
SCOTT RANKS OF MODELS OF A THEORY

MATTHEW HARRISON-TRAINOR

Abstract. The Scott rank of a countable structure is a measure, com-
ing from the proof of Scott’s isomorphism theorem, of the complexity
of that structure. The Scott spectrum of a theory (by which we mean a
sentence of Lω1ω) is the set of Scott ranks of countable models of that
theory. In ZFC + PD we give a descriptive-set-theoretic classification
of the sets of ordinals which are the Scott spectrum of a theory: they
are particular Σ1

1 classes of ordinals.
Our investigation of Scott spectra leads to the resolution (in ZFC)

of a number of open problems about Scott ranks. We answer a question
of Montalbán by showing, for each α < ω1, that there is a Πin

2 theory
with no models of Scott rank less than α. We also answer a question
of Knight and Calvert by showing that there are computable models
of high Scott rank which are not computably approximable by models
of low Scott rank. Finally, we answer a question of Sacks and Marker
by showing that δ12 is the least ordinal α such that if the models of
a computable theory T have Scott rank bounded below ω1, then their
Scott ranks are bounded below α.

1. Introduction

Scott [Sco65] showed that every countable structure A can be character-
ized, up to isomorphism, as the the unique countable structure satisfying a
particular sentence of the infinitary logic Lω1ω, called the Scott sentence of
A. Scott’s proof gives rise to a notion of Scott rank for structures; there
are several different definitions, which we will discuss later in Section 2.1,
but until then we may take the Scott rank of M to be the least ordinal α
such that M has a Πin

α+1 Scott sentence. This paper is concerned with the
following general question: given a theory (by which we mean a sentence
of Lω1ω) what could the Scott ranks of models of T be? This collection of
Scott ranks is called the Scott spectrum of T :

Definition 1. Let T be an Lω1ω-sentence. The Scott spectrum of T is the
set

SS(T ) = {α ∈ ω1∶α is the Scott rank of a countable model of T}.
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This is an old definition. For example, in 1981, Makkai [Mak81] defined the
Scott spectrum of a theory in this way and showed that there is a sentence
of Lω1ω without uncountable models whose Scott spectrum is unbounded
below ω1. In [Vää11, p. 151] a reference is made to gaps in the Scott
spectrum—ordinals β which are not in the Scott spectrum, but which are
bounded above by some other α in the Scott spectrum—but the only results
proved about Scott spectra are about bounds below ω1. This seems to be a
general pattern: whenever Scott spectra are mentioned in the literature, it
is to say that they are either bounded or unbounded below ω1. This paper,
to the contrary, is about the gaps, and about a classification of the sets of
countable ordinals that can be Scott spectra. Our main result is a complete
descriptive-set-theoretic classification of the sets of ordinals which are Scott
spectra. For this classification, we assume projective determinacy.

This work began with the following question, first asked by Montalbán at
the 2013 BIRS Workshop on Computable Model Theory.

Question (Montalbán). If T is a Πin
2 sentence, must T have a model of

Scott rank two or less?

At the time, we knew very little about how to answer such questions. In
this paper, we make a large step forward in our understanding of Scott
spectra: not only do we answer the question negatively, but we also answer
the generalization to any ordinal α and we apply those techniques to solve
other open problems about Scott ranks.

The paper is in two parts. The first part is a general construction in
Section 3. Given a Lω1ω-pseudo-elementary class of linear orders, we build
an Lω1ω-sentence T so that the Scott spectrum of T is related to the set
of well-founded parts of linear orders in that class. The construction bears
some similarity to work of Marker [Mar90]. In the second part, we apply
the general construction to get various results about Scott spectra. We will
describe these applications now.

1.1. Πin
2 theories with no models of low Scott rank. It follows easily

from known results that for a given ordinal α, there is a theory T all of whose
models have Scott rank at least α. (We can, for example, take T to be the
Scott sentence of a model of Scott rank α.) This is not very surprising, as the
theory T we get has quantifier complexity about α; complicated theories may
have only complicated models. The interesting question is whether there is
an uncomplicated theory all of whose models are complicated. Such theories
exist.

Theorem 2. Fix α < ω1. There is a Πin
2 sentence T whose models all have

Scott rank α.

In particular, taking α > 2 answers the question of Montalbán stated above.
In Section 4 we will derive Theorem 2 from the general construction of
Section 3.
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1.2. Computable structures of high Scott rank. Nadel [Nad74] showed
that if A is a computable structure, then its Scott rank is at most ωCK1 + 1.
We say that a computable structure with non-computable Scott rank, i.e.
with Scott rank ωCK1 or ωCK1 +1, has high Scott rank. There are few known
examples of computable structures of high Scott rank. Harrison [Har68] gave
the first example of a structure of Scott rank ωCK1 + 1: the Harrison linear
order H, which is a computable linear order of order type ωCK1 (1+Q). The
Harrison order is the limit of the computable ordinals in the following sense:
given α a computable ordinal, there is a computable ordinal β such that
H ≡α β. We say that such a structure is strongly computable approximable:

Definition 3. A computable structure A of non-computable rank is weakly
computably approximable if every computable infinitary sentence ϕ true in
A is also true in some computable B ≇ A. A is strongly computably approx-
imable if we require that B have computable Scott rank.

Makkai [Mak81] gave the first example of an arithmetic structure of Scott
rank ωCK1 , and Knight and Millar [KM10] modified the construction to get
a computable structure. Calvert, Knight, and Millar [CKM06] showed that
this structure is also strongly computably approximable. Calvert and Knight
[CK06, Problem 6.2] asked the following question:

Question (Calvert and Knight). Is every computable model of high Scott
rank strongly (or weakly) computably approximable?

At the time, every known example of a computable structure of high Scott
rank was strongly computably approximable. We show here that there are
computable structures of Scott rank ωCK1 and ωCK1 +1 which are not strongly
computably approximable.

Theorem 4. For α = ωCK1 or α = ωCK1 + 1 : There is a computable model
A of Scott rank α and a Πc

2 sentence ψ such that A ⊧ ψ, and whenever B is
any structure and B ⊧ ψ, B has Scott rank α.

We prove Theorem 4 in Section 5. Note that this gives a new type of model
of high Scott rank which is qualitatively different from the previously known
examples.

1.3. Bounds on Scott Height. It follow from a general counting argu-
ment that there is a least ordinal α < ω1 such that if T is a computable
Lω1ω-sentence whose Scott spectrum is bounded below ω1, then the Scott
spectrum of T is bounded below α. We call this ordinal the Scott height of
Lcω1ω, and we denote it sh(Lcω1,ω).

Sacks [Sac83] and Marker [Mar90] asked:

Question (Sacks and Marker). What is the Scott height of Lcω1ω?

Definition 5. δ1
2 is the least ordinal which has no ∆1

2 presentation.
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Sacks [Sac83] showed that sh(Lcω1,ω) ≤ δ1
2 . Marker [Mar90] was able to

resolve this question for pseudo-elementary classes.

Definition 6. A class C of structures in a language L is an Lω1ω-pseudo-
elementary class (PCLω1ω -class) if there is an Lω1ω-sentence T in an ex-

panded language L′ ⊇ L such that the structures in C are the reducts to L
of the models of T . C is a computable PCLω1ω -class if T is a computable
sentence.

We can define the Scott height of PCLω1ω in a similar way to the Scott height
of Lcω1ω, except that now we consider all Lω1ω-pseudo-elementary classes
which are the reducts of the models of a computable sentence. Marker
[Mar90] showed that sh(PCc

Lω1ω) = δ
1
2 . Using our methods, we can expand

this argument to Lcω1ω.

Theorem 7. sh(Lcω1,ω) = δ
1
2.

We prove this theorem in Section 7.

1.4. Classifying the Scott spectra. Assuming projective determinacy,
we will define a descriptive set-theoretic class which will give a classification
of the Scott spectra.

Definition 8. A set of countable ordinals is a Σ1
1 class of ordinals if it

consists of the order types in C ∩On for some Σ1
1 class C of linear orders on

ω.

Note that C and On here are classes of presentations of ordinals as linear
orders of ω. Frequently we will pass without comment between viewing a
class as a collection of ordinals, i.e., of order types, and as a collection of
ω-presentations of linear orders.

Theorem 9 (ZFC + PD). The Scott spectra of Lω1ω-sentences are the Σ1
1

classes C of ordinals with the property that, if C is unbounded below ω1, then
either C is stationary or {α∶α + 1 ∈ C} is stationary.

We can also get an alternate characterization which is more tangible. To
state this, we must define two ways to produce an ordinal from an arbitrary
linear order.

Definition 10. Let (L,≤) be a linear order. The well-founded part wfp(L)
of L is the largest initial segment of L which is well-founded. The well-
founded collapse of L, wfc(L), is the order type of L after we collapse the
non-well-founded part L ∖wfp(L) to a single element.

We can identify α ∈ wfp(L) with the ordinal which is the order type of
{β ∈ L ∶ β < α}. We can also identify wfp(L) with its order type. If L
is well-founded, with order type α, then wfc(L) = wfp(L) = α. If L is not
well-founded, wfc(L) = wfp(L) + 1.
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Theorem 11 (ZFC + PD). The Scott spectra of Lω1ω-sentences are exactly
the sets of the form:

(1) wfp(C),
(2) wfc(C), or
(3) wfp(C) ∪wfc(C)

where C is a Σ1
1 class of linear orders of ω.

Theorem 12 (ZFC + PD). Each Scott spectrum is the Scott spectrum of a
Πin

2 sentence.

Theorem 13 (ZFC + PD). Every Scott spectrum of a PCLω1ω -class is the
Scott spectrum of an Lω1ω-sentence.

We will prove Theorems 9, 11, 12, and 13 in Section 8. This classification
allows us to construct interesting Scott spectra. For example, the successor
ordinals and the admissible ordinals are Scott spectra.

2. Preliminaries on Back-and-forth Relations and Scott Ranks

All of our structures will be countable structures in a countable language.
The infinitary logic Lω1ω consists of formulas which allow countably infinite
conjunctions and conjunctions; see [AK00, Sections 6 and 7] for background.
We will use Σin

α for the infinitary Σα formulas and Σc
α for the computable

infinitary Σα formulas (and similarly for Πin
α and Πc

α).

2.1. Scott Rank. Let A be a countable structure. There are a number of
ways to define the Scott rank of A, not all of which agree. We describe a
number of different definitions before fixing one for the rest of the paper.
For the most part, it does not matter, modulo some small changes, which
definition we choose as our results are quite robust.

The first definition uses the symmetric back-and-forth relations which
come from Scott’s proof of his isomorphism theorem [Sco65]. See, for exam-
ple, [AK00, Sections 6.6 and 6.7].

Definition 14. The standard symmetric back-and-forth relations ∼α on A,
for α < ω1, are defined by:

(1) ā ∼0 b̄ if ā and b̄ satisfy the same quantifier-free formulas.
(2) For α > 0, ā ∼α b̄ if for each β < α and d̄ there is c̄ such that āc̄ ∼β b̄d̄,

and for all c̄ there is d̄ such that āc̄ ∼β b̄d̄.

For each tuple ā ∈ A, Scott proved that there is a least ordinal α, the
Scott rank of the tuple, such that if ā ∼α b̄, then ā and b̄ are in the same
automorphism orbit of A. Equivalently, α is the least ordinal such that if
ā ∼α b̄, then ā ∼γ b̄ for all ordinals γ < ω1, or such that if ā ∼α b̄, then ā
and b̄ satisfy the same Lω1ω-formulas. Then the Scott rank of A is the least
ordinal strictly greater than (or, in the definition used by Barwise [Bar75],
greater than or equal to) the Scott rank of each tuple of A. One can then
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define a Scott sentence for A, that is, a sentence of Lω1ω which characterizes
A up to isomorphism among countable structures.

