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A word of introduction



I will briefly touch on loosely related projects all involving ordinal
numbers.

Naturally, admissible computability (in which ordinals replace the
natural numbers) will feature. But I will start fairly low (in fact low2

c.e. degrees) and then climb higher.



Totally α-computably
approximable degrees

Work with Rod Downey



Ershov’s hierarchy

Ershov defined a hierarchy of ∆0
2 sets and functions, based on the

complexity of approximating them via the limit lemma. Counting
down an ordinal is used to bound the (finitely many) mind-changes.
The bigger the ordinal, the more we can change our minds and the
more complicated is the function being approximated. The simplest
levels are:

§ Σ´1
1 , the c.e. sets;

§ Σ´1
2 , the d.c.e. sets, ...,

§ ∆´1
ω , the ω-computably approximable sets and functions – the

ones approximable with a computable bound on the number of
mind-changes.

Lying alert: notations matter.



Ershov’s hierarchy, low levels

The first ω powers of ω can be defined inductively:

§ A function is ω-c.a. if it can be approximated with a computable
bound on the number of mind-changes.

§ A function is ω2-c.a. if it can be approximated with an ω-c.a.
bound on the number of mind changes. That is, a computable
bound on the number of times we change our mind about how
many times we change our mind.

§ A function is ω3-c.a. if it can be approximated with an ω2-c.a.
bound on the number of mind changes...



Ershov’s hierarchy and the c.e. Turing degrees

Definition (Originally J. Miller for α “ ω)

A Turing degree d is totally α-c.a. if every function in d is α-c.a.

Fact
In an analogous way to Ershov’s hierarchy, the totally α-c.a.
degrees give a hierarchy of complexity within the low2 c.e. degrees.
The array computable c.e. degrees are a uniform version of the
totally ω-c.a. degrees.

The hierarchy is not strict at every ordinal. New degrees are
obtained at powers of ω.



Dynamic properties of constructions

The hierarchy of totally α-c.a. degrees captures dynamic aspects of
permitting arguments. From the point of view of a single
requirement,

§ Noncomputable c.e. degrees give single permissions.

§ High c.e. degrees give cofinally many permissions.

§ Array noncomputable c.e. degrees give multiple permissions,
but we need to state in advance how many.

§ Degrees which are not totally ωα-c.e. degrees give multiple
permissions, with α levels of mind changes about how many
permissions we need.



... and natural definability

As a result of this analysis we can give natural definitions to two
levels of the hierarchy.

Theorem

§ (Downey,Greenberg,Weber) A c.e. degree is not totally ω-c.a. if
and only if it bounds a critical triple in the c.e. degrees.

§ (Downey,Greenberg) A c.e. degree is not totally ă ωω-c.a. if and
only if it it bounds a copy of the 1-3-1 lattice in the c.e. degrees.

Further similar constructions: infing out of a wtt degree within a
single Turing degree, computing initial segments of scattered linear
orders, computing presentations of left-c.e. reals, computing
“multiply generic” sets (McInerney), computing indifferent sets for
genericity (Day), ...



Transfinite iterations of the
Turing jump

Work with Antonio Montalbán and Ted Slaman



Hyperarithmetic degree spectrum

Taking iterations of the Turing jump along the computable ordinals
(and closing downwards in the Turing degrees) gives us the
collection of hyperarithmetic sets.

Theorem (Greenberg,Montalbán,Slaman)

There is a countable structure which has isomorphic copies
precisely in the non-hyperarithmetic degrees.



A bit on the construction

1. Relativise Slaman-Wehner to 0pαq for every computable α.
Obtain a structure Mα whose degree spectrum consists of the
degrees strictly above 0pαq.

2. Invert the jump (Goncharov, Harizanov, Knight, McCoy, Miller,
Solomon) to obtain a structure Nα whose degree spectrum is
the collection of all non-lowα degrees. [This uses an iterated
priority argument of height α.]

3. String these structures together. Use the fact that a degree is
hyperarithmetic if and only if it is lowα for some computable α
(consider ordinals closed under addition).

The issue of course is that a non-hyperarithmetic degree cannot
necessarily list all computable ordinals. The main work is bypassing
this problem by considering pseudo-ordinals.



A limiting result

The theorem shows that the analogue of the Slaman-Wehner
theorem (all nonzero degrees form a degree spectrum) holds in the
hyperdegrees as well. Such an analogue fails in the degrees of
constructibility. The reason is essentially:

Theorem (Greenberg,Montalbán,Slaman; Kalimullin,Nies)

If a degree spectrum is co-null then it contains Kleene’s O (the
complete Π1

1 set).



Π1
1 sets and equivalence

relations
Work with Dan Turetsky



Π1
1 sets are c.e.

