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Why uncountable?

� “because it’s there”: study familiar uncountable objects using
the tools of computability. One can essentially ask of anything,
“how complicated is this?”

� To understand something, generalise. New light is shed on
countable computability by comparing it with its uncountable
siblings.



So why admissibility?

� because it’s there (already well studied)

� most closely resembles countable computability (techniques /
intuition)

� one method fits all sizes

Drawbacks:

� requires set-theoretic assumptions for smooth development

� only one size at a time



So how does it go?

Various approaches yield the same notion of computability:

� A Turing machine with an uncountable tape which is allowed to
run with ordinal time.

� Equational deduction calculus.

� Definability (descriptive complexity).

With time one develops an understanding similar to the
Church-Turing thesis.



Countable computability

Two ideas:

� Σ1 (computably enumerable) is a good basic concept. The rest
follows.

� A natural way to formalise mathematical practice is by using
set theory.

Let Hω � pHω; P, all parametersq.

Definition
A subset of Hω is c.e. if it is Σ1pHωq.

(this coincides with traditional definitions for subsets of ω).



Computable sets and functions

Definition

� A subset of Hω is computable if it is c.e. and co-c.e.

� A partial function f : Hω Ñ Hω is partial computable if its graph
is c.e.

� A partial computable function is (total) computable if its
domain is computable.

Proposition

A set A � Hω is computable if and only if its characteristic function
1A is computable.



Bounded quantification

Proposition

If A � Hω is c.e. and a P Hω, then

tx P Hω : @y P a rpx, yq P Asu

is c.e.



Recursion

This is a main tool.

Proposition

Let I : Hω Ñ Hω be computable. There is a unique function
f : ω Ñ Hω such that for all n, fpnq � Ipf ænq. This function f is
computable.



But I like only numbers

Does it matter if we use ω or Hω?

Proposition

� If A and B are computable subsets of Hω then there is a
computable bijection between A and B.

� ω and Hω are computable sets.



Why ‘computable enumerability’?

Proposition

The following are equivalent for a non-empty subset A of Hω:

� A is the domain of a partial computable function.

� A is the range of a computable function.

� A is c.e.



The halting problem

Proposition

The set

tpψ, aq : ψ is a Σ1 formula, a P Hω and Hω |ù ψpaqu

is c.e.

Proof.
Hω |ù ψpaq if and only if there is a transitive set M P Hω such that
M |ù ψpaq. The latter is computable (for all formulas ψ).

Note that the collection of Σ1 formulas is computable. We let Wn be
the c.e. subset of Hω defined by the nth Σ1 formula. The halting
problem (the universal c.e. set) is thus

à
n

Wn � tpa,nq : a P Wnu.



Another example

Similarly we can effectively enumerate partial computable functions
xϕny (really indexed by Σ1 formulas).

Proposition

If fpx, yq is a partial computable function, then there is a (total)
computable function g such that for all a, ϕgpaq � fpa,�q.

Proof.
Let ψpx, y, zq be a Σ1 formula defining the graph of f . The set

tψpa, y, zq : a P Hωu

is computable. Then gpaq is (the natural number code, if you like, of)
ψpa, y, zq.



Relatively c.e.

Definition
A c.e. operator is a c.e. set Ψ of pairs pσ, aq where a P Hω and
σ P 2 ω. For A P 2ω, we let

ΨpAq � ta : pσ, aq P Ψ for some σ   Au .

Proposition

The following are equivalent for sets A,B � Hω:

1. There is a c.e. operator Ψ such that B � ΨpAq;

2. B is Σ1pH,Aq.

We say that B is c.e.A.



Turing reducibility

A Turing operator is a c.e. set Ψ � 2 ω � 2 ω. For A P 2ω, we let

ΨpAq �
¤

tτ : pσ, τq P Ψ for some σ   Au .

Proposition

The following are equivalent for A,B � Hω:

1. There is a Turing operator Ψ such that B � ΨpAq;

2. B is c.e.A and co-c.e.A.

We write B ¤T A.



Uncountable computability

... and so on and so forth.

We can make the same definitions for κ ¡ ω. Replace Hω by Hκ.

We assume that κ is regular and that there is a computable bijection
between κ and Hκ. Then there are no changes to the theory.

(For κ � ω1 this is equivalent to R � L, in which case Hω1 � Lω1).



κ-computability

Let Hκ � pHκ; P, all parametersq.

Definition
A subset of Hκ is c.e. if it is Σ1pHκq.



Computable sets and functions

Definition

� A subset of Hκ is computable if it is c.e. and co-c.e.

� A partial function f : Hκ Ñ Hκ is partial computable if its graph
is c.e.

� A partial computable function is (total) computable if its
domain is computable.

Proposition

A set A � Hκ is computable if and only if its characteristic function
1A is computable.



Bounded quantification

Proposition

If A � Hκ is c.e. and a P Hκ, then

tx P Hκ : @y P a rpx, yq P Asu

is c.e.



Recursion

This is a main tool.

Proposition

Let I : Hκ Ñ Hκ be computable. There is a unique function f : κÑ Hκ
such that for all n, fpnq � Ipf ænq. This function f is computable.



But I like only ordinal numbers

Does it matter if we use κ or Hκ? Generally, yes. Under our
assumption, no.

Proposition

� If A and B are computable subsets of Hκ then there is a
computable bijection between A and B.