Another definition uses the non-symmetric back-and-forth relations which
have been useful in computable structure theory. See [AK00, Section 6.7].

Definition 15. The standard (non-symmetric) back-and-forth relations ≤α
on A, for α < ω1, are defined by:

(1) ā ≤0 b̄ if for each quantifier-free formula ψ(x̄) with Gödel number
less than the length of ā, if A ⊧ ψ(ā) then A ⊧ ψ(b̄).

(2) For α > 0, ā ≤α b̄ if for each β < α and d̄ there is c̄ such that b̄d̄ ≤β āc̄.
Let ā ≡α b̄ if ā ≤α b̄ and b̄ ≤α ā,

For α ≥ 1, ā ≤α b̄ if and only if every Σin
1 formula true of b̄ is true of ā.

Then one can define the Scott rank of a tuple ā to be the least α such
that if ā ≡α b̄, then ā and b̄ are in the same automorphism orbit of A. The
Scott rank of A is then least ordinal strictly greater than the Scott rank of
each tuple.

A third definition of Scott rank has recently been suggested by Montalbán
based on the following theorem:

Theorem 16 (Montalbán [Mon]). Let A be a countable structure, and α a
countable ordinal. The following are equivalent:

(1) A has a Πin
α+1 Scott sentence.

(2) Every automorphism orbit in A is Σin
α -definable without parameters.

(3) A is uniformly (boldface) ∆0
α-categorical without parameters.

(4) Every Πin
α type realized in A is implied by a Σin

α formula.
(5) No tuple in A is α-free.

Montalbán defines the Scott rank of A to be the least ordinal α such that
A has a Πin

α+1 Scott sentence. It is this definition which we will take as our
definition of Scott rank. We write SR(A) for the Scott rank of the structure
A. The α-free tuples which appear in the theorem above will also appear
later.

Definition 17. Let ā be a tuple of A. Then ā is α-free if for each b̄ and
β < α, there are ā′ and b̄′ such that ā, b̄ ≤β ā′, b̄′ and ā′ ≰α ā.

Other definitions of Scott rank appear in [Sac07, Section 2] and [Gao07,
Section 3].

2.2. Scott Spectra. Recall that the Scott spectrum of an Lω1ω-sentence T
is the set of countable ordinals

SS(T ) = {SR(A) ∶ A is a countable model of T}.

More generally, one can define the Scott spectrum SS(C) of a class of count-
able structures C. For each α < ω1 there is an Lω1ω-sentence whose Scott
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spectrum is {α}. For example, if A is a structure of Scott rank α,1 then we
can take T to be the Scott sentence for A. However, the quantifier complex-
ity of T will be approximately α. It is only as a result of our Theorem 2
that one can obtain such a theory T of low quantifier complexity even when
α is very large.

We note some results about producing new Scott spectra by combining
existing ones. The proofs are all simple constructions which we omit.

Proposition 18. If ⟨Ai⟩i∈ω are the Scott spectra of Lω1ω-sentences, then

⋃i∈ω Ai is also the Scott spectrum of an Lω1ω-sentence.

Proposition 19. If A is the Scott spectrum of an Lω1ω-sentence and α < ω1,
then B = {β ∈ A ∶ β ≥ α} is also the Scott spectrum of an Lω1ω-sentence.

Proposition 20. Let A and B be sets of countable ordinals, and suppose
that A is the Scott spectrum of an Lω1ω-sentence. If there is a countable
ordinal α < ω1 such that

A ∩ {β ∶ α ≤ β < ω1} =B ∩ {β ∶ α ≤ β < ω1}

then B is also the Scott spectrum of an Lω1ω-sentence.

2.3. Non-standard Back-and-Forth Relations. Let (L,≤) be a linear
order. We will consider (L,≤) to be a non-standard ordinal, i.e., a linear
ordering with an initial segment which is an ordinal, but whose tail may not
necessarily be well-ordered. Assume that L has a smallest element 0.

Definition 21. A sequence of equivalence relations (≾α)α∈L are non-standard
back-and-forth relations on A if they satisfy the definition of the standard
back-and-forth relations (Definition 15), that is, if:

(1) If α is the smallest element of L, ā ≾α b̄ if for each quantifier-free
formula ψ(x̄) with Gödel number less than the length of ā, if A ⊧
ψ(ā) then A ⊧ ψ(b̄).

(2) If α is not the smallest element of L, ā ≾α b̄ if for each β < α, for all
d̄ there is c̄ such that b̄, d̄ ≾β ā, c̄.

While the standard back-and-forth relations are uniquely defined, this is
not the case for non-standard back-and-forth relations. However, they are
uniquely determined on the well-founded part of L.

Remark 22. Let (L,<) be a linear order and (≾α)α∈L a sequence of non-
standard back-and-forth relations on A. The relations ≾α for α ∈ wfp(L) are
the same as the standard back-and-forth relations ≤α on A.

For non-standard α ∈ L, that is, α ∈ L ∖ wfp(L), the back-and-forth
relations hold only between tuples in the same automorphism orbit.

1Such structures exist; for example, the results on linear orders in [AK00, Section 15]
can be used to construct examples, or one can use the construction in [CFS13].
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Lemma 23. Let (L,<) be a linear order and (≾α)α∈L a sequence of non-
standard back-and-forth relations on A. For α ∈ L ∖wfp(L), if ā ≾α b̄, then
there is an isomorphism of A taking ā to b̄.

Proof. It is easy to see that

{ā↦ b̄ ∶ ā ≤β b̄ for some β ∈ L ∖wfp(L)}
is a set of finite maps with the back-and-forth property. If ā ≤β b̄ for some
β ∈ L ∖ wfp(L), then ā and b̄ satisfy the same atomic sentences. Thus any
such map extends to an automorphism. ◻
2.4. Admissible ordinals and Harrison linear orders. Given X ⊆ ω,
ωX1 is the least non-X-computable ordinal. By a theorem of Sacks [Sac76],
the countable admissible ordinals α > ω are all of the form ωX1 for some set
X. For our purposes, we may take this as the definition of an admissible
ordinal.

Harrison [Har68] showed that for each X ⊆ ω, there is an X-computable
ordering which is not well-ordered, but which has no X-hyperarithmetic
descending sequence. Moreover, any such ordering is of order type ωX1 ⋅ (1+
Q)+ β for some X-computable ordinal β. We call ωX1 ⋅ (1+Q) the Harrison
linear order relative to X. Note that the property of being the Harrison
linear order relative to X is Σ1

1(X): a linear order is the Harrison linear
order relative to X if:

(1) it is X-computable,
(2) for every X-computable ordinal α and element x, there is y such

that the interval [x, y) has order type α,
(3) it has a descending sequence, and
(4) for every X-computable ordinal α and index e there is a jump hier-

archy on α which witnesses that ϕ0(α)
e is not a descending sequence.

Later we will use the fact that the set of admissible ordinals contains a
club.

Definition 24. A set U ⊆ ω1 is closed unbounded (club) if it is unbounded
below ω1 and is closed in the order topology, i.e., if sup(U ∩α) = α ≠ 0, then
α ∈ U .

Definition 25. A set U ⊆ ω1 is stationary if it intersects every club set.

Remark 26. Given a set Y ⊆ ω, the set of α < ω1 such that Lα[Y ] is an
elementary substructure of Lω1[Y ] is a club. Hence the set {ωX1 ∶X ≥T Y }
contains a club. (Recall also that every club is a stationary set.)

3. The Main Construction

In this section we will do the main work of this paper by giving the general
construction used in the applications. Given an Lω1ω-pseudo-elementary
class S of linear orders, we will build a theory T whose models have Scott
ranks in correspondence with the linear orders in S.
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Theorem 27. Let S be a PCLω1ω -class of linear orders. Then there a an
Lω1ω-sentence T such that

SS(T ) = {wfc(L) ∶ L ∈ S}.
Moreover, suppose that S is the class of reducts of a sentence S. Then:

(1) We can choose T to be Πin
2 (or Πc

2 if S is computable).
(2) If L is a computable model of S with a computable successor relation,

then there is a computable model M of T with SR(M) = wfc(L).

With a little more work, we can replace the well-founded collapse with
the well-founded part:

Theorem 28. In Theorem 27, we can also get

SS(T ) = {wfp(L) ∶ L ∈ S}.
3.1. Overview of the construction. Our structures will have two sorts,
the order sort and the main sort. We will also treat elements of ω as if they
are in the structure (e.g., we will talk about functions with codomain ω).
We can identify S with an Lω1ω sentence S in the language with a symbol
≤ for the ordering and possibly further symbols; S is the class of reducts of
models of S to the language with just the symbol ≤. Let S+ be S together
with:

(O1) There are constants (ei)i∈ω such that each element is equal to exactly
one constant.

(O2) There is a partial successor function α ↦ α+1, and each non-maximal
element has a successor.

(O3) There is a sequence (Rn)n∈ω of subsets satisfying:
(R1) R1 is not strictly bounded (i.e., there is no α which is strictly

greater than each element of R1),
(R2) Rn ⊆ Rn+1,
(R3) ⋃nRn is the whole universe of the order sort.
(R4) If α ∈ Rn, then α = sup(β + 1 ∶ β ∈ Rn+1 and β < α),
(R5) For each n and β, there is a least element γ of Rn with γ ≥ β.

For Theorem 27 (i.e. to get SS(T ) = {wfc(L) ∶ L ⊧ S}) we will add

(O4a) Rn = L for all n.

(O3) is a consequence of (O4a); moreover, (O4a) will make the Rn trivial
(see (Q7) below). (O4a) will only be used for the final computation of the
Scott ranks of the models of T , whereas (O3) will be used in the construction
itself. For Theorem 28, we will use a different axiom (O4b) instead of (O4a);
(O3) will also be a consequence of (O4b). The general construction will be
the same, but (O4b) will give us a different computation of the Scott rank
of the resulting models. Thus (O3) is exactly that common part of (O4a)
and (O4b) which is required for the construction, and the particulars of
(O4a) and (O4b) are what give the Scott ranks. While reading through the
construction for the first time, it might be helpful to assume that (O4a) is
in effect. Each order type in S is represented as a model of S+.
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The order sort will be a model of S+. Our next step will be to define, for
each model L of S+, an Lω1ω-sentence T (L). The sentence T will say that
the order sort is a model L of S+ and the main sort is a model of T (L). In
defining T (L), we will use quantifiers over L, and T (L) will be uniform in
L.

For now, fix a particular model L of S+. As a model of S, L will be a
linear ordering, which we view as a non-standard ordinal. The Scott rank of
M ⊧ T (L) will be determined by L; in particular, if L is actually an ordinal,
then the Scott rank of M will be its order type. If (L,M) is a model of
T , then since by (O1) each element of L is named by a constant, the Scott
rank of L will be as low as possible, and so the Scott rank will be carried by
M. We will have

SS(T ) = {SR(M)∶M ⊧ T (L) for some L ⊧ S+}.
If L has a least element and at least two elements, then for M ⊧ T (L),
SR(M) will be wfc(L) (or wfp(L) in the case of Theorem 28). We can then
modify T slightly using Proposition 20 to get the theorem; we first modify
S so that every L ⊧ S has a least element and at least two elements, and
then we use Proposition 20 to add 0 or 1, if desired, to the Scott spectrum.
Since there are structures of Scott rank 0 and 1 which have Scott sentences
which are Πc

1 and Πc
2 respectively, Proposition 20 gives the correct quantifier

complexity.
T (L) will be constructed as follows. First, we will let K be the class of

finite structures satisfying the properties (P1)-(P6) and (Q1)-(Q7) below.
We will show that K has a Fräıssé limit. This is an ultrahomogeneous
structure, and hence has very low Scott rank. We will add to the Fräıssé
limit unary relations Ai indexed by i ∈ ω. T (L) will be a sentence of Lω1ω

defining the Fräıssé limit of K together with relations Ai satisfying properties
(A1) and (A2).

