Natural Definability in the Nether Regions of the
Computably Enumerable Degrees

Rod Downey Noam Greenberg

May 24, 2006

COMPUTABLE SETS AND FUNCTIONS

DEFINITIONS
An algorithm is a program written in Basic.

A function f is computable if there is some algorithm which,
given an input x, outputs f(x).

A set A is computable if there is some algorithm which, given
an input x, answers the question “is x in A?”

COMPUTABLE SETS AND FUNCTIONS

DEFINITIONS
An algorithm is a program written in Pascal.

A function f is computable if there is some algorithm which,
given an input x, outputs f(x).

A set A is computable if there is some algorithm which, given
an input x, answers the question “is x in A?”

COMPUTABLE SETS AND FUNCTIONS

DEFINITIONS
An algorithm is a program written in C.

A function f is computable if there is some algorithm which,
given an input x, outputs f(x).

A set A is computable if there is some algorithm which, given
an input x, answers the question “is x in A?”

COMPUTABLE SETS AND FUNCTIONS

DEFINITIONS
An algorithm is a program written in Python.

A function f is computable if there is some algorithm which,
given an input x, outputs f(x).

A set A is computable if there is some algorithm which, given
an input x, answers the question “is x in A?”

COMPUTABLE SETS AND FUNCTIONS

DEFINITIONS
An algorithm is a program written in your favourite language.

A function f is computable if there is some algorithm which,
given an input x, outputs f(x).

A set A is computable if there is some algorithm which, given
an input x, answers the question “is x in A?”

EXAMPLES

» The set of even numbers.
» The set of prime numbers.

» The function which, given a number, returns its prime
divisors.

» The collection of graphs that have Hamiltonian cycles.

» The function which, given a polynomial p (with rational
coefficients), halts if p has an integral solution, in which
case it returns one such solution.

COMPUTABLY ENUMERABLE SETS

DEFINITION
A set is computably enumerable if there is some algorithm that

outputs its elements.

THEOREM

The following are equivalent for an infinite set A:
1. Ais computably enumerable;
2. Ais the range of some computable function;
3. Alis the domain of some computable function.

EXAMPLES

» Any computable set.
» The collection of polynomials that have integral solutions.

» The word set: the collection of pairs (g,) of generators
and relations such that the generated group is trivial.

» The halting set: the collection of algorithms which
terminate.

In fact;

THEOREM
A set is computable if, and only if, both it and its complement
are computably enumerable.

THE “UNIVERSAL MACHINE”

There is an algorithm run which takes as input a pair (M, x)
and activates the algorithm M on input x; and if it halts, returns
the output of that computation. The universal machine is the
function computed by this algorithm.

THE “UNIVERSAL MACHINE”

There is an algorithm run which takes as input a pair (M, x)
and activates the algorithm M on input x; and if it halts, returns
the output of that computation. The universal machine is the
function computed by this algorithm.

EXERCISE
Find an algorithm that outputs itself.

THEOREM
The domain of the universal machine is not computable.

PROOF.

Suppose it is. Devise the following algorithm M. As input, it
takes an algorithm N that takes one input. If N does not halt
when run on itself (as input), then M halts; but if N does halt
when run on itself, then M enters an infinite loop.

Now ask: does M halt when run on itself?

The domain of the universal machine is denoted by ('.

RELATIVE COMPUTABILITY

DEFINITIONS
Let A be a set. An algorithm with oracle A is an algorithm in

your favourite language, enhanced by a procedure that decides
membership in A.

A set B is computable from A if there is an algorithm with oracle
A that decides membership in B. We write B <7 A.

Relative computability is a transitive relation.

EXAMPLES

» A computable set B is computable from any oracle.

» Any computably enumerable set is computable from the
domain of the universal machine.

» If a set B is computable from a computable set, then B
itself is computable.

TURING DEGREES

DEFINITIONS
Two sets A and B are Turing equivalent if A
is computable from B and B is computable from A.

The Turing degree of a set A is the collection of all sets B that
are Turing equivalent to A.

Turing reducibility induces a partial ordering on the collection of
Turing degrees.

COMPUTABLY ENUMERABLE DEGREES

The collection of the computable sets forms the least Turing
degree, denoted by 0. We already know that (' is not
computable; thus its degree, 0’, is strictly greater than 0. Also,
for any degree a that contains a c.e. set,a < 0'.

