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Lemma 1 (Hirst). Let < be a linear ordering

of some A ⊂ ω. The following are equivalent

over RCA0:

1. Every subset of A has a <-least element.

2. There are no infinite <-decreasing chains.

Such < is called an ordinal.
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Simpson writes:

“... ATR0 is the weakest set of axioms

which permits the development of a de-

cent theory of countable ordinals.”

Evidence, for example:

Theorem 2 (Friedman, Friedman-Hirst).The

following are equivalent over RCA0:

1. If α, β are ordinals, then either α embeds

into β or β embeds into α.

2. If α, β are ordinals, then either α is an initial

segment of β or β is an initial segment of

α.

3. ATR0.
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Proposition 3 (RCA0). The following is equiv-

alent to Π1
1-CA0: Given a sequence 〈Xn〉n<ω of

linear orderings, the set {n : Xn is well-founded}

exists.

Definition 4. An Abelian p-group is reduced if

it has no divisible subgroup.

Lemma 5 (Friedman-Simpson-Smith). The

following is equivalent to Π1
1-CA0 over RCA0:

every Abelian p-group is the direct sum of a

reduced group and a divisible group.
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Definition 6. An Ulm resolution of a reduced

Abelian p-group G is a sequence 〈Gβ〉β6α
where

α is an ordinal, G0 = G, Gα = 0, Gβ+1 = pGβ

and for limit β, Gγ = ∩β<γGβ.

Theorem 7 (Friedman-Simpson-Smith).The

following are equivalent over RCA0:

1. Every reduced Abelian p-group has an Ulm

resolution.

2. For any two reduced Abelian p-groups G

and H, either G is a direct summand of H

or H is a direct summand of G.

3. ATR0.
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A structure A for a first-order computable lan-

guage is identified with its atomic diagram D(A).

We allow A to be a proper subset of ω.

We work with a class A of structures (for the

same language), closed under isomorphism. To-

gether with A we are given a notion of embed-

dability 4.

COMPCOMPCOMP(A) is the statement: for every A, B ∈ A,

either A 4 B or B 4 A.

EQU=ISOEQU=ISOEQU=ISO(A) is the statement: for every A, B ∈

A, if both A 4 B and B 4 A then A ∼= B.

WQOWQOWQO(A) is the statement: if 〈An〉n<ω is a se-

quence of members of A then there are some

n < m such that An 4 Am.
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∃-ISO∃-ISO∃-ISO(A) is the statement: if 〈An〉n∈N is a se-

quence of structures in A, then the set {(n, m) :

An
∼= Am} exists.

∃-EMB∃-EMB∃-EMB(A) is the statement: if 〈An〉n∈N is a se-

quence of structures in A, then the set {(n, m) :

An 4 Am} exists.

We are also given a notion of rank on struc-

tures in A.

RKRKRK(A) is the statement: every structure in A

is ranked.
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Let On be the class of ordinals.

Theorem 8. The following are all equivalent

to ATR0 over RCA0:

1. COMP(On) (Friedman - Hirst);

2. EQU=ISO(On) (Friedman - Hirst);

3. WQO(On) (Shore);

4. ∃-ISO(On);

5. ∃-EMB(On).
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A tree is a subset of ω<ω, closed under initial

segments. A tree is well-founded is it has no

infinite path. Let WFT denote the class of

well-founded trees.

A rank function on a tree T is a function f from

T onto an ordinal α such that for all σ ∈ T ,

f(σ) = sup{f(τ) + 1 : τ ∈ T, τ ) σ}.

The main property of rank: A ranked tree T

embeds into a ranked tree S iff rk(T) 4 rk(S).

Theorem 9 (Hirst). Under ATR0, every well-

founded tree is ranked.
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Theorem 10 (ACA0). Assume that every well-

founded tree is ranked. Then ∃-EMB(WFT ),

COMP(WFT ) and WQO(WFT ) all hold.

Theorem 11 (RCA0).The following are all equiv-

alent to ATR0:

1. RK(WFT );

2. ∃-ISO(WFT );

3. ∃-EMB(WFT );

4. COMP(WFT );

5. WQO(WFT ).
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Lemma 12 (RCA0). Let B be a Boolean alge-

bra. The following are equivalent:

1. B contains an infinite free set.

2. There is an embedding of the full binary

tree into B (preserving 6 and ⊥).

3. B has an atomless subalgebra.

Such a Boolean algebra is not called super-

atomic.

Lemma 13 (ACA0). A Boolean algebra B is

superatomic iff it has no atomless quotient.

Let SABA denote the class of superatomic

Boolean algebras.
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The atomic ideal of a Boolean algebra is the

ideal generated by its atoms.

A Cantor-Bendixon resuolution of a Boolean

algebra B is a sequence of ideals 〈Iβ〉β6α
such

that I0 = {0}, Iα = B, unions are taken at limit

stages and for all β < α, Iβ+1 is the pullback

to B of the atomic ideal of B/Iβ.

Superatomic Boolean algebras are character-

ized by the length of their resolution, together

with the number of atoms in B/Iα−1. For

invariant pairs (α, n) and (β, m), let (α, n) ∼=

(β, m) if α ∼= β and n = m; and let (α, n) 4

(β, m) if α 4 β and n 6 m. If A, B are ranked,

then A ∼= B iff inv(A) ∼= inv(B) and A 4 B iff

inv(A) 4 inv(B).
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Theorem 14 (ACA0). Assume that every su-

peratomic Boolean algebra is ranked. Then

the following all hold: ∃-ISO(SABA), ∃-EMB(SABA),

COMP(SABA), EQU=ISO(SABA) and WQO(SABA).

Theorem 15 (RCA0).The following are all equiv-

alent to ATR0:

1. RK(SABA);

2. ∃-ISO(SABA);

3. ∃-EMB(SABA);

4. COMP(SABA);

5. EQU=ISO(SABA);

6. WQO(SABA)+ACA0.
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Definition 16. Let A,B be classes of struc-

tures. Then A 6TW B if there is some com-

putable f : R → R such that f−1B = A.

The following definition was made by Calvert-

Cummins-Knight-S.Miller.

Definition 17. Let A,B be classes of struc-

tures. Then A 6c B if uniformly, for any A ∈ A,

from any enumeration of A one can produce

an enumeration of some Φ(A) ∈ B, preserving

isomorphism and non-isomorphism.
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Theorem 18.The following classes are all TW -

and c-equivalent (via the same reductions):

1. Ordinals;

2. Superatomic Boolean algebras;

3. Fat well-founded trees;

4. Fat reduced Abelian p-groups.
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Let A,B be a pair of these classes. Under the

assumption that the structures in A are ranked,

one can usually show in RCA0 that we have a

c-reduction; in ACA0 we can show that it pre-

serves non-embedding as well. Thus ATR0 suf-

fices.

However: for A = On, ranking comes for free,

so we get by with less.
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Corollary 19 (RCA0). Both ∃-ISO and ∃-EMB

for reduced Abelian p-groups are equivalent to

ATR0.
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