Σ1
1 sets of reals are the effective analogue of analytic sets: they are

the images of computable real-valued functions.
However their complements, the Π1

1 sets, admit an ordinal analysis
which makes them behave like c.e. sets.

§ A Π1
1 set A Ď 2ω is the union

Ť

αăω1
Aα, where the sets Aα are

(uniformly) Borel.

§ A Π1
1 set A Ď ω is the union

Ť

αăωck
1

Aα, where the sets Aα are
uniformly hyperarithmetic.

Think of Aα as the collection of elements of A which have been
enumerated into A by stage α.

Another way to see that Π1
1 sets are c.e. is to consider the

Spector-Gandy theorem: any Π1
1 set can be defined by an existential

quantifier, ranging over the hyperarithmetic sets.



Π1
1 equivalence relations

The study of Borel equivalence relations has been effectivised. For
example:

Theorem
(Fokina,Friedman,Harizanov,Knight,McCoy,Montalbán)

Isomorphism of computable structures is a universal Σ1
1 equivalence

relation on ω.

Claim (Greenberg,Turetsky - unwritten, so...)

The existence of hyperarithmetic isomorphisms is a universal Π1
1

equivalence relation on ω.

Main idea: we start by diagonalising. If at stage α we discover that
j ” k then we build a 0pαq-computable isomorphism from Mk to Mj.
Again to make the structures computable we need to use
pseudo-ordinals.



Π1
1 equivalence relations

In greater detail. Let δ be a pseudo-ordinal.

§ Use component pe, i, jq to diagonalise against Fe (the eth Π1
1

partial function) being an isomorphism between Mi and Mj.
Each component will have two a-priori indistinguishable parts
(part A and part B), each linearly ordered in ordertype ωα or
ωα ¨ 2 for some α ă δ.

§ Suppose that at stage α we discover that Fe converges on
pApe, i, jqqMi and maps it to pApe, i, jqqMj or to pBpe, i, jqqMj . Define
the components to be either ωα or ωα ¨ 2, so as to defy Fe.

§ Unless... by stage α we have already discovered that j ” k for
some k ă j. In that case we copy what Mk does. If Mj made
some decisions on some components at earlier stages, 0pαq can
see what happened and compute the isomorphisms anyway.

§ Think a little about what happens if α is nonstandard (in both
cases).

Use the Ash-Knight machinery to approximate 0pδq and so make the
structures computable.



Π1
1 randomness
Work with Benoit Monin



Π1
1 randomness

Back in the 1960s Martin-Löf considered ∆1
1-randomness: avoiding

all hyperarithmetic null sets. Nies and Hjorth considered other
“higher” analogues of notions from algorithmic randomness. For
example there is a higher analogue of Martin-Löf randomness:
Π1

1-MLR – the open sets are Π1
1 rather than c.e.

They considered another strengthening: avoiding Π1
1 null sets, not

necessarily low in the Borel hierarchy.

Theorem (Kechris;Hjorth,Nies)

There is a largest null Π1
1 set.

Theorem (Chong,Nies,Yu)

A real x is Π1
1-random if and only if it is ∆1

1 random and ωx
1 “ ωck

1 .

Remark (Nies,Kalimullin)

If a degree spectrum of a structure is co-null, then it contains every
Π1

1-random real.



The Borel rank

Some Π1
1 sets are not Borel. Some are Borel but have high rank:

Theorem (Steel)

The Borel rank of the set of reals which collapse ωck
1 (the reals x

such that ωx
1 ą ωck

1 ) is ωck
1 ` 2.

Randomness smoothes things a bit.

Theorem (Monin)
The set of Π1

1 random reals is Π0
3.

Question: nonetheless we have the intuition that the set of
Π1

1-random reals is complicated. We have a higher analogue of the
arithmetical hierarchy (and beyond); it would be nice to know if the
set of Π1

1 random reals lies in this hierarchy or not.



The Borel rank

Here is a sketch of Monin’s argument.

For any set G let G˚ be the union of all ∆1
1 closed sets which are

subsets of G.

Remark
If G is higher Π0

2 then G˚ is the union of all Σ1
1 closed sets which are

subsets of G. Why? If P Ď Un we see this at some computable stage
(compactness); if P Ď

Ş

Un we see this at some computable stage
(admissibility).

Claim
For any Π1

1 set G, G´ G˚ is null. Why?
λpGq “ λpGωck

1
q “ supαăωck

1
λpGαq. For each α we can find a ∆1

1

closed subset of close measure.



The Borel rank

Claim
A real x is not Π1

1-random if and only if it is an element of G´ G˚ for
some higher Π0

2 set G.