Are there any c.e. degrees apart from 0 and 0’? Various c.e.
sets have been shown to be non-computable; prominent
examples are the word set and the collection of polynomials
with integral solutions (Hilbert's 10" problem). However, they all
have degree 0'.

In 1956, Friedberg and Muchnik have independently shown that
there are incomparable c.e. degrees. For this, they introduced
the powerful priority method. Using this method, the c.e.
degrees have been extensively investigated. For example, it is
known (Sacks) that the c.e. degrees are dense.

OPEN QUESTION
Is there an automorphism of the c.e. degrees?

We denote the structure of the c.e. degrees by R.

DEFINABLE CLASSES

DEFINITION
A set C C R is definable if it is invariant under the
automorphisms of R.

This concept may be too broad... we restrict ourselves to
“nicely” definable classes.

EXAMPLE

The collection of degrees a € R such that for some b € R we
have avb =0

ARITHMETICAL DEFINABILITY

A collection of c.e. sets is arithmetically definable if they share
some property.

EXAMPLES

» The collection of infinite c.e. sets.

» Simple sets: c.e. sets whose complement does not contain
an infinite c.e. sets.

» Promptly simple sets: simple sets for which witnesses for
simplicity are obtained “quickly”.

A deeper understanding of the degrees (and of the notion of
computation itself) is obtained by making connections between
an arithmetically definable collection of c.e. sets and the
collection of degrees that contain them.

EXAMPLE (AMBOS-SPIES, JOCKUSCH, SHORE, SOARE)

A c.e. degree a contains a promptly simple set iff there is some
c.e. degree b suchthataAb = 0.

THE TURING JUMP OPERATOR

Given a set A, the enhanced programming language that uses
A as an oracle has a universal machine of its own. Its domain is
denoted by A'.

THEOREM

If A <t B then A’ <7 B’.

Thus, if sets A and B are Turing equivalent, then so are A’ and
B’. The map A — A’ induces an order-preserving function from
the degrees to the degrees.

THEOREM
For any degree a, a < a'.

JUMP CLASSES

Let a and b be degrees. We leta <; bifa’ <b’. Thisisa
transitive relation which is coarser than the usual ordering on
the degrees. This can be iterated: a <, b iffa’ <, b’ iffa” <b”,
etc.

<n- equivalence classes are called jump classes. In the c.e.
degrees, the ones that are used mostly are the least and
greatest jump classes: a is low, if a =, 0; it is high,, if a =, 0’.

THE NETHER REGIONS OF THE (E. DEGREES

Low and low, degrees were previously thought to be simple
and boring: they are too close to being computable.

Recent research shows a plethora of fascinating phenomena
and subclasses in the lower regions of the c.e. degrees.

EXAMPLES
» Array computable degrees (Downey, Jockusch, Stob):
combinatorial properties of c.e. sets.

» Almost deep degrees (Cholak, Groszek, Slaman): low
degrees a such that for any other low degree b, aVv b is low.

» K-trivial degrees (Downey, Hirschfeldt, Nies): connections
with measure theory.

A UNIFORM DEFINABILITY RESULT

Nies, Shore and Slaman obtained a striking definability result
by coding arithmetic in the c.e. degrees. In our terminology,
they obtained:

» A definable way of associating, for each string x, a degree
by such that executing algorithms is definable: for each M,
the map by — by x) is elementarily definable.

» And, a definable map g from the c.e. degrees to coded
algorithms, such that for any degree a, g(a) = by, where
M is an algorithm that enumerates a c.e. set which is =5 to
a.

The result on uniform definability has several corollaries:

COROLLARIES

» Let C C R be invariant under =,. Then C is definable iff it
is arithmetically definable.

» Every jump class, except perhaps for low, is definable.

» The c.e. degrees are as complicated as possible.

THE BI-INTERPRETABILITY CONJECTURE
The above result can be improved to obtained Turing
equivalence rather than just second jump class equivalence.

COROLLARIES OF THE BFHINTERPRETABILITY CONJECTURE

» Any set of degrees is definable iff it is arithmetically
definable.

» The c.e. degrees are rigid, and every degree is definable.

