Admissible uncountable computable model theory

Noam Greenberg

Victoria University of Wellington

16th August 2013

- "because it's there": study familiar uncountable objects using the tools of computability. One can essentially ask of anything, "how complicated is this?"
- To understand something, generalise. New light is shed on countable computability by comparing it with its uncountable siblings.

- because it's there (already well studied)
- most closely resembles countable computability (techniques / intuition)
- one method fits all sizes

Drawbacks:

- requires set-theoretic assumptions for smooth development
- only one size at a time

Various approaches yield the same notion of computability:

- A Turing machine with an uncountable tape which is allowed to run with ordinal time.
- Equational deduction calculus.
- Definability (descriptive complexity).

With time one develops an understanding similar to the Church-Turing thesis.

Two ideas:

- $\triangleright \Sigma_1$ (computably enumerable) is a good basic concept. The rest follows.
- A natural way to formalise mathematical practice is by using set theory.

Let $\mathcal{H}_{\omega} = (H_{\omega}; \epsilon, \text{all parameters}).$

Definition

A subset of H_{ω} is c.e. if it is $\Sigma_1(\mathcal{H}_{\omega})$.

(this coincides with traditional definitions for subsets of ω).

Definition

- A subset of H_{ω} is computable if it is c.e. and co-c.e.
- ▶ A partial function $f: H_{\omega} \to H_{\omega}$ is partial computable if its graph is c.e.
- A partial computable function is (total) computable if its domain is computable.

Proposition

A set $A \subseteq H_{\omega}$ is computable if and only if its characteristic function 1_A is computable.

Proposition

If $A \subseteq H_{\omega}$ is c.e. and $a \in H_{\omega}$, then

$$\{x \in H_{\omega} : \forall y \in a \ [(x, y) \in A]\}$$

is c.e.

This is a main tool.

Proposition

Let I: $H_{\omega} \to H_{\omega}$ be computable. There is a unique function $f: \omega \to H_{\omega}$ such that for all $n, f(n) = I(f \upharpoonright_n)$. This function f is computable.

Does it matter if we use ω or H_{ω} ?

Proposition

- If A and B are computable subsets of H_{ω} then there is a computable bijection between A and B.
- ω and H_{ω} are computable sets.

Proposition

The following are equivalent for a non-empty subset A of H_{ω} :

- A is the domain of a partial computable function.
- A is the range of a computable function.
- ▶ A is c.e.

The halting problem

Proposition

The set

 $\{(\psi, a) : \psi \text{ is a } \Sigma_1 \text{ formula, } a \in H_\omega \text{ and } H_\omega \models \psi(a)\}$

is c.e.

Proof.

 $H_{\omega} \models \psi(a)$ if and only if there is a transitive set $M \in H_{\omega}$ such that $M \models \psi(a)$. The latter is computable (for *all* formulas ψ).

Note that the collection of Σ_1 formulas is computable. We let W_n be the c.e. subset of H_ω defined by the $n^{\text{th}} \Sigma_1$ formula. The halting problem (the universal c.e. set) is thus

$$\bigoplus_n W_n = \{(a,n) : a \in W_n\}.$$

Similarly we can effectively enumerate partial computable functions $\langle \varphi_n \rangle$ (really indexed by Σ_1 formulas).

Proposition

If f(x, y) is a partial computable function, then there is a (total) computable function g such that for all a, $\varphi_{g(a)} = f(a, -)$.

Proof.

Let $\psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ be a Σ_1 formula defining the graph of f. The set

$$\{\psi(\boldsymbol{a},\boldsymbol{y},\boldsymbol{z}) : \boldsymbol{a} \in \boldsymbol{H}_{\omega}\}$$

is computable. Then g(a) is (the natural number code, if you like, of) $\psi(a, y, z)$.

Definition

A c.e. operator is a c.e. set Ψ of pairs (σ, a) where $a \in H_{\omega}$ and $\sigma \in 2^{<\omega}$. For $A \in 2^{\omega}$, we let

 $\Psi(A) = \{a : (\sigma, a) \in \Psi \text{ for some } \sigma < A\}.$

Proposition

The following are equivalent for sets $A, B \subseteq H_{\omega}$:

- **1.** There is a c.e. operator Ψ such that $B = \Psi(A)$;
- **2.** *B* is $\Sigma_1(\mathcal{H}, A)$.

We say that B is c.e.^A.