To see (1) of Theorem 27, we can take the Morleyization of S+. This
will be a Πin

2 sentence which defines the same class of linear orders. The
construction of T (L) relative to L is Πin

2 , so if we define T in the same way
as above but replacing S+ by its Morleyization S+M , T will now be Πin

2 . Since
in each model (L,M) of T , each element of L is named by a constant, we
still have

SS(T ) = {SR(M)∶M ⊧ T (L) for some L ⊧ S+M}.
If S is actually a computable formula, then its Morleyization is computable,
and this T will be computable.

To see (2), we observe that if L is a computable model of S with a
computable successor relation, then it has a computable expansion to a
model of (O4a) (and hence of (O3)). Then Lemma 32 below will show that
there is a computable model of T with order sort L.

3.2. The definition of T (L). Fix L ⊧ S+. We begin by constructing
the age of our Fräıssé limit. Let K be be the class of finite structures
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M satisfying (P1)-(P6) and (Q1)-(Q7) below. Structures in K should be
viewed as trees.

(P1) ⪯ a partial tree-ordering, that is, the set of predecessors of any ele-
ment is linearly ordered.

(P2) ⟨⟩ is the unique ⪯-smallest element.
(P3) Each element other than ⟨⟩ has a unique predecessor, and P is a

unary function M→M picking out that predecessor.
(P4) Each element has finite length, i.e., there is a finite chain of successors

starting at ⟨⟩ and ending at that element.
(P5) %∶M ∖ {⟨⟩}→ L and ε∶M ∖ {⟨⟩}→ ω are unary functions.
(P6) If x ≺ y, then %(x) > %(y).
The properties (P1)-(P6) that we have introduced so far already define

the age of a Fräıssé limit in the restricted language {⟨⟩,⪯, P, %, ε}. In reading
the properties (Q1)-(Q7) below, it will helpful to have this model in mind.

Lemma 29. The class of finite structures in the language {⟨⟩,⪯, P, %, ε}
satisfying (P1)-(P6) has the hereditary property (HP), the amalgamation
property (AP), and the joint embedding property (JEP). The Fräıssé limit
is (isomorphic to) the following structure M.

Fix an infinite set D. The domain of M is the set of all finite sequences

σ = ⟨(α0, c0, d0), . . . , (αn, cn, dn)⟩
with αi ∈ L, ci ∈ ω, and di ∈ D, such that α0 > α1 > ⋯ > αn. We interpret
the relations in the natural way: ⪯ is the standard ordering of extensions of
sequences, P is the standard predecessor function, ε(σ) = cn, and %(σ) = αn.

Proof. First, it is easy to see that the age of M is the set of finitely gener-
ated structures satisfying (P1)-(P6). Then we just have to note that M is
ultrahomogeneous to see that it is the Fräıssé limit of these structures. ◻
Given an element

σ = ⟨(α0, c0, d0), . . . , (αn, cn, dn)⟩
of this structure, write %̄(σ) for ⟨α0, . . . , αn⟩ and ε̄(x) for ⟨c0, . . . , cn⟩. Write
∣σ∣ = n + 1 for the length of σ.

We will now add an additional function E whose properties are axioma-
tized by (Q1)-(Q7). E is a function fromM∖{⟨⟩}×M∖{⟨⟩} to {−∞}∪L×ω.
E is defined only on those pairs (x, y) with ∣x∣ = ∣y∣, %̄(x) = %̄(y), and
ε̄(x) = ε̄(y). Note that the domain of E is an equivalence relation, for which
we write �. For convenience, when we talk about E(x, y) for some x and
y we will often implicitly assume that x � y. We view the range of E as a
totally ordered set via the lexicographic ordering on L×ω, with −∞ smaller
than every element of L×ω. Given x, y ∈M with E(x, y) > −∞, let EL(x, y)
be the first coordinate of E(x, y), i.e., the coordinate in L, and let Eω(x, y)
be the second coordinate. If E(x, y) = −∞, then we let EL(x, y) = −∞.

One can view E as a nested sequence (∼α,n)α∈L,n∈ω of relations on M ,
defined by x ∼α,n y if E(x, y) ≥ min((%(x),0), (α,n)). If E(x, y) = −∞, then



12 M. HARRISON-TRAINOR

x and y are not at all related. It will follow from (Q1), (Q2), and (Q3)
that these are equivalence relations. These equivalence relations are nested
and continuous (i.e., ∼α,0= ⋂β<α,n∈ω ∼β,n). The most important relations
are the relations ∼α,0 which we will denote by ∼α. The relations ∼α will
be non-standard back-and-forth relations (see Lemma 35). The definition
of the back-and-forth relations is not Πin

2 , so we cannot just ask that ∼α
satisfy the definition of the back-and-forth relations. This is where we use
ε and the ω in L × ω; their role is to convert an existential quantifier into a
universal quantifier by acting as a sort of Skolem function.

If x ∈ M is not a dead end, the children of x are divided into infinitely
many subsets indexed by ω via the function ε. If EL(x, y) > α, then for
every child x′ of x, there will be a child y′ of y with EL(x′, y′) ≥ α; this is
in keeping with the idea of making the equivalence relations ∼ agree with
the back-and-forth relations. If EL(x, y) = α, then this will not be true for
all x′. However, it will be true for exactly those x′ with ε(x′) < Eω(x, y).
Rather than saying that there is a child x′ of x such that no child y′ of y
has EL(x′, y′) = α, we can say that for all children x′ of x with ε(x) ≥ Eω,
there is no child y′ of y with EL(x′, y′) = α. This is of lower quantifier
complexity. (Note that we cannot say that for all x′ and y′ children of x
and y, E(x′, y′) < α. This is for the same reason as the following fact: if x
and y are such that for all x̄′ and ȳ′, xx̄′ ≢α yȳ′, then x ≢α y.)

For all x, y, and z with x� y � z:

(Q1) E(x,x) = (%(x),0),
(Q2) E(x, y) = E(y, x),
(Q3) E(x, z) ≥ min(E(x, y),E(y, z)),
(Q4) E(x, y) ≤ (%(x),0) = (%(y),0).
(Q5) If x′ and y′ are successors of x and y with x′ � y′, EL(x′, y′) ≤

EL(x, y).
(Q6) If E(x, y) > −∞, then for every x′ a successor of x with ε(x′) ≥

Eω(x, y), there are no successors y′ of y with EL(x′, y′) = EL(x, y).
(Q7) If ∣x∣ = ∣y∣ = n, then EL(x, y) ∈ Rn ∪ {−∞} ∪ {%(x)}.

While ⟨⟩ was not in the domain of E, we will consider E(⟨⟩, ⟨⟩) to be
(L,0), i.e., to be greater than each element of L.

(Q1), (Q2), and (Q3) are just saying that the relations ∼α,n defined above
are reflexive, symmetric, and transitive respectively (and hence equivalence
relations). (Q6) is the axiom which is doing most of the work.

The intuition behind (Q7) will be explained in Subsection 3.5. For now,
the reader can simply imagine that Rn = L for each n (as it will be for
Theorem 27), so that (Q7) is a vacuous condition.

Lemma 30. The class K of finite structures satisfying (P1)-(P6) and (Q1)-
(Q7) relative to the fixed structure L has the AP, JEP, and HP.



SCOTT RANKS OF MODELS OF A THEORY 13

Proof. It is easy to see that K has the hereditary property. Note that every
finite structure in K contains, via an embedding, the structure with one ele-
ment ⟨⟩. So the joint embedding property will follow from the amalgamation
property.

For the amalgamation property, let A be a structure in K which embeds
into B and C. Identify A with its images in B and C, and assume that
the only elements common to both B and C are the elements of A. By
amalgamating C one element at a time, we may assume that C contains only
a single element c not in A. The element c is the child of some element of
A, and has no children in C. We will define a structure D whose domain is
B ∪ {c} and then show that D is in K.

First, we can take the amalgamation of the structures in the language
{⟨⟩,⪯, P, %, ε} as in Lemma 29; we just add c to B, setting P (c), ε(c), and
%(c) to be the same as in C. Set E(c, c) = (%(c),0). We need to define
E(b, c) when b is an element from B with b � c. Define E(b, c) = E(c, b) to
be the maximum of min(E(b, a),E(a, c)) over all a ∈ A with a� c. If there
are no such a ∈ A, set E(b, c) = −∞. By (Q3) this is well-defined, that is,
for a ∈ A, E(a, c) is the maximum of min(E(a, a′),E(a′, c)) over all a′ ∈ A.

We now have to check (Q1)-(Q7). (Q1) and (Q2) are obvious from the
definition of the extension of E.

For (Q3), we have two new cases to check. For the first case, fix b, b′ ∈ B
with b � b′ � c; we will show that E(b, c) ≥ min(E(b, b′),E(b′, c)). If
there is no a ∈ A with a � c, then E(b, c) = E(b′, c) = −∞, and so we
have E(b, c) ≥ min(E(b, b′),E(b′, c)). Otherwise, let a ∈ A be such that
E(b′, c) = min(E(b′, a),E(a, c)). By definition,

E(b, c) ≥ min(E(b, a),E(a, c))
≥ min(E(b, b′),E(b′, a),E(a, c))
= min(E(b, b′),E(b′, c)).

Now for the second case, again fix b, b′ ∈ B with b � b′ � c; now we will
show that E(b, b′) ≥ min(E(b, c),E(c, b′)). If there is no a ∈ A with a � c,
then E(b, c) = E(b′, c) = −∞, and so we have

E(b, b′) ≥ −∞ = min(E(b, c),E(c, b′)).
Otherwise, let a ∈ A be such that E(b, c) = min(E(b, a),E(a, c)), and let
a′ ∈ A be such that E(b′, c) = min(E(b′, a′),E(a′, c)). Then

E(b, b′) ≥ min(E(b, a),E(a, a′),E(a′, b′))
≥ min(E(b, a),E(a, c),E(c, a′),E(a′, b′))
= min(E(b, c),E(c, b′)).

For (Q4), suppose that b ∈ B has b � c. Then either E(b, c) = −∞, in
which case there is nothing to check, or E(b, c) = min(E(b, a),E(a, c)) for
some a ∈ A. In the second case, either E(b, c) = E(b, a) ≤ (%(a),0) = (%(c),0)
or E(b, c) = E(a, c) ≤ (%(c),0).
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Now we check (Q5). Let ĉ ∈ A be the parent of c. Fix b ∈ B and let b̂

be the parent of b. We must show that EL(b, c) ≤ EL(b̂, ĉ). Choose a ∈ A
such that E(b, c) = min(E(b, a),E(a, c)). (If there is no such a, then we can
immediately see that (Q5) holds.) Let â be the parent of a. Then we have

EL(b̂, â) ≥ EL(b, a) and EL(â, ĉ) ≥ EL(a, c) so that

EL(b̂, ĉ) ≥ min(EL(b̂, â),EL(â, ĉ))
≥ min(E(b, a),E(a, c))
= EL(b, c).