The uniform definability result has two shortcomings:
1. The definitions are elementary but not natural.
2. Not useful for proper subclasses of the low, degrees.

WORKING BELOW A C.E. DEGREE

Thesis: the position of a degree in the jump-class hierarchy is
reflected in its computational power.

The main problem of working below a given c.e. degree is that
the construction needs to be computable, so appealing to an
oracle is not allowed.

PERMITTING

To make a constructed c.e. set A computable from a given c.e.
set B, we often use permitting: allow to enumerate x into A only
if at the given stage of the construction, x or a smaller number
enters B.

The “speed of the enumeration” of B influences how well we
can use this technique below B.

For example:

THEOREM
Every promptly simple set bounds a minimal pair.

The flip side of speed of enumeration is the rate of growth of
functions.

Namely:

A complicated set B is characterised by the property that small
numbers are enumerated late into B. The settling-down
function therefore grows quickly.

DOMINATION

DEFINITION

Letf,g: N — N. We say that f dominates g if for all but finitely
many n we have g(n) < f(n).

This notion yields a notion of relative complexity: given two
degrees a and b, we say that b is “much greater” than a (and
write a < b) if there is some function computable from b which
dominates all functions computable from a.

Here is a key fact, due to Martin.

THEOREM
A degree b is high iff 0 < b.

COROLLARY
A degree ais low; iffa < 0.

These results, together with permitting, yield structural
corollaries. For example:

EXAMPLES

» Every high degree bounds a minimal pair.

» (Downey, Shore) Every non-low, degree bounds a copy of
the 1-3-1 lattice.

The problem with these results is that the converses do not
hold. For example, there are low degrees that bound minimal
pairs and even the 1-3-1 lattice.

We need to measure complexity in a new way.

COMPUTABLE APPROXIMATIONS

THEOREM
The following are equivalent for any function f:

1. f <7 0.

2. f has a computable approximation: there is some
computable function h such that for all x,

f(x) :Sliﬁrrgo h(x,s).

Given the “limit lemma”, a new measure of complexity can be
introduced, this time asking if we can get a nice approximation.
For example:

DEFINITION
A function f is w-c.e. if it has some computable approximation
h(x,s) such that the “mind change” function, namely

I(x) = #{s : h(x,s +1) #h(x,s)}

is dominated by some computable function.

TOTALLY w-C.E. DEGREES

The notion of w-c.e.-ness does not conform to Turing
reducibility: there are w-c.e. functions of degree 0'.

So we use brute force to reconcile between them:

DEFINITION
A c.e. degree a is totally w-c.e. if every f <7 ais w-c.e.

All totally w-c.e. degrees are low,. On the other hand, every
array-computable degree is totally w-c.e.

There are low degrees which are totally w-c.e. and there are
low degrees which are not.

A DEFINABILITY RESULT

THEOREM (DGW)
The totally w-c.e. degrees are (naturally) definable.

The definition uses lattice embeddings. In one direction, the
existence of some function f, computable from a given degree
a, which is not w-c.e., is used to get “enough permitting” to build
an embedding below a.

In the other direction, we show that a “runs out of gas” and
cannot cause disturbances (to our showing that a certain meet
cannot exist), because the disturbances are computable from a,
and therefore w-c.e.

THEOREM
There are maximal totally w-c.e. degrees.

This gives a definable anti-chain (incomparable set) of degrees.

TOTALLY < w“-C.E. DEGREES

Ershov defined a transfinite hierarchy of complexity according
to how nice computable approximations are. For our purposes,
we can define inductively:

DEFINITION

A function is w"*1-c.e. if it has some computable approximation
such that the mind-change function is dominated by some
function which is w"-c.e.

This gives rise to a hierarchy in the low,-degrees, namely that
of the totally w"-c.e. degrees. Also,

DEFINITION
A c.e. degree a is totally < w“-c.e. if every function computable
from a is w"-c.e. for some n.

THEOREM

The totally < w“-c.e. degrees are naturally definable. Indeed, a
c.e. degree bounds a copy of the 1-3-1 iff it is not totally

< wY-c.e.

FURTHER RESULTS

» A theorem on classical and higher computability theory.
» Further constructions are captured by the new classes.

QUESTION
Are the totally w"-c.e. degrees definable?

	Basic definitions of Computability
	Relative Computability and the jump