� κ and Hκ are computable sets.



Why ‘computable enumerability’?

Proposition

The following are equivalent for a non-empty subset A of Hκ:

� A is the domain of a partial computable function.

� A is the range of a computable function.

� A is c.e.



The halting problem

Proposition

The set

tpψ, aq : ψ is a Σ1 formula, a P Hκ and Hκ |ù ψpaqu

is c.e.

Proof.
Hκ |ù ψpaq if and only if there is a transitive set M P Hκ such that
M |ù ψpaq. The latter is computable (for all formulas ψ).

Note that the collection of Σ1 formulas is computable. We let Wn be
the c.e. subset of Hκ defined by the nth Σ1 formula. The halting
problem (the universal c.e. set) is thus

à
n

Wn � tpa,nq : a P Wnu.



Another example

Similarly we can effectively enumerate partial computable functions
xϕny (really indexed by Σ1 formulas).

Proposition

If fpx, yq is a partial computable function, then there is a (total)
computable function g such that for all a, ϕgpaq � fpa,�q.

Proof.
Let ψpx, y, zq be a Σ1 formula defining the graph of f . The set

tψpa, y, zq : a P Hκu

is computable. Then gpaq is (the natural number code, if you like, of)
ψpa, y, zq.



Relatively c.e.

Definition
A c.e. operator is a c.e. set Ψ of pairs pσ, aq where a P Hκ and
σ P 2 κ. For A P 2κ, we let

ΨpAq � ta : pσ, aq P Ψ for some σ   Au .

Proposition

The following are equivalent for sets A,B � Hκ:

1. There is a c.e. operator Ψ such that B � ΨpAq;

2. B is Σ1pH,Aq.

We say that B is c.e.A.



Turing reducibility

A Turing operator is a c.e. set Ψ � 2 κ � 2 κ. For A P 2κ, we let

ΨpAq �
¤

tτ : pσ, τq P Ψ for some σ   Au .

Proposition

The following are equivalent for A,B � Hκ:

1. There is a Turing operator Ψ such that B � ΨpAq;

2. B is c.e.A and co-c.e.A.

We write B ¤T A.



Computable model theory

The Turing degree of a structure of size κ is the κ-Turing degree of
its atomic (or quantifier-free) diagram.

Examples

(κ � ω1, so CH):

� pR;�, �, ,0,1q .

� pC;�,0,1, expq and in fact, with all entire analytic functions at
once.



Saturated models

Recall that under our assumption, κ � 2 κ.

Proposition

Let T be a complete theory, |T|   κ. The saturated model of T of
size κ has a decidable presentation.



Intrinsic relations

Let M be a structure, and let R be a relation on M. R is relatively
intrinsically Σα if for any isomorphism f : M Ñ N, f rRs is ΣαpNq.
Following [Ash,Knight,Mannase,Slaman / Chisholm]:

Proposition (Greenberg,Knight for α � 1; Carson,Johnson,
Knight,Lange,McCoy,Wallbaum for all α   κ)

A relation R on M is relatively intrinsically Σα if and only if it is
Dα-definable in M.

hmm... what is Dα?
Answer: use the logic Lκ�,κ and allow formulas with   κ many
variables.
Indeed, we can allow relations of arity any α   κ in our notion of
“structure”.

[Diamondstone,Greenberg,Turetsky] This makes sense for many
α ¡ κ too.



Relative computable categoricity

A structure M is relatively computably categorical if for any N � M

there is an isomorphism f : N Ñ M computable in N `M.
Again following [Ash,Knight,Mannase,Slaman / Chisholm], saying
that the back-and-forth construction is the only way to make this
hold:

Proposition (Greenberg,Knight)

A structure M is relatively computably categorical if and only if
(letting X � txα : α   κu be a fixed set of variables) there an
expansion M1 � pM, c̄q of M by   κ many constants, a computable
closed unbounded set C of rXs κ and a c.e. set of D1-formulas
Ψ � tψa : a P Cu such that:

� Ψ defines the orbits of   κ-tuples in M1; and

� If a1 � a2 � . . . are elements of C then ψ�
i γ ai

is equivalent to�
i γ ψai .



An example

Theorem (Dzgoev,Goncharov/Remmel)

A countable linear ordering is (relatively) computably categorical if
and only if it has only finitely many adjacencies.

Theorem (Greenberg,Kach,Lempp,Turetsky, following an
idea of Knight’s)

A linear ordering L of size ℵ1 is (relatively computably categorical) if
and only if there is a countable subset C � L such that:

� Every C-interval is either finite or saturated (dense is not
enough!);

� For all n, the set of C-intervals which have either n elements or
are saturated, is c.e.



An example

The proof uses the Hausdorff analysis of countable linear orderings,
and so does not generalise to κ ¥ ℵ2.
Unlike the countable world, there are linear orderings L of size ℵ1

which are not computably categorical, but for a cone of degrees d,
every two d-computable copies of L are isomorphic by a
d-computable isomorphism.



Further work

� [Johnson] Computable categoricity of Zilber fields and other
structures

� [Greenberg, Turetsky] A generalisation of Hausdorff’s derivative
operation and of the Ash-Watnick theorem.

� [Greenberg,Melnikov] Computable categoricity of completely
decomposable torsion-free abelian groups.