Next we check (Q6). Since c has no children in C, the only new case to

check is as follows. Let ĉ ∈ A be the parent of c, and let b̂ ∈ B be such that
ĉ � b̂. Suppose that n = ε(c) ≥ Eω(ĉ, b̂) and let α = EL(ĉ, b̂) > −∞. Suppose

to the contrary that there is b a child of b̂ with EL(b, c) = α. Then, by
definition there is a ∈ A such that E(b, c) = min(E(b, a),E(a, c)). Let â be

the parent of a. Since EL(b, a) ≥ α and EL(a, c) ≥ α, E(b̂, â) > (α,n) and

E(â, ĉ) > (α,n). Hence E(b̂, ĉ) > (α,n). This is a contradiction.
Finally, for (Q7), if E(b, c) = −∞ we are done. So we may suppose that

E(b, c) = min(E(b, a),E(a, c)) for some a ∈ A. Then since EL(b, c) and
EL(a, c) are both in Rn ∪ {−∞} ∪ {%(c)}, the same is true of EL(b, c). ◻

Lemma 31. The reduct of the Fräıssé limit of K to the language {⟨⟩,⪯,P, %, ε}
is the structure from Lemma 29.

Proof. We just need to show that if M is a structure in K, and N is a
structure in the language L− = {⟨⟩,⪯, P, %, ε} satisfying (P1)-(P6) and with
M ⊆L− N , then we can expand N to a structure N ′ in the language L =
L−∪{E} withM ⊆L N ′. We can do this simply by setting E(x,x) = (%(x),0)
for x ∈ N ∖M, and E(x, y) = E(y, x) = −∞ for all x ∈ N ∖M and y ∈ N .
(Q1)-(Q7) are easy to check. ◻

For a fixed L, let T (L) be the Lω1ω-sentence describing the Fräıssé limit
of K, and to which we add unary relations (Ai)i∈ω satisfying (A1) and (A2)
below. The relations Ai will name the equivalence classes ∼0, so that while
the Fräıssé limit is ultra-homogeneous, the models of T (L) will not be. The
Fräıssé limit is axiomatizable by a Πin

2 formula. If L is computable with a
computable successor relation, then K is a computable age, and hence the
Fräıssé limit is axiomatizable by a Πc

2 formula. Since (P1)-(P6) and (Q1)-
(Q7) are all Πin

2 , they hold in the Fräıssé limit. Since (A1) and (A2) are
also Πin

2 formulas, T (L) is Πin
2 axiomatizable.

(A1) For each x, Ai(x) for exactly one i.
(A2) For all x and x′, E(x,x′) > −∞ if and only if for all i, Ai(x) ⇔

Ai(x′).

Lemma 32. If L is computable with a computable successor relation, then
T (L) has a computable model.
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Proof. By Theorem 3.9 of [CHMM11], there is a computable Fräıssé limit
of K. Then we can add the relations Ai in a computable way. ◻

3.3. Computation of the Scott rank. Fix L a model of S+. Let M be
a countable model of T (L). The remainder of the proof is a computation
of SR(M). As remarked earlier, for this section we will assume that L
has a least element 0 and has at least two elements. We will show that
SR(M) = wfc(L) for such an M. Let wfp(L) be the well-ordered part of
L. Recall that we identify elements of wfp(L) with ordinals in the natural
way.

Lemma 33. Fix β ∈ wfp(O). Suppose that m ∈ ω and u1, . . . , ut, u
′
1, . . . , u

′
t,

and v are tuples from M such that ε(x) < m where x ranges among all of
these elements and their predecessors, and such that:

(i) u1, . . . , ut ≡at u
′
1, . . . , u

′
t,

(ii) for each i, E(ui, u′i) ≥ min((%(ui),0), (β,m)).

Suppose moreover that u1, . . . , ut and u′1, . . . , u
′
t are closed under the prede-

cessor relation P . Then there is v′ such that u1, . . . , ut, v and u′1, . . . , u
′
t, v

′
satisfy (i) and (ii).

Proof. We may assume that v is not one of u1, . . . , ut, as if v = ui then we
could take v′ = u′i. Thus for no ui is ui ⪰ v. By repeated applications of the
claim, we may also assume that P (v) is among the ui.

Let u be the predecessor of v, and let y1, . . . , yk be those ui with v � ui.
Let x1, . . . , xk be the predecessors of the yi. Let u′, y′1, . . . , y

′
k, and x′1, . . . , x

′
k

be the corresponding u′i. We will define a finite structure with domain
consisting of u1, . . . , ut, u

′
1, . . . , u

′
t, v, and a new element v′. We will show

that this structure is in K, and hence we may take v′ to be in M.
Begin by defining ∣v′∣ = ∣v∣, ε(v′) = ε(v), %(v′) = %(v), and u′i ≺ v′ if and

only if ui ≺ v. Define E as follows:

(1) E(v′, v′) = (%(v′),0),
(2) E(v′, y′i) = E(v, yi).
(3) E(v′, yi) is the maximum of min(E(v′, y′j),E(y′j , yi)) over all j,

(4) If β ∈ R∣v∣, then E(v′, v) is the maximum of:

(a) min(E(v′, y′i),E(y′i, v)) over all i and
(b) min((%(v),0), (β,m)).
Otherwise, if β ∉ R∣v∣, then let γ be the least element of R∣v∣ with

γ > β. ((R5) guarantees that such a γ exists.) Then E(v′, v) is the
maximum of:
(a) min(E(v′, y′i),E(y′i, v)) over all i and
(c) min((%(v),0), (γ,0)).

Let E(⋅, v′) = E(v′, ⋅) in each of the cases above. Note that by (2), (3) is
equivalent to defining E(v′, yi) to be the maximum of min(E(v, yj),E(y′j , yi))
over all j, and similarly with (4); so these are all definitions in terms of quan-
tities we are given.
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We need to check that this is defines a finite structure in K. It is easy
to see that (P1)-(P6) hold. (Q1) and (Q2) are trivial, as we set E(v′, v′) =
(%(v′),0) and E(⋅, v′) = E(v′, ⋅) above. (Q4) is easy to see from the definition
of E(v′, ⋅). We now check (Q3), (Q5), (Q6), and (Q7).

For (Q3), we must show that if a � b � c, then we have E(a, b) ≥
min(E(a, c),E(c, b)). We have a number of different cases depending on
which values a, b, and c take. If none of a, b, or c are v′, then it is trivial;
also, if there is any duplication, then it is trivial. Unfortunately there are a
large number of possible combinations remaining. The reader might find it
helpful to draw a picture for each case, using the intuition of (Q3) as cor-
responding to the transitivity of an equivalence relation. We will frequently
use the fact that (Q3) holds in M.

a = v′, b = v, c = yi: Let j be such that E(v′, yi) = min(E(v′, y′j),E(y′j , yi), ).
Then

E(v′, v) ≥ min(E(v′, y′j),E(y′j , v))
≥ min(E(v′, y′j),E(y′j , yi),E(yi, v))
= min(E(v′, yi),E(yi, v)).

a = v′, b = v, c = y′i: E(v′, v) ≥ min(E(v′, y′i),E(y′i, v)) by definition.
a = v′, b = yi, c = v: We have three cases corresponding to (a), (b), and (c)

in the definition of E(v′, v).
(a) Suppose that E(v′, v) = min(E(v′, y′j),E(y′j , v)) for some j.

Then

E(v′, yi) ≥ min(E(v′, y′j),E(y′j , yi))
≥ min(E(v′, y′j),E(y′j , v),E(v, yi))
= min(E(v′, v),E(v, yi)).

(b) Suppose that E(v′, v) = min((%(v),0), (β,m)). We know that
E(y′i, yi) ≥ min((%(v),0), (β,m)), and so E(y′i, yi) ≥ E(v′, v).
Then

E(v′, yi) ≥ min(E(v′, y′i),E(y′i, yi)) ≥ min(E(v′, v),E(v, yi)).
(c) Suppose that E(v′, v) = min((%(v),0), (γ,0)). We know that

E(y′i, yi) ≥ min((%(v),0), (β,m)), and since EL(y′i, yi) ∈ R∣v∣ ∪
{−∞}∪ {%(v)}, E(y′i, yi) ≥ min((%(v),0), (γ,0)). So E(y′i, yi) ≥
E(v′, v). Then

E(v′, yi) ≥ min(E(v′, y′i),E(y′i, yi)) ≥ min(E(v′, v),E(v, yi)).
a = v′, b = yi, c = yj: Let k be such that E(v′, yj) = min(E(v′, y′k),E(y′k, yj)).

By definition, we have

E(v′, yi) ≥ min(E(v′, y′k),E(y′k, yi))
≥ min(E(v′, y′k),E(y′k, yj),E(yj , yi))
= min(E(v′, yj),E(yj , yi)).
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a = v′, b = yi, c = y′j: By definition, E(v′, yi) ≥ min(E(v′, y′j),E(y′j , yi)).
a = v′, b = y′i, c = v: We have three cases corresponding to (a), (b), and (c)

in the definition of E(v′, v).
(b) Suppose that E(v′, v) = min(E(v′, y′j),E(y′j , v)) for some j. We

have

E(v′, y′i) = E(v, yi)
≥ min(E(v, yj),E(yj , yi))
= min(E(v′, y′j),E(y′j , y′i))
≥ min(E(v′, y′j),E(y′j , v),E(v, y′i))
= min(E(v′, v),E(v, y′i)).

(b) Suppose that E(v′, v) = min((%(v),0), (β,m)). Then

E(v′, y′i) = E(v, yi)
≥ min(E(v, y′i),E(y′i, yi))
≥ min(E(v, y′i), (%(yi),0), (β,m))
= min(E(v, y′i),E(v′, v)).

(c) Suppose that E(v′, v) = min((%(v),0), (γ,0)). Then, as before,
E(y′i, yi)) ≥ min((%(yi),0), (γ,0)). So

E(v′, y′i) = E(v, yi)
≥ min(E(v, y′i),E(y′i, yi))
≥ min(E(v, y′i), (%(yi),0), (γ,0))
= min(E(v, y′i),E(v′, v)).

a = v′, b = y′i, c = yj: Let k be such that E(v′, yj) = min(E(v′, y′k),E(y′k, yj)).
We have

E(v′, y′i) = E(v, yi)
≥ min(E(v, yk),E(yk, yi))
= min(E(v′, y′k),E(y′k, y′i))
≥ min(E(v′, y′k),E(y′k, yj),E(yj , y′i))
= min(E(v′, yj),E(yj , y′i)).

a = v′, b = y′i, c = y′j: We have

E(v′, y′i) = E(v, yi)
≥ min(E(v, yj),E(yj , yi))
≥ min(E(v′, y′j),E(y′j , y′i)).
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a = yi, b = yj, c = v′: Let k and ` be such that E(v′, yi) = min(E(v′, y′k),E(y′k, yi))
and E(v′, yj) = min(E(v′, y′`),E(y′`, yj)). We have

E(yi, yj) ≥ min(E(yi, y′k),E(y′k, y′`),E(y′`, yj))
= min(E(yi, y′k),E(yk, y`),E(y′`, yj))
≥ min(E(yi, y′k),E(yk, v),E(v, y`),E(y′`, yj))
= min(E(yi, y′k),E(y′k, v′),E(v′, y′`),E(y′`, yj))
= min(E(yi, v′),E(v′, yj)).

a = yi, b = y′j, c = v′: Let k be such that E(v′, yi) = min(E(v′, y′k),E(y′k, yi)).
Then

E(yi, y′j) ≥ min(E(yi, y′k),E(y′k, y′j))
= min(E(yi, y′k),E(yk, yj))
≥ min(E(yi, y′k),E(yk, v),E(v, yj))
= min(E(yi, y′k),E(y′k, v′),E(v′, y′j))
= min(E(yi, v′),E(v′, y′j)).

a = y′i, b = y′j, c = v′: We have

E(y′i, y′j) = E(yi, yj)
≥ min(E(yi, v),E(v, yj))
= min(E(y′i, v′),E(v′, y′j)).

a = v, b = yi, c = v′: Let j be such that E(v′, yi) = min(E(v′, y′j),E(y′j , yi)).
We have three cases corresponding to (a), (b), and (c) in the defini-
tion of E(v′, v).
(a) Suppose that E(v′, v) = min(E(v′, y′j),E(y′j , v)) for some j and

E(v′, yi) = min(E(v′, y′k),E(y′k, yi)) for some k. Then

E(v, yi) ≥ min(E(v, y′k),E(yk, yj),E(y′j , yi))
= min(E(v, y′k),E(yk, v),E(v, yj),E(y′j , yi))
≥ min(E(v, y′k),E(y′k, v′),E(v′, y′j),E(y′j , yi))
= min(E(v, v′),E(v′, yi)).