ðù Suppose that x P G´ G˚. If x P Gα for some α ă ωck
1 , then

x P Gα ´ G˚α which is a ∆1
1 null set. If x P G´ Gωck

1
then ωx

1 ą ωck
1 .

ùñ Suppose that x computes f x : ω Ñ ωck
1 . Let Pn,α be the set of

oracles y such that f y æn : n Ñ α. Approximate the sets Pn from
above by Un,ε. Let G “

Ş

n,ε Un,ε. If x P G˚ then again by

compactness and admissibility x P Gα for some α ă ωck
1 . If x is

∆1
1-random then it is in Pα as well.



Generic analogues

Theorem (Greenberg,Monin)

A ∆1
1-Cohen-generic real x preserves ωck

1 if and only if it meets
every dense Σ1

1 sets of strings.

(Meeting or avoiding Π1
1 sets of strings is not enough.) Thus the

collection of generics which preserve ωck
1 is Gδ.



A corollary

A corollary of the investigation of the Borel rank of Π1
1 random reals

shows that if x is sufficiently generic for the partial ordering of
closed Σ1

1 sets of positive measure (higher analogues of Π0
1 classes)

is Π1
1 random.

Corollary (Greenberg,Monin)

A real is low for Π1
1 randomness if and only if it is hyperarithmetic.



Admissible computability



Computability on ordinals

One of the motivations for admissible computability is the
understanding of Π1

1 sets as c.e. The set-theoretic version of the
Spector-Gandy theorem is:

§ A subset of ω is Π1
1 if and only if it is Σ1-definable over Lωck

1
.

Another motivation comes from Jensen’s fine structure. Also from
Takeuti’s work on computability on the class of ordinals. The idea is
to treat an ordinal α as “the new ω”, so ordinals β ă α correspond to
natural numbers.

Definition
Let α be an ordinal. A subset of α is α-c.e. if it is Σ1-definable over
Lα.

Note that in this notation, c.e. is the same as ω-c.e; and for subsets
of ω, Π1

1 is ωck
1 -c.e.



Admissibility

Using the notion of α-c.e. as the basic one we can define (partial)
α-computable functions and so on. For most ordinals this does not
behave well (consider for example α “ ω ` 5 or α “ ω ` ω).

Fact
The following are equivalent for a limit ordinal α:

1. For all β ă α and all α-computable functions f , f rβs is bounded
below α.

2. We can define α-computable functions by recursion (in α many
steps).

Such ordinals are called admissible.



Uncountable structures
Work with Knight, Kach, Lempp, Turetsky, Melnikov. And thanks to

Denis.



Effective properties of uncountable structures

Any cardinal is admissible, and regular cardinals are particularly
nice. We can use κ-computability to consider notions analogous to
ones of computable algebra and computable model theory. I will
just mention a couple of results.

§ (Greenberg,Kach,Lempp,Turetsky, following an idea of Knight’s)
Characterising the ω1-computably categorical linear orderings.
[Note: we have no clue about κ ě ω2.]

§ (Greenberg,Knight,Melnikov) Work on relative computable
categoricity and Scott families. [Continuity is a required extra
ingredient.]



Ordinals x 2

Dan Turetsky and I developed uncountable analogues of the
Ash-Knight machinery (using a presentation by Montalbán). We
used it to study uncountable linear orderings in the spirit of
Hausdorff and Watnick.

§ We isolate a derivative operation that can be iterated
transfinitely (through ω1-computable ordinals). There are
several options to choose from; the nicest one generalises the
Cantor-Bendixon (rather than Hausdorff’s) derivative.

§ This derivative can be inverted using a layered priority
argument. This gives a sharp bound on the complexity of the
iterated derivative operation.



α-c.e. degrees



α-c.e. degrees

Many researchers looked at the α-c.e. degrees and the lattice of
α-c.e. sets for a variety of admissible ordinals α (mostly in the
1960s and 70s). Some basic questions are still open, for example
the existence of minimal pairs.

Partly using coding techniques:

Theorem (Greenberg)

For any admissible α ą ω, the partial orderings of the α-c.e. degrees
and the c.e. degrees are not elementarily equivalent.



A natural difference

Another part of the argument looked at embeddings of the 1-3-1
lattice. Following work of Shore’s I showed that copies of the 1-3-1
lattice in the α-c.e. degrees (for α ą ω) have to have a high top. In
particular, the fine distinctions between totally β-c.a. degrees for
various small ordinals β disappear (recall that they are all low2).
The only thing that matters is the existence of a d-computable
counting of α.

Corollary (Downey,Greenberg)

There is a single, natural first-order sentence which holds in the c.e.
degrees and fails in the α-c.e. degrees for all admissible α ą ω. It is:
“there is an incomplete degree which bounds a critical triple but not
the 1-3-1 lattice.”



Thank you


