
A complete Π1
1 equivalence relation

Noam Greenberg and Dan Turetsky

Victoria University of Wellington

2nd July 2014



The complexity of equivalence relations

Let E and F be equivalence relations on sets X and Y. A function
f : X Ñ Y induces a map from X{E to Y{F if for all a,b P X, if a E b
then fpaq F fpbq. A reduction of E to F is an injection of X{E into Y{F.

Descriptive set theory studies, for example, reductions which are
induced by Borel functions. One motivation is understanding when
classification problems have good invariants.



In computability

When we throw effectiveness into the mix we can study equivalence
relations on the natural numbers. Here we require that the
reduction is induced by a computable function.

The study began with Malcev and Ershov (in the guise of the study
of numberings). Quite a lot of work recently, for example:
Bernardi-Sorbi; Fokina-Friedman; Gao-Gerdes;
Coskey-Hamkins-R. Miller; Andrews-Lempp-J. Miller-Ng-San
Mauro-Sorbi;Fokina-Friedman-Harizanov-Knight-McCoy-Montalbán.



Σ1
1 equivalence relations

Theorem
(Fokina,Friedman,Harizanov,Knight,McCoy,Montalbán)

Isomorphism of computable structures is complete among Σ1
1

equivalence relations on ω with respect to computable reductions.



Σ1
1 equivalence relations

How do we work effectively with Σ1
1 sets? We cannot search the

reals.

Theorem (Spector,Gandy)

A set of numbers is Σ1
1 if and only if it is Π1 definable over the

structure Lωck
1

.

Thus a Σ1
1 set is co-c.e. if we allow an enumeration procedure to

take ωck
1 many steps.



Admissibility

The structure Lωck
1

is admissible. Technically this says that every

function f : ω Ñ ωck
1 which is ∆1 definable over Lωck

1
is bounded

below ωck
1 .

Here for example is an application:

Lemma
Every Σ1

1 equivalence relation is the limit of an effective
ωck

1 -sequence of finer and finer hyperarithmetic equivalence
relations.

Proof.
Let a,b P N such that a � b. For all n P N, either n � a or n � b.
Admissibility says by some stage α   ωck

1 we see this for all n.
By admissibility again we can (cofinally) find stages α such that �,
as co-enumerated up to stage α, is in fact an equivalence
relation.



FFHKMM - sketch of proof

Theorem (Fokina,Friedman,Harizanov,Knight,McCoy,Montalbán)

Isomorphism of computable structures is complete among Σ1
1 equivalence relations

on ω with respect to computable reductions.

Let � be a Σ1
1 equivalence relation. Let x�αyα ωck

1
be an effective

refining sequence of hyperarithmetic equivalence relations with
limit �.

For each n P N we define a structure Mn. It consists of disjoint linear
orderings Ln,a (tagged by a) such that:

� If n � a then Ln,a � ωα, where α is least such that n �α a.

� If n � a then Ln,a is Harrison’s linear ordering.

And note that Ln,a depends only on the �-equivalence class of n.



What about Π1
1

It is natural to ask about the higher analogue of c.e. equivalence
relations, namely, Π1

1 equivalence relations. The Spector-Gandy
theorem tells us that the existence of a hyperarithmetic
isomorphism between structures is a Π1

1 fact.

Theorem
Hyperarithmetic isomorphism between computable structures is
complete among Π1

1 equivalence relations with respect to
computable reductions.



A rough plan

Let � be a Π1
1 equivalence relation; let x�αy be an effective

ωck
1 -sequence of hyperarithmetic equivalence relations getting

coarser and coarser and whose union is �.
We build structures Mn. The plan:

� If m � n then eventually, all decisions we make for Mm are
identical to those we make for Mn.

� If m � n then we actively diagonalise against all possible
hyperarithmetic isomorphisms.



Diagnoalizing

Let ϕe effectively enumerate all partial Π1
1 functions.

Each structure Mn will consist of disjoint tagged components
indexed by pairs pe, kq. Each component contains two elements ae,k

and be,k which are distinguished from the rest but not from each
other. Each one of these is related to a linear ordering Ae,k and Be,k.
Any isomorphism from an Mn to Mk must map ae,k and be,k to
themselves, or swap between them.

The plan:

� Suppose that ϕepae,kq converges at stage α   ωck
1 . Let

AMn
e,k � ωα and BMn

e,k � ωα � 2 for all n �α k. If ϕepae,kq � ae,k then

let AMn
e,k � ωα � 2 and BMn

e,k � ωα for all n �α k. If ϕepae,kq � be,k,
swap the latter.

� If ϕepae,kqÒ then we let both AMn
e,k and BMn

e,k be isomorphic to
Harrison’s linear ordering, for all n P N.



Why would this work?

Suppose that n � m. We want to show that Mn �Mm via a
hyperarithmetic isomorphism.

Suppose that we discover that n � m at stage β   ωck
1 . We construct

an isomorphism between Mn and Mm using (roughly) 0pβq. Fix a pair
pe, kq.

� If ϕepae,kqÓ by stage β then 0pβq knows this fact and can
construct the isomorphism between the components which
have ordertype ωα and those which have ordertype ωα � 2,
using the fact that α   β.