(b) Suppose that E(v′, v) = min((%(v),0), (β,m)). We have

E(v, yi) ≥ min(E(v, yj),E(yj , yi))
= min(E(v′, y′j),E(y′j , y′i))
≥ min(E(v′, y′j),E(y′j , yi),E(yi, y′i))
= min(E(v′, yi),E(yi, y′i))
≥ min(E(v′, yi), (%(yi),0), (β,m))
= min(E(v′, yi),E(v′, v)).
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(c) Suppose that E(v′, v) = min((%(v),0), (γ,0)). As before, E(yi, y′i) ≥
min((%(v),0), (γ,0)). We have

E(v, yi) ≥ min(E(v, yj),E(yj , yi))
= min(E(v′, y′j),E(y′j , y′i))
≥ min(E(v′, y′j),E(y′j , yi),E(yi, y′i))
= min(E(v′, yi),E(yi, y′i))
≥ min(E(v′, yi), (%(yi),0), (γ,0))
= min(E(v′, yi),E(v′, v)).

a = v, b = y′i, c = v′: We have three cases corresponding to (a), (b), and (c)
in the definition of E(v′, v).
(a) Suppose that E(v′, v) = min(E(v, y′j),E(v, yj)) for some j. Then

E(v, y′i) ≥ min(E(v, y′j),E(y′j , y′i))
= min(E(v, y′j),E(yj , yi))
≥ min(E(v, y′j),E(yj , v),E(v, yi))
≥ min(E(v, y′j),E(y′j , v′),E(v′, y′i))
= min(E(v, v′),E(v′, y′i)).

(b) Suppose that E(v′, v) = min((%(v),0), (β,m)). Then

E(v, y′i) ≥ min(E(v, yi),E(yi, y′i))
≥ min(E(v′, y′i), (%(v),0), (β,m))
= min(E(v′, y′i),E(v′, v)).

(c) Suppose that E(v′, v) = min((%(v),0), (γ,0)). As before, E(yi, y′i) ≥
min((%(v),0), (γ,0)). Then

E(v, y′i) ≥ min(E(v, yi),E(yi, y′i))
≥ min(E(v′, y′i), (%(v),0), (γ,0))
= min(E(v′, y′i),E(v′, v)).

That completes the last case in the verification of (Q3).
For (Q5), we have three cases to check.

(1) We will show that EL(v′, v) ≤ EL(u′, u). We have three subcases.
(a) E(v′, v) = min(E(v′, y′i),E(y′i, v)) for some i. Then

EL(u′, u) ≥ min(EL(u′, x′i),EL(x′i, u))
= min(EL(u,xi),EL(x′i, u))
≥ min(EL(v, yi),EL(y′i, v))
= min(EL(v′, y′i),EL(y′i, v))
= EL(v′, v).
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(b) EL(v′, v) = min(%(v), β). Then EL(u,u′) ≥ min(%(u), β) ≥
EL(v′, v).

(c) EL(v′, v) = min(%(v), γ). So β ∉ R∣v∣. Then, since R∣u∣ ⊆ R∣v∣,
β ∉ R∣u∣ and the least element of R∣u∣ which is greater than

β is at least γ. Since EL(u,u′) ≥ min(%(u), β), EL(u,u′) ≥
min(%(u), γ) ≥ EL(v′, v).

(2) We will show that EL(u′, xi) ≥ EL(v′, v). Let j be such that E(v′, yi) =
min(E(v′, y′j),E(y′j , yi)). Then

EL(u′, xi) ≥ min(EL(u′, x′j),EL(x′j , xi))
= min(EL(u,xj),EL(x′j , xi))
≥ min(EL(v, yj),EL(y′j , yi))
= min(EL(v′, y′j),EL(y′j , yi))
= EL(v′, v).

(3) EL(v′, y′i) = EL(v, yi) ≤ EL(u,xi) = EL(u′, x′i).
For (Q6), we again have three cases to check.

(1) Suppose that α = EL(v′, yi) = EL(u′, xi) and n = ε(v′) ≥ Eω(u′, xi).
Let j be such that

E(v′, yi) = min(E(v′, y′j),E(y′j , yi)) = min(E(v, yj),E(y′j , yi)).
Thus E(v, yj) ≥ α and E(y′j , yi) ≥ α. Either Eω(x′j , xi) > n or

EL(x′j , xi) > EL(y′j , yi) ≥ α.
We always have EL(x′j , xi) ≥ α, and hence EL(x′j , xi) > (α,n). Sim-

ilarly, either Eω(u,xj) > n or

EL(u,xj) > EL(v, yj) ≥ α
and so EL(u,xj) > (α,n). Thus

E(u′, xi) ≥ min(E(u′, x′j),E(x′j , xi)) = min(E(u,xj),E(x′j , xi)) > (α,n).
This is a contradiction.

(2) Suppose that EL(v′, y′i) = EL(u′, x′i) and ε(v′) ≥ Eω(u′, x′i). We
have E(v′, y′i) = E(v, yi), ε(v′) = ε(v), and E(u′, x′i) = E(u,xi).
This contradicts (Q6).

(3) Suppose that EL(v′, v) = EL(u′, u) and ε(v′) ≥ Eω(u,u′). We have
three subcases, depending on how E(v′, v) gets its value.
(a) Suppose that for some i,

E(v′, v) = min(E(v′, y′i),E(y′i, v)) = min(E(v, yi),E(y′i, v)).
We have

E(u′, u) ≥ min(E(u′, x′i),E(x′i, u)) = min(E(u,xi),E(x′i, u)).
Either EL(v, yi) < EL(u,xi) or ε(v) < Eω(u,xi), and either
EL(v, y′i) < EL(u,x′i) or ε(v) < Eω(u,x′i).
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Suppose that E(u′, u) = E(u,xi) ≤ E(x′i, u). The other case
is similar. Then, since EL(u′, u) = EL(v′, v) we must have
EL(v, yi) = EL(u,xi); otherwise, we would have

EL(v′, v) ≤ EL(v, yi) < EL(u,xi) = EL(u′, u).
Hence ε(v) < Eω(u,xi). Thus Eω(u′, u) > ε(v), a contradiction.

(b) Suppose that EL(v′, v) = min((%(v),0), (β,m)). Then since
E(u,u′) ≥ min((%(u),0), (β,m)) and %(v) < %(u), if EL(v′, v) =
EL(u,u′) then they are both equal to β, and E(u,u′) ≥ (β,m).
But ε(v′) <m, which contradicts ε(v′) ≥ Eω(u,u′) ≥m.

(c) Suppose that EL(v′, v) = min((%(v),0), (γ,0)). Then since
E(u,u′) ≥ min((%(u),0), (β,m)), by choice of γ and using the
fact thatR∣u∣ ⊆ R∣v∣, E(u,u′) ≥ min((%(u),0), (γ,0)). If EL(v′, v) =
EL(u,u′) then they are both equal to γ. But then γ ∈ R∣u∣, and

so by (R3), in R∣v∣ there is some γ′ with β ≤ γ′ < γ. This
contradicts the choice of γ.

For (Q7), we once more have three cases to check.

(1) We will show that EL(v′, v) ∈ R∣v∣ ∪ {−∞, %(v)}. As usual, we have
three subcases.
(a) EL(v′, v) = min(EL(v′, y′i),EL(y′i, v)) for some i. Then each of

EL(v′, y′i) = EL(v, yi) and EL(y′i, v) is in R∣v∣ ∪ {−∞, %(v)} and

so the same is true of EL(v′, v).
(b) EL(v′, v) = min((%(v),0), (β,m)) and β ∈ R∣v∣. This is immedi-

ate.
(c) EL(v′, v) = min((%(v),0), (γ,0)) and γ ∈ R∣v∣. This is also im-

mediate.
(2) Let j be such that E(v′, yi) = min(E(v′, y′j),E(y′j , yi)). Then each

of EL(v′, y′j) = EL(v, yj) and EL(y′j , yi) is in R∣v∣ ∪ {−∞, %(v)}, so

the same is true of EL(v′, yi).
(3) EL(v′, y′i) = EL(v, yi) which is in R∣v∣ ∪ {−∞, %(v)}.

We have now finished showing that the finite structure we defined above
is in the class K. So we can may assume that v′ is in M. Note that
E(v′, v) > −∞, so by (A2), Ai(v′)⇐⇒ Ai(v). Thus

u1, . . . , ut, v ≡at u
′
1, . . . , u

′
t, v

′.

By definition, we have E(v′, v) ≥ min((%(v),0), (β,m)). This completes the
proof of the lemma. ◻

Recall that we defined an equivalence relation ∼α by x ∼α y if EL(x, y) ≥
min(%(x), α). We can expand this to an equivalence relation on tuples as
follows.

Definition 34. Given α ∈ L and x1, . . . , xr and x′1, . . . , x
′
r from M both

closed under the predecessor relation P , define:

x1, . . . , xr ∼α x′1, . . . , x′r
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if and only if

x1, . . . , xr ≡at x
′
1, . . . , x

′
r and for all i, xi ∼α x′i.

If x1, . . . , xr and x′1, . . . , x
′
r are not closed under predecessors, we can close

them under predecessors in the natural way to extend ∼α to a relation on
all pairs of tuples.

Note that x̄ ∼0 ȳ asks that x̄ and ȳ satisfy the same atomic formulas,
whereas x̄ ≤0 ȳ asks that they satisfy the same atomic formulas with bounded
Gödel numbers. However, if we replace ∼0 by ≤0, these relation ∼α are non-
standard back-and-forth relations. Note that the relations ∼α are symmetric,
whereas back-and-forth relations are, a priori, not necessarily symmetric.

Lemma 35. ≤0 and (∼α)0<α∈L are non-standard back-and-forth relations in
the sense of Definition 21.

Proof. Suppose that α > 0 and

x1, . . . , xr ∼α x′1, . . . , x′r.
Suppose that we are given y1, . . . , ys and β < α. We will find y′1, . . . , y

′
s such

that
x1, . . . , xr, y1, . . . , ys ∼β x′1, . . . , x′r, y′1, . . . , y′s.

We already know that

x1, . . . , xr ≡at x
′
1, . . . , x

′
r.

We may assume that the yi are closed under predecessors, and that the
predecessor of each yi appears earlier in the list (or in xi). Let m ∈ ω be
large enough that for any element z which we have mentioned so far (the xi,
x′i, and yi) we have ε̄(z) ∈ {0, . . . ,m}<ω. Note that, by choice of m, x1, . . . , xr
and x′1, . . . , x

′
r satisfy (i) and (ii) of Lemma 33 (for this β and m). So using

the lemma we get a y′1 such that x1, . . . , xr, y1 and x′1, . . . , x
′
r, y

′
1 also satisfy

(i) and (ii). But then we can use the lemma to get a y′2, and so on, until we
have y′1, . . . , y

′
s as desired.

