let $\iota: F \to \overline{F}$ be a computable embedding of F into its algebraic closure. The following are equivalent:

1. F has a splitting algorithm.
2. Every computable embedding of F into a computable algebraically closed field K extends to a computable embedding of \overline{F} into K.

\[\begin{array}{c} \overline{F} \xrightarrow{\beta} K \\ \uparrow \iota \\ F \xrightarrow{\alpha} K \end{array} \]
Theorem (HT-Miller-Melnikov)

Let F be a computable normal algebraic extension of the prime field and let $\iota: F \to \overline{F}$ be a computable embedding of F into its algebraic closure. The following are equivalent:

1. \mathcal{F} has a splitting algorithm.
2. Every computable automorphism of F extends to a computable automorphism of \overline{F}.

\[
\begin{array}{c}
\overline{F} \\ \uparrow \iota \\
\mathcal{F} \\ \alpha \rightarrow F \\
\end{array}
\quad \begin{array}{c}
\beta \rightarrow \overline{F} \\
\downarrow \\
\iota \\
\end{array}
\]
Before, we fixed the embedding of F into \overline{F}. What happens if we let this embedding vary?

Question

Which fields F have the following property?

- For every computable automorphism α of F, there is a computable embedding $\iota: F \rightarrow \overline{F}$ of F into an algebraic closure and a computable automorphism β of \overline{F} extending α.

We do not have a complete solution to this question, but towards a partial solution, we introduce the *non-covering property*.
Definition
We say that a group G has the **non-covering property** if for all finite index normal subgroups $M \nsubseteq N$ of G and $g \in G$, there is $h \in gN$ such that for all $x \in G$, $x^{-1}hx \notin gM$.

Lemma
Let F/E be a separable normal extension. The following are equivalent:

1. $\text{Gal}(F/E)$ has the non-covering property.

2. For all finite normal subextensions K_1/E and K_2/E with $K_2 \nsubseteq K_1$, and every pair of automorphisms σ of K_1 and τ of K_2 fixing E, there is an automorphism α of F extending σ and incompatible with τ (i.e., (K_2, τ) does not embed into (F, α) as a difference field).
Theorem (HT-Miller-Melnikov)

Let F be a computable normal algebraic extension of the prime field \mathbb{F}_p such that $\text{Gal}(F/\mathbb{F}_p)$ has the non-covering property. The following are equivalent:

1. F has a splitting algorithm.

2. For every computable automorphism α of F, there is a computable embedding $\iota: F \to \overline{F}$ of F into an algebraic closure and a computable automorphism β of \overline{F} extending α.

\[
\begin{array}{ccc}
\overline{F} & \xrightarrow{\beta} & \overline{F} \\
\uparrow & & \uparrow \\
\iota \downarrow & & \iota \downarrow \\
\downarrow & & \downarrow \\
F & \xrightarrow{\alpha} & F
\end{array}
\]
The following groups have the non-covering property:

- abelian groups,
- simple groups,
- the quaternion group.

S_3 does not have the non-covering property.

Theorem (HT-Miller-Melnikov)

Let $\{G_i : i \in I\}$ be a collection of profinite groups, each of which has the non-covering property. Then $\prod_{i \in I} G_i$ has the non-covering property.
Theorem (HT-Miller-Melnikov)

Let F be a computable normal algebraic extension of \mathbb{F}_p in characteristic $p > 0$. The following are equivalent:

1. F has a splitting algorithm.
2. For every computable automorphism α of F, there is a computable embedding $\iota: F \to \overline{F}$ of F into an algebraic closure and a computable automorphism β of \overline{F} extending α.

Proof.

The Galois group of every normal extension F/\mathbb{F}_p in characteristic $p > 0$ is abelian and hence has the non-covering property.

Question

Is this true in characteristic zero?