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GOALS

I Understand the structure of the c.e. degrees by finding
naturally definable classes of degrees.

I Understand the dynamic nature of constructions of c.e.
degrees.

I Understanding the lower regions of the c.e. degrees.



AN EXAMPLE OF A NATURALLY DEFINABLE CLASS

THEOREM (DOWNEY AND LEMPP)
A c.e. degree is contiguous iff it is locally distributive.

THEOREM (AMBOS-SPIES AND FEJER)
A c.e. degree is contiguous iff it is not the top of a copy (in the
c.e. dgerees) of the non-modular, non-distributive 5 element
lattice N5.



A SWEEPING RESULT

Nies, Shore and Slaman used coding of the standard model of
arithmetic in the c.e. degrees to get bi-interpretability up to the
second jump:

THEOREM
A relation on the c.e. degrees which is invariant under the
double jump is definable in the c.e. degrees iff it is definable in
arithmetic.

As a result, all jump-classes, except perhaps for the low
degrees, are definable.



Two issues that limit our usage of the Nies-Shore-Slaman
bi-interpretability:

I It cannot give definable subclasses of the low2 degrees.
I The definitions are not natural.



JUMP CLASSES AND PERMITTING

Various notions of permitting:

I Simple permitting (Yates) – finite injury constructions, such
as Friedberg-Muchink.

I Prompt permitting (Ambos-Spies et. al.) – minimal pair.
I High permitting (Martin) – almost every construction.
I Non-low2 and array-non-computable permitting (Downey,

Jockusch, Stob) – 1 generic degrees, cupping, tops of
lattices in the degrees.



PERMITTING AND DEFINABILITY

THEOREM (AMBOS-SPIES, JOCKUSCH, SHORE, SOARE)
A c.e. degree is promptly simple iff it is not cappable.



PERMITTING AND DOMINATION

Notions of permitting are sometimes closely related to the
partial ordering of Baire space under domination.

FACTS (MARTIN ; DOWNEY-JOCKUSH-STOB)

1. A degree is high iff it computes a function that dominates
all computable functions.

2. A degree a is non-low2 iff there is no function computable
in 0′ which dominates every function computable from a.

3. A degree a is array-non-computable iff there is no function
which is truth-table reducible to 0′ and which dominates
every function computable from a.



LATTICE EMBEDDINGS IN INITIAL SEGMENTS

Every c.e. degree bounds N5 and distributive lattices. So we
need to examine modular, non-distributive lattices. The
smallest one is the 1-3-1 (aka M5).

THEOREM (DOWNEY AND SHORE)
Every non-low2 degree bounds a copy of the 1-3-1 lattice.

THEOREM (DOWNEY, WEINSTEIN)
There is a c.e. degree that does not bound a copy of the 1-3-1.

FACT (WALK )
Such a degree can be made array-non-recursive.



CRITICAL TRIPLES

Incomparable elements a0, a1 and b in an upper semi-lattice
form a critical triple if a0 and a1 are equivalent modulo b, but
anything that lies below both a0 and a1 is also below b.

For example, the middle elements of the 1-3-1 form a critical
triple. A lattice contains a critical triple iff it contains a copy of
the 1-3-1.

Downey’s and Weinstein’s proofs actually show that there is a
degree below which there is no critical triple.



THE ERSHOV HIERARCHY

This is an absolute hierarchy of ∆0
2 sets and functions, indexed

by the computable ordinals.

A function f is α-c.e. if changes in our guess for f (x) (in a
computable approximation for f ) have to be accompanied by a
descending sequence from α.



UNDERSTANDING THE LOWER LEVELS OF THE

HIERARCHY

If g(x , s) is a computable approximation for a ∆0
2 function f ,

define the mind changing function of g:

mg(n) = #{s : g(x , s) 6= g(x , s + 1)}

FACT
A function is ω-c.e. iff it has a computable approximation g such
that mg is dominated by some computable function.

FACT
A function is ωn+1-c.e. iff it has a computable approximation g
such that mg is dominated by some function which is ωn-c.e.



ERSHOV AND TURING

Ershov’s notion of complexity is not related to Turing’s. For
example, the c.e. sets lie in the bottom of Ershov’s hierarchy but
can be Turing complete.

How do we use Ershov’s hierarchy for the study of the c.e.
degrees? By brute force.

DEFINITION
A c.e. degree is totally α-c.e. if every function which it
computes is α-c.e.



THE HIERARCHY OF TOTALLY α-C.E. DEGREES.

THEOREM
There is a degree which is totally α-c.e. and not totally β-c.e.
for any β < α iff α = ωγ for some γ.

FACTS

I Every array-computable degree is totally ω-c.e.
I Every totally α-c.e. degree is low2.

THEOREM
There are maximal totally α-c.e. degrees, but if γ < δ then no
totally ωγ-c.e. degree is maximal in the class of totally ωδ-c.e.
degrees.



TOTALLY ω-C.E. DEGREES

THEOREM (D, G AND WEBER)
A c.e. degree is totally ω-c.e. iff it does not bound a critical triple.

COROLLARY
The low degrees and the superlow degrees are not
elementarily equivalent.

PROBLEM

Find a definition of the totally ω2-c.e. degrees.



A REFINEMENT OF THE HIERARCHY

DEFINITION
A c.e. degree a is totally < α-c.e. if every function f computable
from a is β-c.e. for some β < α.

THEOREM
There is a degree which is totally < α-c.e. but not totally β-c.e.
for any β < α iff α is of the form ωγ for some limit ordinal γ.



TOTALLY < ωω-C.E. DEGREES

THEOREM
A c.e. degree is totally < ωω-c.e. iff it does not bound a copy of
the 1-3-1.



OTHER CONSTRUCTIONS

Other constructions share the dynamics of the critical triple /
1-3-1 constructions.

I m-topped degrees.
I Presentations of left-c.e. reals.
I Degrees which contain wtt-minimal pairs.
I Completely mitotic degrees.

There are related results.



HIGHER COMPUTABILITY THEORY

THEOREM (G)
Let α > ω be an admissible ordinal, and let a be an incomplete
α-c.e. degree. Then a bounds a copy of the 1-3-1 iff a bounds a
critical triple iff a computes a counting of α.

COROLLARY
The sentence “there is an incomplete degree which bounds a
critical triple but not the 1-3-1” holds in the classical c.e.
degrees but not in the α-c.e. degrees (for any admissible
α > ω.)
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