On the other hand, suppose that α > 0 and

x1, . . . , xr ≁α x′1, . . . , x′r.
We need to show that there are y1, . . . , ys and β < α such that for all
y′1, . . . , y

′
s,

x1, . . . , xr, y1, . . . , ys ≁β x′1, . . . , x′r, y′1, . . . , y′s.
There are three cases.

Case 1. x1, . . . , xr ≢at x
′
1, . . . , x

′
r.

Proof. There are only finitely many constant symbols from L required to
determine the values of all of the functions in the language on x1, . . . , xr, and
by (A1), finitely many indices j for relations Aj are required to determine
which of the Aj hold of x1, . . . , xr. In particular, a finite set of formulas from
the language determines the entire atomic diagram of x1, . . . , xr. Hence,
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for any arbitrary choice of y1, . . . , ys with s an upper bound on the Gödel
numbers of those finitely many formulas, for all y′1, . . . , y

′
s,

x1, . . . , xr, y1, . . . , ys ≰0 x
′
1, . . . , x

′
r, y

′
1, . . . , y

′
s. ◻

In the other two cases, we have

x1, . . . , xr ≡at x
′
1, . . . , x

′
r.

It follows (by (A2)) that E(xi, x′i) > −∞ for each i. Also, since

x1, . . . , xr ≁α x′1, . . . , x′r
there is some i such that EL(xi, x′i) < min(%(xi), α).
Case 2. x1, . . . , xr ≡at x

′
1, . . . , x

′
r and for some i, EL(xi, x′i) < %(xi) < α.

Proof. We have
x1, . . . , xr ≁%(xi) x

′
1, . . . , x

′
r.

Since %(xi) < α, we are done in this case. ◻
Case 3. x1, . . . , xr ≡at x

′
1, . . . , x

′
r and for some i, EL(xi, x′i) < α ≤ %(xi).

Proof. Recall that E(xi, x′i) > −∞. Let β = EL(xi, x′i) and ` = Eω(xi, x′i).
There is a successor y of xi with %(y) = β < %(xi) and ε(y) ≥ `. By (Q5) and
(Q6), for all y′ successors of x′i, EL(y, y′) < β. Then

x1, . . . , xr, y ≁β x′1, . . . , x′r, y′

for all y′. If β > 0, then we are already done. Otherwise, if β = 0 is the least
element of L, then by (A2) for all y′ we have

x1, . . . , xr, y ≢at x
′
1, . . . , x

′
r, y

′.

As in Case 1 for any arbitrary choice of y1, . . . , ys with s sufficiently large,
for all y′, y′1, . . . , y

′
s,

x1, . . . , xr, y, y1, . . . , ys ≰0 x
′
1, . . . , x

′
r, y

′, y′1, . . . , y
′
s. ◻

These three cases end the proof of the lemma. ◻
Corollary 36. For α ∈ wfp(O), α > 0, and ā, b̄ ∈ M, the following are
equivalent:

(1) ā ∼α b̄,
(2) ā ≥α b̄,
(3) ā ≤α b̄.

Lemma 37. Let M ⊧ T (L). Then there is an automorphism of M taking
ā to ā′ if and only if ā ∼α ā′ for all α ∈ wfp(L).

Proof. If, for some α ∈ wfp(L), ā ≁α ā′, then by Lemma 36 ā ≰α ā′. So there
is no automorphism taking ā to ā′.

On the other hand, suppose that for all α ∈ wfp(L), ā ∼α ā′. We have
three cases.

Case 1. L is well-founded and has a maximal element.
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Let α be the maximal element of L. We claim that the set of finite partial
maps

{ā↦ ā′ ∶ ā ∼α ā′}
has the back-and-forth property. It suffices to assume that ā and ā′ are closed
under predecessors. It also suffices to check the back-and-froth property for
adding an element b which is a child of one of the ai. Since α is the maximal
element of L, x ∼α y if and only if E(x, y) = %(x) for each i.

Let ā = (a1, . . . , at) and ā′ = (a′1, . . . , a′t) be such that ā ∼α ā′. Note that
ā ≡at ā

′ and for each i, E(ai, a′i) = (%(ai),0). Given b a child of ai, by
Lemma 33 (with β = α and m = 0) there is b′ such that ā, b ≡at ā

′, b′ and
E(b, b′) = (%(b),0). Hence ā, b ∼α ā′, b′.

Case 2. L is well-founded and has no maximal element.

We claim that the set of finite partial maps

{ā↦ ā′ ∶ ā ∼α ā′ for all α ∈ L}
has the back-and-forth property. It suffices to assume that ā and ā′ are closed
under predecessors. It also suffices to check the back-and-forth property for
adding an element b which is a child of one of the ai.

Let ā = (a1, . . . , at) and ā′ = (a′1, . . . , a′t) be such that ā ∼α ā′ for all α ∈ L.
Note that ā ≡at ā

′ and for each i, E(ai, a′i) = (%(ai),0). Given b a child of
ai, let β be such that β > %(b), %(a1), . . . , %(at). Then by Lemma 33 (with
this β and m = 0), there is b′ such that ā, b ≡at ā

′, b′ and E(b, b′) = (%(b),0),
and hence ā, b ∼α ā′, b′ for all α ∈ L.

Case 3. L is not well-founded.

Let ā = (a1, . . . , at) and ā′ = (a′1, . . . , a′t) be such that ā ∼α ā′ for all α ∈ L.
We claim that there is α ∉ wfp(L) such that ā ∼α ā′. Then, by Lemmas 35
and 23, we would get an automorphism of M taking ā to ā′.

We claim that for each i, either %(ai) ∈ wfp(L) or E(ai, a′i) ∉ wfp(L).
This is enough to get ā ∼α ā′ for some α ∉ wfp(L). If %(ai) ∉ wfp(L), then
since ai ∼α a′i for all α ∈ wfp(L), E(ai, a′i) ≥ α for all α ∈ wfp(L). By (O2),
E(ai, a′i) ∉ wfp(L). ◻

Lemma 38. Given x̄ a tuple in M and α ∈ wfp(L), there is a Πin
α formula

which defines the set of ȳ with x̄ ∼α ȳ.

Proof. Let ȳ be such that x̄ ≁α ȳ. By Lemma 36, x̄ ≰α ȳ. Proposition 15.1
of [AK00] says that x̄ ≤α ȳ if and only if every Σin

α formula true of ȳ is true
of x̄. So there is a Σin

α formula ϕȳ true of ȳ but not of x̄. Let

ψ = ⩕
x̄≁αȳ

¬ϕȳ.

Note that ψ is a Πin
α formula. If M ⊧ ¬ψ(z̄) then there is ȳ such that

M ⊧ ϕȳ(z̄) and so x̄ ≰α z̄ (and hence x̄ ≁α z̄). On the other hand, if x̄ ≁α z̄,
then M ⊧ ϕz̄(z̄) and so M ⊧ ¬ψ(z̄). ◻
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3.4. Computation of Scott Rank for Theorem 27. Recall that for
Theorem 27, we add to S+:

(O4a) Rn = L for all n.

So (Q7) is a vacuous condition. The following lemma completes the proof
of Theorem 27:

Lemma 39. Let M ⊧ T (L). Then SR(M) = wfc(L).

Proof. Recall Theorem 16, which says that the Scott rank ofM is the least
α such that every automorphism orbit is Σin

α -definable without parameters.
We have two cases.

Case 1. L is well-founded.

Let x̄ = (x1, . . . , xn) be a tuple in M. Let α ∈ L be such that α ≥
%(x1), . . . , %(xn). Then for γ ≥ α and ȳ ∈M, x̄ ∼γ ȳ if and only if x̄ ∼α ȳ. So,
by Lemma 37, x̄ ∼α ȳ if and only if x̄ and ȳ are in the same automorphism
orbit. By Lemma 38, the orbit of x̄ is Πin

α -definable. Thus the orbits of all
of the tuples x̄ from M are Σin

wfp(L)-definable.

Let α ∈ L, α > 0. By Lemma 31 there is x ∈M a successor of ⟨⟩ with
%(x) = α. We claim that the automorphism orbit of x is not definable by
a Σin

α formula. Suppose to the contrary that it was, say by a formula ϕ.
Let ȳ = (y1, . . . , ys) be a tuple in M and ψ a Πin

β formula for some β < α
which witness that M ⊧ ϕ(x). Let m ∈ ω be such that m > ε(y1), . . . , ε(ys).
Using the construction of M as a Fräıssé limit, there is x′ ∈M such that
(α,0) > E(x,x′) > (β,m). So x ≁α x′. By Lemma 33 with these values
of β and m, there is a tuple ȳ′ = (y′1, . . . , y′s) such that x, ȳ ∼β x′, ȳ′. By
Lemma 36, x, ȳ ≤β x′, ȳ′. Hence M ⊧ ϕ(x′). So x and x′ are in the same
automorphism orbit; but then Lemma 37 contradicts the fact that x ≁α x′.

So the automorphism orbits of M are definable by Σin
wfp(L) formulas, but

there is no α < wfp(L) such that all of the automorphism orbits are definable
by Σin

α formulas. So SR(M) = wfp(L) = wfc(L) since L is well-founded.

Case 2. L is not well-founded.

Fix a tuple x̄. By Lemma 37, ȳ is in the automorphism orbit of x̄ if and
only if x̄ ∼α ȳ for each α ∈ wfp(L). By Lemma 38, the set of such ȳ is Πin

α -
definable for each fixed α. So the set of ȳ for which x̄ ∼α ȳ for all α ∈ wfp(L)
is Πin

wfp(L)-definable, and therefore Σin
wfp(L)+1-definable.

By Lemma 31 there is x ∈M a successor of ⟨⟩ with %(x) = α ∉ wfp(L).
The argument from the previous case shows that the automorphism orbit
of x is not definable by a Σin

β formula for any β ∈ wfp(L). Hence it is not

definable by a Σin
wfp(L) formula since wfp(L) is a limit ordinal by (O2).

We have shown that the automorphism orbits of M are all definable by
Σin

wfp(L)+1 formulas, but that not all of the automorphism orbits are definable

by Σin
wfp(L) formulas. Since L is not well-founded, wfp(L) + 1 = wfc(L). So

SR(M) = wfc(L). ◻
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3.5. Computation of Scott Rank for Theorem 28. For Theorem 28, we
want to have: If M ⊧ T (L), then SR(M) = wfp(L) (rather than wfc(L)).
We accomplish this by adding to S+:

(O4b) There is a function G∶L → P(L) such that for each α ∈ L, G(α) is
an increasing sequence of order type ω whose limit is α if α is a limit
ordinal, or a finite set containing α−1 if α is a successor ordinal. R1

is an increasing sequence with order type ω which is unbounded in
L, or R1 is {γ} if γ is the maximal element of L. For each n,

Rn+1 = {βn} ∪Rn ∪ ⋃
α∈Rn

G(α)

where βn is an element of L. If γ < α < β, and γ ∈ G(β), then
γ ∈ G(α).

In this case, (Q7) is no longer a vacuous condition. Recall that while (O4b)
is not Πin

2 , this does not matter as we can take its Morleyization.
(O4b) plays a similar role to the “thin trees” in Knight and Millar’s

[KM10] construction of a computable structure of Scott rank ωCK1 ; the or-
dinals in Rn put a bound, at level n of the tree, on the Scott ranks of the
elements at that level. In Lemma 40 below, we will see that for each n there
is a bound, below wfp(L), on the ordinals in Rn ∩wfp(L).

We begin by showing that (O4b) implies (O3). (R1), (R2), (R3), and
(R4) follow immediately from (O4b). To see (R5), we show in the following
lemma that the Rn are well-founded.

Lemma 40. Suppose that G and Rn satisfy (O4b) and that L is not well-
founded. For each n, Rn is well-founded and there is a bound αn ∈ wfp(L)
on Rn ∩wfp(L).

