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Lemma 1 (Hirst). Let < be a linear ordering
of some A C w. The following are equivalent
over RCAp:

1. Every subset of A has a <-least element.

2. There are no infinite <-decreasing chains.

Such < is called an ordinal.



Simpson writes:

“... ATRg is the weakest set of axioms
which permits the development of a de-
cent theory of countable ordinals.”

Evidence, for example:

Theorem 2 (Friedman, Friedman-Hirst). The
following are equivalent over RCAp:

1. If o, 8 are ordinals, then either a« embeds
into B or 3 embeds into c.

2. If o, B are ordinals, then either o is an initial
segment of B or B is an initial segment of

.

3. ATRy.



Proposition 3 (RCAp). The following is equiv-
alent to Ni-CA,: Given a sequence (Xp),, .., Of
linear orderings, the set {n : X, is well-founded}
exists.

Definition 4. An Abelian p-group is reduced if
it has no divisible subgroup.

Lemma 5 (Friedman-Simpson-Smith). The
following is equivalent to Mi-CA, over RCAg:
every Abelian p-group is the direct sum of a
reduced group and a divisible group.



Definition 6. An Ulm resolution of a reduced
Abelian p-group G is a sequence (G5>ﬁ<a where
a IS an ordinal, GO =G, G =0, Gﬁ—l—l = pGﬁ
and for Iimit 8, Gy = Ng,Gg.

Theorem 7 (Friedman-Simpson-Smith). The
following are equivalent over RCAp:

1. Every reduced Abelian p-group has an Ulm
resolution.

2. For any two reduced Abelian p-groups G
and H, either GG is a direct summand of H
or H is a direct summand of (.

3. ATR,.



A structure A for a first-order computable lan-
guage is identified with its atomic diagram D(A).
We allow A to be a proper subset of w.

We work with a class A of structures (for the

same language), closed under isomorphism. To-
gether with A we are given a notion of embed-

dability <.

COMP(A) is the statement: for every A, B € A,
either A< B or B < A.

EQU=ISO(A) is the statement: for every A, B ¢
A, if both A< B and B < A then A = B.

WQO(A) is the statement: if (Ap),, ., iS a se-
quence of members of A then there are some



3-1SO(A) is the statement: if (Ap), c IS @ Se-
quence of structures in A, then the set {(n,m) :
Apn = A} exists.

3-EMB(A) is the statement: if (An), N IS @ se-
quence of structures in A, then the set {(n,m) :
Ap < A} exists.

We are also given a notion of rank on struc-
tures in A.

RK(A) is the statement: every structure in A
IS ranked.



Let On be the class of ordinals.

Theorem 8. The following are all equivalent
to ATRg over RCAq:

1. COMP(On) (Friedman - Hirst),

2. EQU=ISO(On) (Friedman - Hirst),

3. WQO(On) (Shore);

4. 3-1ISO(On);

5. 3-EMB(On).



A tree is a subset of w<¥, closed under initial
segments. A tree is well-founded is it has no
infinite path. Let WXF7 denote the class of
well-founded trees.

A rank function on a tree T'is a function f from
T onto an ordinal o« such that for all o € T,

f(o) =sup{f(r)+1:7€T, 720}

The main property of rank: A ranked tree T
embeds into a ranked tree S iff rk(T) < rk(S).

Theorem 9 (Hirst). Under ATRg, every well-
founded tree is ranked.



Theorem 10 (ACAp). Assume that every well-
founded tree is ranked. Then 3-EMBOWFT),
COMP(WXFT) and WQO(WHFT) all hold.

Theorem 11 (RCAp). The following are all equiv-
alent to ATRg:

1. RKOWFT);

2. FISOOWFT);

3. FEMBOWFT);

4. COMPOWFT);

5. WQO(WFT).



Lemma 12 (RCAp). Let B be a Boolean alge-
bra. The following are equivalent:

1. B contains an infinite free set.

2. There is an embedding of the full binary
tree into B (preserving < and 1).

3. B has an atomless subalgebra.

Such a Boolean algebra is not called super-
atomic.

Lemma 13 (ACAgp). A Boolean algebra B is
superatomic iff it has no atomless quotient.

Let SABA denote the class of superatomic
Boolean algebras.
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The atomic ideal of a Boolean algebra is the
ideal generated by its atoms.

A Cantor-Bendixon resuolution of a Boolean
algebra B is a sequence of ideals <Iﬁ>5<a such
that Ip = {0}, Io = B, unions are taken at limit
stages and for all g8 < «, I3y 1 is the pullback
to B of the atomic ideal of B/Ig.

Superatomic Boolean algebras are character-
ized by the length of their resolution, together
with the number of atoms in B/I,_1. For
invariant pairs (a,n) and (8,m), let (a,n) =
(B,m) if a = 8 and n = m; and let (a,n) <
(B,m) ifa< B and n<m. If A, B are ranked,
then A = B iff inv(A) = inv(B) and A < B iff
inv(A) < inv(B).
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Theorem 14 (ACAp). Assume that every su-
peratomic Boolean algebra is ranked. Then

the following all hold: 3-1SO(SABA), 3-EMB(S.ABA),
COMP(SABA), EQU=ISO(SABA) and WQO(SABA).

Theorem 15 (RCAp). The following are all equiv-
alent to ATRg:

1. RK(SABA);

2. 3-1SO(SABA);

3. 3-EMB(SABA);
4. COMP(SABA);

5. EQU=ISO(SABA);

6. WQO(S.AB.A)+ACA,.
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Definition 16. Let A,B be classes of struc-
tures. Then A <y B if there is some com-
putable f: R — R such that f~ 18 = A.

The following definition was made by Calvert-
Cummins-Knight-S.Miller.

Definition 17. Let A,B be classes of struc-
tures. Then A <. B if uniformly, for any A € A,
from any enumeration of A one can produce
an enumeration of some ®(A) € B, preserving
iIsomorphism and non-isomorphism.
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Theorem 18. The following classes are all TW -
and c-equivalent (via the same reductions):

1. Ordinals;

2. Superatomic Boolean algebras;

3. Fat well-founded trees;

4. Fat reduced Abelian p-groups.
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Let A, B be a pair of these classes. Under the
assumption that the structures in A are ranked,
one can usually show in RCAg that we have a
c-reduction; in ACAg we can show that it pre-
serves non-embedding as well. Thus ATRg suf-

fices.

However: for A = On, ranking comes for free,
so we get by with less.
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Corollary 19 (RCAp). Both 3-ISO and 3-EMB
for reduced Abelian p-groups are equivalent to
ATRg.
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