� If ϕepae,kqÒ at stage β, then whatever happens later (either
Fepae,kqÓ at stage α ¡ β, or never converges), on the pe, kq
component the construction acts the same for Mm and Mn.



But why are the structures computable?

(You should have asked this about Σ1
1 as well!)

In the Σ1
1 case, manipulation of computable trees suffices to build

the structures computably.

The Π1
1 construction appears a bit too complicated for this

approach. We need to get our hands dirty.

Getting hands dirty =
Using Ash-Knight / Harrington
iterated priority arguments

We use a presentation of the technique given by Montalbán.



True stages

Suppose that at stage s, n enters H1. Let ∇1
s � H1

s æn.

� There are infinitely many stages s for which ∇1
s  H1.

These are the 1-true stages in our approximation of H1.
A stage t   s appears to be 1-true at stage s if by stage s we still
don’t have a proof that t is not a true stage: ∇1

t  H1
s.

We repeat the process relative to the 1-true stages. We enumerate
H2, at stage s using the oracle ∇1

s . Capping at the smallest number
which just entered, we get ∇2

s . A stage is 2-true if it is 1-true and
further ∇2

s  H2. Similarly we get the notion of a stage appearing
2-true at a later stage.

Significant work is required to ensure that there are α-true stages
for α ¥ ω.



Iterated priority arguments

Fix a computable ordinal δ. Say we want to build a computable
structure N (for example, one of the Mn’s) but relying on questions
asked of Hpδq. To do so, we rely on our approximations to Hpδq.

In fact we consider all ordinals α ¤ δ. Together with N we
approximate the Σα-diagram of N. The main instruction is:

� If s is an α-true stage then Σα facts listed about Ns are true
of N. Indeed, if s appears α-true at stage t ¡ s, then our stage t
approximation for the Σα diagram (of Nt) agrees with the one
at stage s.

Every stage appears to be 0-true at any later stage. So the atomic
diagrams of the Ns all agree, i.e., we are building a computable
structure.



Iterated priority arguments

The construction succeeds if we have a strategy for recovering from
errors: say β   α and s appears β-true but not α-true at stage t ¡ s.
At stage t we believe that Ns was wrong about some Σα fact, and
we want to extend Nt to fix this. However we must preserve all Σβ

facts while doing so. Explaining how to do this is the combinatorial
heart of the construction.



Lifting to ωck
1

The iterated priority argument machinery is done along a fixed
computable ordinal δ: we need the relations “s appears α-true at t”
to be computable, uniformly in α   δ. Our construction of the
structures Mn though goes all the way up to ωck

1 .

Overspill allows us to use pseudo-ordinals. One way to understand
these is using a nonstandard model of set theory.



A nonstandard universe

Theorem (Gandy)

Every nonempty Σ1
1 set contains an element X which preserves ωck

1 :
ωX

1 � ωck
1 .

Let A be the collection of binary relations E � ω2 such that pω,Eq is
an ω-model of Zermelo-Franekel set theory. The set A is
hyperarithmetic. Find some H � pω,Eq in A which preserves ωck

1 .

� H is an ω-model. And so “computable” in the sense of H means
computable, arithmetic in the sense of H means arithmetic, etc.
In particular, every computable ordinal lies in the well-founded
part of H, and every hyperarithmetic set is in H.

� The well-founded part of H cannot contain the ordinal ωck
1 , since

every well-founded ordinal in H has an H-computable copy.



A nonstandard universe

Hence the well-founded part of H has height precisely ωck
1 . This

well-founded part is not definable in H. In particular ωck
1 cannot be

precisely the collection of elements of H which H thinks are
computable ordinals. So the computable ordinals “spill over” to the
ill-founded part of H. The “pseudo-ordinals” are truly computable
linear orderings, but H does not realise that they are ill-founded.
They look like Harrison’s linear ordering.

To do our construction we fix a computable pseudo-ordinal δ P H.
We do the Ash-Knight construction along δ.



Does it still work?

We check that going beyond ωck
1 does not spoil the construction.

First we observe that if n � m then Mn and Mm are not
hyperarithmetically isomorphic.

It is possible that n �β m for some ill-founded β   δ. Nonetheless, if
ϕe : Mn ÑMm is truly hyperarithmetic then ϕepae,mq converges at
stage α   ωck

1 , and so n �α m, so at stage α we diagonalise
against ϕe.



Does it still work?

The proof that if n � m then Mn �Mm hyperarithmetically is the
same. The proof shows that for all β   δ, if n �β m then 0pβq

computes an isomorphism between Mn and Mm.

� If ϕepae,kqÓ by stage β then 0pβq knows this fact and can construct the
isomorphism between the components which have ordertype ωα and those
which have ordertype ωα � 2, using the fact that α   β.

� If ϕepae,kqÒ at stage β, then whatever happens later (either Fepae,kqÓ at stage
α ¡ β, or never converges), on the pe, kq component the construction acts the
same for Mm and Mn.

If n � m but n �β m for some ill-founded β, then indeed 0pβq (an
object in H) computes an isomorphism, but 0pβq is not really
hyperarithmetic (it computes every hyperarithmetic set).



Thank you