Proof. We argue by simultaneous induction that:

(1) for each n, Rn is well-founded,
(2) for each n there is a bound αn ∈ wfp(L) on Rn ∩wfp(L).

For n = 1, R1 has order type at most ω and is unbounded in L. Thus R1

is well-founded, and has only finitely many elements in wfp(L).
For the case n + 1, we have that

Rn+1 = {βn} ∪Rn ∪ ⋃
α∈Rn

G(α).

We claim that Rn+1 is well-ordered. It suffices to show that ⋃α∈Rn G(α) is
well-ordered. Suppose that (βn)n∈ω is a decreasing sequence in ⋃α∈Rn G(α).
For each n, let αn be the least α ∈ Rn such that βn ∈ G(αn). We claim that
(αn)n∈ω is a non-increasing sequence. If not, then for some n, αn+1 > αn.
We have αn+1 > αn ≥ βn ≥ βn+1 and βn+1 ∈ G(αn+1), so by (O4b) we have
βn+1 ∈ G(αn). This contradicts the choice of αn+1. Since Rn is well-founded,
there is α such that for all sufficiently large n, αn = α. Thus, throwing
away some initial part of the sequence (βn)n∈ω, we may assume that each
βn ∈ G(α). This is a contradiction, since G(α) has order type at most ω.
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Now we claim that there is a bound αn+1 ∈ wfp(L) on Rn+1∩wfp(L). Let
γ be the least element of Rn which is not in wfp(L). Then we claim that

Rn+1∩wfp(L) = {βn+1}∪[Rn∩wfp(L)]∪[G(γ)∩wfp(L)]∪ ⋃
α∈Rn∩wfp(L)

G(α).

(If βn+1 ∉ wfc(L), then we omit it.) Clearly the right hand side is contained
in the left hand side. To see that we have equality, suppose that α ∈ wfp(L)∩
G(δ) for some δ ∈ Rn ∖wfp(L). Then α < γ ≤ δ, and so α ∈ G(γ) by (O4b).

Then since G(γ) has order type at most ω and γ ∉ wfp(L), G(γ)∩wfp(L)
is finite and hence bounded. Also, each element of G(α) for α ∈ Rn ∩
L is bounded above by α, and since Rn ∩ L is bounded above by αn,

⋃α∈Rn∩wfp(L)G(α) is also bounded above by αn. Thus Rn+1 ∩ wfp(L) is
bounded above by some αn+1 ∈ wfp(L). ◻

We also need to know that for each L ∈ S, there are G and Rn satisfying
(O4b). Moreover, if L is computable with a computable successor relation,
then we need to find G and Rn computable in order to have a computable
model of T (L).

Lemma 41. There are G and R1 satisfying (O4b) such that L = ⋃nRn. If
L is computable with a computable successor relation, then we can pick G,
(βn)n∈ω, and R1 such that the Rn are uniformly computable.

Proof. Let α0, α1, α2, . . . be a listing of L. To define R1, greedily pick an
increasing subsequence of α0, α1, α2, . . . (or, if there is a maximal element γ
of L, let R1 = {γ}).

We begin by defining G(α0), after which we define G(α1), and so on.
To define G(α0), greedily pick an increasing subsequence of α1, α2, . . . each
element of which is less than α0 (stopping if we ever find a predecessor of
α0). Now suppose that we have defined G(α0), . . . ,G(αn). Suppose that
β1, . . . , β` are those αi, 0 ≤ i ≤ n, with αi < αn+1. Let β = max(β1, . . . , β`).
Let γ1, . . . , γm be those αi, 0 ≤ i ≤ n, with αi > αn+1. Begin by putting into
G(αn+1) the finitely many elements of G(γ1), . . . ,G(γm) which are less than
αn+1. If αn+1 is the successor of one of these elements, then we are done; if
αn+1 is the successor of one of α1, . . . , αn, then add that element to G(αn+1).
Otherwise, greedily pick an increasing subsequence of αn+2, αn+3, . . ., each
element of which is at least β and less than αn+1. If we ever find a predecessor
of αn+1, then we can stop there. It is easy to check that G is as required by
(O4b). In particular, if γ < α < β, and γ ∈ G(β), then γ ∈ G(α).

Now for each n, let

Rn+1 = {αn} ∪Rn ∪ ⋃
α∈Rn

R(α).

Note that L = ⋃nRn.
We claim that if α0, α1, . . . was an effective listing, then each G(αi) and

each Rn is computable. First, note that R1 is computable. It is also easy
to see that each G(αn) is computable. Given a way of computing Rn, we
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will show that to compute Rn+1. To check whether αi ∈ Rn+1, first check
whether i = n (as we know that αn ∈ Rn+1). Second, check whether αi ∈ Rn.
Third, check whether αi + 1 is in Rn; if it is, then αi ∈ G(αi + 1) ⊆ Rn+1.
Fourth, check whether αi is in one of G(α0), . . . ,G(αi−1). Note from the
construction above that if αi is not in one of these sets (and αi is not in
Rn+1 for one of the first three reasons), then it is not in G(αj) for any j
with αj ∈ Rn. ◻

Finally, we show that models of T (L) have the correct Scott rank.

Lemma 42. Let M ⊧ T (L). Then SR(M) = wfc(L).

Proof. Recall Theorem 16, which says that the Scott rank ofM is the least
α such that every automorphism orbit is Σin

α -definable without parameters.
We have two cases.

Case 1. L is well-founded.

This case is the same as the corresponding case of Lemma 39.

Case 2. L is not well-founded.

Fix a tuple x̄. By Lemma 37, ȳ is in the automorphism orbit of x̄ if
and only if x̄ ∼α ȳ for each α ∈ wfp(L). By Lemma 40, there is a bound
γ ∈ wfp(L) such that ȳ is in the same orbit as x̄ if and only if x̄ ∼α ȳ for
each α ≤ γ. By Lemma 38, the set of such ȳ is Πin

α -definable for each fixed
α. So the set of ȳ for which x̄ ∼α ȳ for all α ≤ γ is Πin

γ -definable.
Let α ∈ wfp(L) and by (O1) let n be such that α ∈ Rn. By Lemma 31

there is x ∈M, ∣x∣ = n, with %(x) = α ∉ wfp(L). The argument from the
previous case shows that the automorphism orbit of x is not definable by a
Σin
β formula for any β ≤ α.
We have shown that the automorphism orbits of M are all definable

by Σin
wfp(L) formulas, but that there is no α ∈ wfp(L) such that all of the

automorphism orbits are definable by Σin
α formulas. So SR(M) = wfp(L).

◻

4. Π0
2 Theories

Recall that Theorem 2 stated that given α < ω1, there is a Πin
2 sentence T

all of whose models have Scott rank α. This theorem is a simple application
of the main construction.

Proof of Theorem 2. Let A = (A,<A) be a presentation of (α,<) as a struc-
ture with domain A = (ai)i∈ω. Consider the atomic diagram of A in the
language with constant symbols (ai)i∈ω for the elements of A. Let S be
the conjunction of all of the sentences in the atomic diagram of A, together
with the sentence (∀x)⩔i(x = ai). Let T be the Πin

2 sentence obtained from
Theorem 27. Then

SS(T ) = {α}. ◻
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In the main construction, the sentence we built had uncountably many
existential types. This was necessary: an omitting types argument shows
that if a Πin

2 sentence has only countably many existential types, then it
must have a model of Scott rank 1.

5. Computable Models of High Scott Rank

In this section, we will prove Theorem 4 by producing a Πc
2 sentence T all

of whose models have Scott rank ωCK1 + 1 (and a Πc
2 sentence whose models

all have Scott rank ωCK1 ). Moreover T will have a computable model. If
A is a model of this sentence, then whenever B is another structure with
A ≡2 B, B will also be a model of T and hence will also have non-computable
Scott rank. Thus it is not the case that every computable structure A of
high Scott rank is approximated by models of lower Scott rank in the sense
that for each α < ωCK1 , there is a structure Bα with SR(Bα) < ωCK1 such
that A ≡α Bα.

Proof of Theorem 4. Let H = (H,<H) be a computable presentation of the
Harrison linear ordering of order type ωCK1 ⋅(1+Q) as a structure with domain
H = (hi)i∈ω. We may assume that the successor relation is computable by
replacing each element of H by ω (this does not change the order type). Let
S be the conjunction of the sentences of the atomic diagram of H (in the
language with constants hi) together with the sentence (∀x)⩔i(x = hi). Let
T be the Πc

2 sentence obtained from Theorem 27 applied to S. Then

{SR(M) ∶M ⊧ T} = {wfc(L) ∶ L ⊧ S} = {ωCK1 + 1}.
To get Scott rank ωCK1 , we simply use Theorem 28 instead of Theorem
27. ◻

A similar argument also gives the following:

Theorem 43. Let α be a computable ordinal. There is a Πc
2 sentence with

a computable model whose computable models all have Scott rank α.

Proof. The proof is the same as that of the previous theorem, using the
fact that every computable ordinal has a presentation where the successor
relation is computable [Ash86, Ash87, AK00]. ◻

6. A Technical Lemma

The general construction of Section 3 references PCLω1ω -classes of linear

orders, whereas our classification in Theorems 9 and 11 references Σ1
1 classes

of linear orders. The following technical lemma shows that, if we are only
interested in the order types represented in the class, the two are equivalent.

Lemma 44. Let C be a class of linear orders (i.e., of order types). The
following are equivalent:

(1) C is the set of order types of a Σ1
1 class of linear orders.

(2) C is the set of order types of a PCLω1ω -class of linear orders.
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Moreover, the lightface notions are also equivalent:

(1) C is the set of order types of a (lightface) Σ1
1 class of linear orders.

(2) C is the set of order types of a computable PCLω1ω -class of linear
orders.

Proof. (2)⇒(1) is clear. For (1)⇒(2), suppose that C is a class of linear
orders defined by ∃Xϕ(X,≤) where ϕ has only quantifiers over ω. Consider
the class C+ of pairs (≤,X) ⊆ ω2 ×ω with ϕ(X,≤). Then C+ is a Borel class.

Let D be the class of models in the language {⪯, Y } ∪ {ai ∶ i ∈ ω} such
that each element of the domain is named by a unique constant ai, and
such that with ≤⊆ ω2 defined by i ≤ j ⇐⇒ ai ⪯ aj and X ⊆ ω defined by
i ∈ X ⇐⇒ ai ∈ Y , (≤,X) ∈ C+. This gives a Borel reduction from D to C+,
and hence D is Borel. By a theorem of Lopez-Escobar [LE65], D is Lω1ω-
axiomatizable since it is closed under isomorphism. Moreover, the order
types of models in D are the same as the order types of the linear orders in
C+ and hence the same as those in C.

For the lightface notions, the proof is the same except that we use Vanden
Boom’s [VB07] lightface analogue of the Lopez-Escobar theorem. ◻

7. Bounds on Scott Height

Recall that Sacks [Sac83] showed that sh(Lcω1,ω) ≤ δ1
2 and that Marker

[Mar90] showed that sh(PCLcω1ω) = δ
1
2 . We now show that sh(Lcω1,ω) = δ

1
2 .

Proof of Theorem 7. Fix α < δ1
2 . We may assume that α ≥ ωCK1 . Let S be

a computable PCLω1ω -class in a language L with α < sh(S) < δ1
2 . When

we say that S is a computable class, we mean that there is a computable
Lω1ω-sentence T in a language L′ ⊇ L such that S is the class of reducts of
models of T to L.

