Generalised High Degrees Have the Complementation Property

Noam Greenberg, Antonio Montalbán, Richard A. Shore

3rd of June 2003

Definition. A Turing degree d has the complementation property if every degree $\mathbf{a}<\mathbf{d}$ has a complement in $\mathcal{D}(\leqslant \mathbf{d})$: some b such that

$$
a \vee b=d
$$

and

$$
a \wedge b=0
$$

Definition. A Turing degree d is generalised high if

$$
\mathrm{d}^{\prime}=\left(\mathrm{d} \vee 0^{\prime}\right)^{\prime}
$$

Theorem 1. Every generalised high degree has the complementation property.

Let \mathbf{d} be generalised high and let $\mathbf{a}<\mathrm{d}$.

The construction of a complement \mathbf{b} for a below \mathbf{d} is divided into cases, depending on the 'distance' between a and d.

Case One: $\mathbf{a} \in \mathrm{GL}_{2}$.
(That is to say, $\mathrm{a}^{\prime \prime}=\left(a \vee 0^{\prime}\right)^{\prime}$.)
Complement constructed by Posner [1977].

Case Two: $\mathbf{a} \notin \mathbf{G L}_{2}$, and for some $\mathbf{a} \leqslant \mathbf{c}<\mathbf{d}$,

$$
\mathbf{d} \in \Delta_{2}(\mathbf{c})
$$

(What is used is: there is some function $d \leqslant_{T} \mathbf{d}$ which is dominated by no function recursive in a.)

The construction is an elaboration on Slaman and Steel's uniform construction of complements below 0^{\prime}. The fact that a $\notin \mathrm{GL}_{2}$ is used to construct a tree, akin to Slaman and Steel's, recursively in a, using a guess as to how long one should wait for splits.

Case Three: None of the above.

Here, independently of a, we construct a minimal degree b below d. We use a function recursive in a, which 'dominates the construction', to show that $\mathrm{d} \leqslant(\mathrm{a} \vee \mathrm{b})^{\prime}$.

It then follows that $\mathbf{d}=\mathbf{a} \vee \mathbf{b}$.

