Superatomic Boolean algebras and \mbox{ATR}_0

Noam Greenberg and Antonio Montalbán

6th of January 2005

Lemma 1 (Hirst). Let < be a linear ordering of some $A \subset \omega$. The following are equivalent over RCA₀:

- 1. Every subset of A has a <-least element.
- 2. There are no infinite <-decreasing chains.

Such < is called an *ordinal*.

Simpson writes:

"... ATR₀ is the weakest set of axioms which permits the development of a decent theory of countable ordinals."

Evidence, for example:

Theorem 2 (Friedman, Friedman-Hirst). The following are equivalent over RCA₀:

- 1. If α, β are ordinals, then either α embeds into β or β embeds into α .
- 2. If α, β are ordinals, then either α is an initial segment of β or β is an initial segment of α .
- 3. ATR₀.

Proposition 3 (RCA₀). The following is equivalent to Π_1^1 -CA₀: Given a sequence $\langle X_n \rangle_{n < \omega}$ of linear orderings, the set $\{n: X_n \text{ is well-founded}\}$ exists.

Definition 4. An Abelian p-group is reduced if it has no divisible subgroup.

Lemma 5 (Friedman-Simpson-Smith). The following is equivalent to Π_1^1 -CA₀ over RCA₀: every Abelian p-group is the direct sum of a reduced group and a divisible group.

Definition 6. An *Ulm resolution* of a reduced Abelian p-group G is a sequence $\langle G_{\beta} \rangle_{\beta \leqslant \alpha}$ where α is an ordinal, $G_0 = G$, $G_{\alpha} = 0$, $G_{\beta+1} = pG_{\beta}$ and for limit β , $G_{\gamma} = \cap_{\beta < \gamma} G_{\beta}$.

Theorem 7 (Friedman-Simpson-Smith). The following are equivalent over RCA₀:

- 1. Every reduced Abelian p-group has an Ulm resolution.
- 2. For any two reduced Abelian p-groups G and H, either G is a direct summand of H or H is a direct summand of G.
- 3. ATR₀.

A structure A for a first-order computable language is identified with its atomic diagram D(A). We allow A to be a proper subset of ω .

We work with a class \mathcal{A} of structures (for the same language), closed under isomorphism. Together with \mathcal{A} we are given a notion of embeddability \leq .

COMP(\mathcal{A}) is the statement: for every $A, B \in \mathcal{A}$, either $\mathcal{A} \preccurlyeq B$ or $B \preccurlyeq A$.

EQU=ISO(\mathcal{A}) is the statement: for every $A, B \in \mathcal{A}$, if both $A \leq B$ and $B \leq A$ then $A \cong \mathcal{B}$.

WQO(\mathcal{A}) is the statement: if $\langle A_n \rangle_{n < \omega}$ is a sequence of members of \mathcal{A} then there are some n < m such that $A_n \preccurlyeq A_m$.

 \exists -ISO(\mathcal{A}) is the statement: if $\langle A_n \rangle_{n \in \mathbb{N}}$ is a sequence of structures in \mathcal{A} , then the set $\{(n,m): A_n \cong A_m\}$ exists.

 \exists -EMB(A) is the statement: if $\langle A_n \rangle_{n \in \mathbb{N}}$ is a sequence of structures in A, then the set $\{(n,m): A_n \leq A_m\}$ exists.

We are also given a notion of rank on structures in \mathcal{A} .

 $\mathbf{RK}(\mathcal{A})$ is the statement: every structure in \mathcal{A} is ranked.

Let $\mathcal{O}n$ be the class of ordinals.

Theorem 8. The following are all equivalent to ATR_0 over RCA_0 :

- 1. COMP(On) (Friedman Hirst);
- 2. EQU=ISO(On) (Friedman Hirst);
- 3. $WQO(\mathcal{O}n)$ (Shore);
- 4. \exists -ISO($\mathcal{O}n$);
- 5. \exists -EMB($\mathcal{O}n$).

A tree is a subset of $\omega^{<\omega}$, closed under initial segments. A tree is well-founded is it has no infinite path. Let \mathcal{WFT} denote the class of well-founded trees.

A rank function on a tree T is a function f from T onto an ordinal α such that for all $\sigma \in T$,

$$f(\sigma) = \sup\{f(\tau) + 1 : \tau \in T, \tau \supseteq \sigma\}.$$

The main property of rank: A ranked tree T embeds into a ranked tree S iff $rk(T) \leq rk(S)$.