We define a (lightface) Σ1
1 class C of linear orders as follows. (L,≤) is in

C if and only if there is:

(1) a model A of T ,
(2) a set X ⊆ ω,
(3) a Harrison linear order H relative to X,
(4) an embedding f ∶L → H such that f(L) is an initial segment of H,

and
(5) non-standard back-and-forth relations ≾α on A indexed by L (in the

language L of S, not of T ), such that:
(a) for all α ∈ L, there is x̄ which is α-free, i.e. for all ȳ and β < α,

there are x̄′ and ȳ′ such that x̄, ȳ ≾β x̄′, ȳ′ and x̄′ æα x̄,
(b) the set of partial maps

{ā↦ b̄ ∶ ā ≾α b̄ for all α}
has the back-and-forth property.

If A ⊧ T has Scott rank α (where we compute Scott rank in the language
L of S), then take X such that ωX1 > α. Let H be a Harrison linear order
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relative to X. Then α embeds into an initial segment of H, and we can take
the standard back-and-forth relations on A, indexed by elements of α. By
Theorem 16, (5a) and (5b) are satisfied. Thus α ∈ C.

On the other hand, if (L,≤) is well-founded, and there is a model A of T
with back-and-forth relations indexed by L satisfying (5a) and (5b), then L
is the Scott rank of A. Thus C ∩On = SS(T ).

We claim that if L ∈ C, then wfp(L) ≤ sup(SS(S)). If L is well-founded,
then this is clear, so assume that L is not well-founded. Thus, for some
set X, L embeds into a Harrison linear order H relative to X as an initial
segment (and there is a model A of T and non-standard back-and-forth
relations as above). Since L is not well-founded, its image in H includes the
well-founded part ωX1 . Now, for each α ∈ wfp(L), by (5a) there is x̄ which
is α-free. Thus the Scott rank of A is at least ωX1 . Hence wfp(L) ≤ SR(A),
and since L was arbitrary, wfp(L) ≤ sup(SS(S)).

By the lightface version of Theorem 28, there is a computable Lω1ω-
sentence T ′ such that

SS(T ′) = {wfp(L)∶L ∈ C} ⊇ C ∩On = SS(S) ∋ α.
Since if L ∈ C then wfp(L) ≤ sup(SS(S)), we have sh(T ) ≤ sh(S). So
α ≤ sh(T ′) < ω1. Since α was arbitrary, sh(Lcω1ω) ≥ δ1

2 . This proves the
theorem. ◻

8. Possible Scott Spectra of Theories

In this section, we will prove Theorems 9 and 11 which completely classify
the possible Scott spectra under the assumption of Projective Determinacy.
We begin by going as far as we can without any assumptions beyond ZFC,
and then we assume Projective Determinacy in order to get a cone of sets
X where the Scott spectrum contains either only ωX1 for all X on the cone,
or only ωX1 + 1 for all X on the cone, or both for all X on the cone.

The following result is well-known.

Lemma 45. Let T be an Lω1ω-sentence. If the Scott spectrum of T is
unbounded below ω1, then there is a set Y such that for every X ≥T Y , there

is a model A of T with SR(A) ≥ ωA,X1 = ωX1 . In particular, SR(A) = ωX1 or

SR(A) = ωX1 + 1.

Proof. Choose Y such that T is Y -computable. This is a well-known appli-
cation of Gandy’s basis theorem; see [Mon13, Lemma 3.4]. ◻

In the next lemma, we consider the linear orders which support back-
and-forth relations on models of an Lω1ω-sentence T . This will give a Σ1

1

class of linear orders, which if it is unbounded will contain non-well-founded
members (supporting non-standard back-and-forth relations).

Theorem 46. Let T be an Lω1ω-sentence. There is a Σ1
1 class of linear

orders C such that
SS(T ) = C ∩On.



32 M. HARRISON-TRAINOR

If SS(T ) is bounded below ω1, then C ⊆ On. Otherwise, if SS(T ) is un-
bounded below ω1, then there is a set Y such that

(1) for all X ≥T Y , at least one of ωX1 or ωX1 + 1 is in C, and
(2) the only non-well-founded members of C are Harrison linear orders

relative to some X ≥T Y , i.e. ωY1 ⋅(1+Q)+β for some Y -computable
β.

Proof. If SS(T ) is bounded below ω1, then we can just take C = SS(T ); this
is a Σ1

1 class. So suppose that SS(T ) is unbounded below ω1.
By Lemma 45, there is a set Y such that for every X ≥T Y , there is a

model A of T with SR(A) = ωX1 or SR(A) = ωX1 + 1.
The proof of the theorem is similar to the proof of Theorem 7. Let C be

the Σ1
1 class of linear orders defined as follows. (L,≤) is in C if and only if

there are:

(1) a model A of T ,
(2) a set X ≥T Y ,
(3) a Harrison linear order H relative to X,
(4) an embedding f ∶L → H such that f(L) is an initial segment of H,

and
(5) non-standard back-and-forth relations ≾α on A indexed by L (in the

language L of S, not of T ), such that:
(a) for all α ∈ L, there is x̄ which is α-free, i.e. for all ȳ and β < α,

there are x̄′ and ȳ′ such that x̄, ȳ ≾β x̄′, ȳ′ and x̄′ æα x̄,
(b) the set of partial maps

{ā↦ b̄ ∶ ā ≾α b̄ for all α}
has the back-and-forth property.

Note that while in Theorem 7 C was a (lightface) Σ1
1 class, now C is Σ1

1(Y,T ).
We still prove, in the same way, that C ∩On = SS(T ).

Now if (L,≤) is not well-founded, then for some X ≥T Y , L embeds into
the Harrison linear order H relative to X. Since L is not well-founded, it is
itself isomorphic to ωX1 ⋅ (1 +Q) + β for some X-computable ordinal β. By
choice of Y , either ωX1 or ωX1 + 1 is the Scott spectrum of a model of T . ◻

Our use of projective determinacy will be to have a uniform choice of
whether ωX1 or ωX1 + 1 (or both) is in the Scott spectrum; that is, we will
be able to choose Y such that for all X ≥T Y , ωX1 is in the Scott spectrum,
or such that for all X ≥T Y , ωX1 + 1 is in the Scott spectrum, or both. We
now prove Theorem 11, which said that each Scott spectrum is built from a
Σ1

1 class by either taking the well-founded part, the well-founded collapse,
or both.

Proof of Theorem 11. Theorems 27 and 28 show that each of these is a Scott
spectrum. In the other direction, Theorem 46 says that each Scott spectrum
is C ∩On for some Σ1

1 class C. Either C ⊆ On (in which case C is bounded
below ω1, and we are done) or there is a set Y such that
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(1) for all X ≥T Y , ωX1 or ωX1 + 1 is in C, and
(2) the only non-well-founded members of C are Harrison linear orders

relative to some X ≥T Y .

By projective determinacy, there is Z ≥T Y such that one of the following
is true for all X ≥T Z:

(1) ωX1 ∈ C and ωX1 + 1 ∉ C,
(2) ωX1 ∉ C and ωX1 + 1 ∈ C, or
(3) ωX1 ∈ C and ωX1 + 1 ∈ C.

Let C′ be the set of linear orders in C which embed into an initial segment
of HX for some X ≥T Z. Then C ∩On = C′ ∩On, and depending on which
case we were in above, we have:

(1) C ∩On = C′ ∩On = wfp(C′),
(2) C ∩On = C′ ∩On = wfc(C′), or
(3) C ∩On = C′ ∩On = wfp(C′) ∪wfc(C′). ◻

We now give the proof of our alternate characterization.

Proof of Theorem 9. The Scott spectra which are bounded below ω1 clearly
correspond to Σ1

1 sets of ordinals which are bounded below ω1. So it remains
only to deal with the unbounded case.

First we show that if C is a Σ1
1 set of linear orders with either C ∩On or

{α ∶ α+1 ∈ C∩On} stationary, then C∩On is the Scott spectrum of a theory.
Note that for each set Y , {ωX1 ∶ X ≥T Y } contains a club (see Remark 26),
and hence intersects either C ∩On or {α ∶ α+ 1 ∈ C ∩On}. Thus exactly one
of the following is true for cofinally many X in the Turing degrees: ωX1 is in
C ∩On (but ωX1 + 1 is not), or ωX1 + 1 is in C ∩On (but ωX1 is not), or both
are in C ∩On. By Projective Determinacy, one of these is true on a cone,
say the cone above a set Y .

Now let C′ be the Σ1
1 set of linear orders (L,≤) in C such that for some

X ≥T Y , L embeds into an initial segment of HX . Then C′ ∩On = C ∩On,
and either:

(1) whenever (L,≤) ∈ C′ is not well-founded, wfp(L) is in C′ ∩On,
(2) whenever (L,≤) ∈ C′ is not well-founded, wfp(L)+ 1 is in C′ ∩On, or
(3) whenever (L,≤) ∈ C′ is not well-founded, wfp(L) and wfp(L)+ 1 are

in C′ ∩On.

By the proof of Theorem 11, C′ ∩On is a Scott spectrum.
On the other hand, if T is an Lω1ω-sentence whose Scott spectrum is

unbounded below ω1, then by Theorem 11 there is a set Y such that for all
X ≥T Y , either ωX1 or ωX1 + 1 is in SS(T ). By projective determinacy, there
is Z ≥T Y such that either for all X ≥T Z, ωX1 ∈ SS(T ), or for all X ≥T Z,
ωX1 + 1 ∈ SS(T ). In Remark 26, we noted that {ωX1 ∶ X ≥T Z} is stationary.
This completes the proof. ◻

Remark 47. In Theorems 27 and 28 we can get T to be Π0
2. Thus Theorem

12 follows from Theorem 11.
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Remark 48. Note that the proofs of Lemma 45 and Theorems 46, 9, and 11
go through if we replace T by a PCLω1ω class of structures. Thus, under
projective determinacy, the Scott spectra of PCLω1ω -classes are the same as
the Scott spectra of Lω1ω sentences. Thus we have proved Theorem 13.

We can use the classification to find some interesting examples of Scott
spectra.

Proposition 49. The following are all Scott spectra of Lω1ω-sentences:

(1) {α + 1 ∶ α < ω1}.
(2) {α ∶ α < ω1 is an admissible ordinal}.
(3) {α + 1 ∶ α < ω1 is an admissible ordinal}.

Proof. Note that if (L,≤) is not well-founded, then wfc(L) is a successor
ordinal. If C is the Lω1ω-definable class of all linear orders with an initial
element and containing a dense interval (with endpoints), C contains no
well-founded orders. Moreover, for each ordinal α < ω1, α + Q ∈ C and
wfc(α +Q) = α + 1. Thus

{wfc(L) ∶ L ∈ C} = {α ∶ α < ω is a successor ordinal}
is a Scott spectrum.

In Subsection 2.4, we remarked that class of Harrison linear orders is a
Σ1

1 class. Thus

{wfp(L) ∶ L ∈ C} = {ωX1 ∶X ⊆ ω}
and

{wfc(L) ∶ L ∈ C} = {ωX1 + 1 ∶X ⊆ ω}
are Scott spectra. (Note that ω is an admissible which is not in the first
spectrum, but we can easily add it in via Proposition 18.) ◻

9. Open Questions

We begin by asking whether one can remove the assumption of Projective
Determinacy in the classification of Scott spectra.

Open Question. Classify the Scott spectra of Lω1ω-sentences in ZFC.

We would also like to know a lightface classification. The proofs of The-
orems 9 and 11 do not go through for computable sentences because of the
use of Projective Determinacy.

Open Question. Classify the Scott spectra of computable Lω1ω-sentences.

Finally, our construction relied upon being able to take infinite disjunc-
tions, such as when we named each element of the order sort by a constant.
A first-order theory cannot name each element of an infinite sort by a con-
stant. Can our results be expanded to first-order theories?

Open Question. Classify the Scott spectra of first-order theories.
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