Theorem 9 (Hirst). Under ATR_0 , every well-founded tree is ranked.

Theorem 10 (ACA₀). Assume that every well-founded tree is ranked. Then \exists -EMB(\mathcal{WFT}), COMP(\mathcal{WFT}) and WQO(\mathcal{WFT}) all hold.

Theorem 11 (RCA₀). The following are all equivalent to ATR_0 :

- 1. RK(WFT);
- 2. \exists -ISO(\mathcal{WFT});
- 3. \exists -EMB(\mathcal{WFT});
- 4. COMP(WFT);
- 5. WQO(WFT).

Lemma 12 (RCA₀). Let B be a Boolean algebra. The following are equivalent:

- 1. B contains an infinite free set.
- 2. There is an embedding of the full binary tree into B (preserving \leq and \perp).
- 3. B has an atomless subalgebra.

Such a Boolean algebra is not called *super-atomic*.

Lemma 13 (ACA₀). A Boolean algebra B is superatomic iff it has no atomless quotient.

Let \mathcal{SABA} denote the class of superatomic Boolean algebras.

The atomic ideal of a Boolean algebra is the ideal generated by its atoms.

A Cantor-Bendixon resuolution of a Boolean algebra B is a sequence of ideals $\langle I_{\beta} \rangle_{\beta \leqslant \alpha}$ such that $I_0 = \{0\}$, $I_{\alpha} = B$, unions are taken at limit stages and for all $\beta < \alpha$, $I_{\beta+1}$ is the pullback to B of the atomic ideal of B/I_{β} .

Superatomic Boolean algebras are characterized by the length of their resolution, together with the number of atoms in $B/I_{\alpha-1}$. For invariant pairs (α,n) and (β,m) , let $(\alpha,n)\cong(\beta,m)$ if $\alpha\cong\beta$ and n=m; and let $(\alpha,n)\preccurlyeq(\beta,m)$ if $\alpha\preccurlyeq\beta$ and $n\leqslant m$. If A,B are ranked, then $A\cong B$ iff inv $(A)\cong \mathrm{inv}(B)$ and $A\preccurlyeq B$ iff inv $(A)\preccurlyeq\mathrm{inv}(B)$.

Theorem 14 (ACA₀). Assume that every superatomic Boolean algebra is ranked. Then the following all hold: \exists -ISO(\mathcal{SABA}), \exists -EMB(\mathcal{SABA}), COMP(\mathcal{SABA}), EQU=ISO(\mathcal{SABA}) and WQO(\mathcal{SABA}).

Theorem 15 (RCA₀). The following are all equivalent to ATR_0 :

- 1. RK(SABA);
- 2. \exists -ISO(\mathcal{SABA});
- $3. \exists -\mathsf{EMB}(\mathcal{SABA});$
- 4. COMP(SABA);
- 5. EQU=ISO(\mathcal{SABA});
- 6. $WQO(SABA) + ACA_0$.

Definition 16. Let \mathcal{A}, \mathcal{B} be classes of structures. Then $\mathcal{A} \leqslant_{TW} \mathcal{B}$ if there is some computable $f: \mathbb{R} \to \mathbb{R}$ such that $f^{-1}\mathcal{B} = \mathcal{A}$.

The following definition was made by Calvert-Cummins-Knight-S.Miller.

Definition 17. Let \mathcal{A}, \mathcal{B} be classes of structures. Then $\mathcal{A} \leqslant_c \mathcal{B}$ if uniformly, for any $A \in \mathcal{A}$, from any enumeration of A one can produce an enumeration of some $\Phi(A) \in \mathcal{B}$, preserving isomorphism and non-isomorphism.

Theorem 18. The following classes are all TW-and c-equivalent (via the same reductions):

- 1. Ordinals;
- 2. Superatomic Boolean algebras;
- 3. Fat well-founded trees;
- 4. Fat reduced Abelian p-groups.

Let \mathcal{A}, \mathcal{B} be a pair of these classes. Under the assumption that the structures in \mathcal{A} are ranked, one can usually show in RCA₀ that we have a c-reduction; in ACA₀ we can show that it preserves non-embedding as well. Thus ATR₀ suffices.

However: for $A = \mathcal{O}n$, ranking comes for free, so we get by with less.

Corollary 19 (RCA₀). Both \exists -ISO and \exists -EMB for reduced Abelian p-groups are equivalent to ATR₀.