A Turing operator is a c.e. set $\Psi \subseteq 2^{<\omega} \times 2^{<\omega}$. For $A \in 2^{\omega}$, we let

$$\Psi(\mathsf{A}) = \bigcup \left\{ \tau : (\sigma, \tau) \in \Psi \text{ for some } \sigma < \mathsf{A} \right\}.$$

Proposition

The following are equivalent for $A, B \subseteq H_{\omega}$:

- **1.** There is a Turing operator Ψ such that $B = \Psi(A)$;
- **2.** *B* is c.e.^A and co-c.e.^A.

We write $B \leq_T A$.

... and so on and so forth.

We can make the same definitions for $\kappa > \omega$. Replace H_{ω} by H_{κ} .

We assume that κ is regular and that there is a computable bijection between κ and H_{κ} . Then there are no changes to the theory.

(For $\kappa = \omega_1$ this is equivalent to $\mathbb{R} \subset L$, in which case $H_{\omega_1} = L_{\omega_1}$).

Let $\mathcal{H}_{\kappa} = (H_{\kappa}; \epsilon, \text{all parameters}).$

Definition

A subset of H_{κ} is **c.e.** if it is $\Sigma_1(\mathcal{H}_{\kappa})$.

Definition

- A subset of H_{κ} is computable if it is c.e. and co-c.e.
- A partial function $f: H_{\kappa} \to H_{\kappa}$ is partial computable if its graph is c.e.
- A partial computable function is (total) computable if its domain is computable.

Proposition

A set $A \subseteq H_{\kappa}$ is computable if and only if its characteristic function 1_A is computable.

Proposition

If $A \subseteq H_{\kappa}$ is c.e. and $a \in H_{\kappa}$, then

$$\{x \in H_{\kappa} : \forall y \in a \ [(x, y) \in A]\}$$

is c.e.

This is a main tool.

Proposition

Let $I: H_{\kappa} \to H_{\kappa}$ be computable. There is a unique function $f: \kappa \to H_{\kappa}$ such that for all $n, f(n) = I(f \upharpoonright_n)$. This function f is computable.

Does it matter if we use κ or H_{κ} ? Generally, yes. Under our assumption, no.

Proposition

- If A and B are computable subsets of H_{κ} then there is a computable bijection between A and B.
- κ and H_{κ} are computable sets.

Proposition

The following are equivalent for a non-empty subset A of H_{κ} :

- A is the domain of a partial computable function.
- A is the range of a computable function.
- ▶ A is c.e.

The halting problem

Proposition

The set

 $\{(\psi, a) : \psi \text{ is a } \Sigma_1 \text{ formula, } a \in H_\kappa \text{ and } H_\kappa \models \psi(a)\}$

is c.e.

Proof.

 $H_{\kappa} \models \psi(a)$ if and only if there is a transitive set $M \in H_{\kappa}$ such that $M \models \psi(a)$. The latter is computable (for *all* formulas ψ).

Note that the collection of Σ_1 formulas is computable. We let W_n be the c.e. subset of H_{κ} defined by the $n^{\text{th}} \Sigma_1$ formula. The halting problem (the universal c.e. set) is thus

$$\bigoplus_n W_n = \{(a,n) : a \in W_n\}.$$

Similarly we can effectively enumerate partial computable functions $\langle \varphi_n \rangle$ (really indexed by Σ_1 formulas).

Proposition

If f(x, y) is a partial computable function, then there is a (total) computable function g such that for all a, $\varphi_{g(a)} = f(a, -)$.

Proof.

Let $\psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ be a Σ_1 formula defining the graph of f. The set

$$\{\psi(\mathbf{a},\mathbf{y},\mathbf{z}) : \mathbf{a} \in H_{\kappa}\}$$

is computable. Then g(a) is (the natural number code, if you like, of) $\psi(a, y, z)$.

Definition

A c.e. operator is a c.e. set Ψ of pairs (σ, a) where $a \in H_{\kappa}$ and $\sigma \in 2^{<\kappa}$. For $A \in 2^{\kappa}$, we let

 $\Psi(\mathsf{A}) = \{ a : (\sigma, a) \in \Psi \text{ for some } \sigma < \mathsf{A} \}.$

Proposition

The following are equivalent for sets $A, B \subseteq H_{\kappa}$:

- **1.** There is a c.e. operator Ψ such that $B = \Psi(A)$;
- **2.** *B* is $\Sigma_1(\mathcal{H}, A)$.

We say that B is c.e.^A.

A Turing operator is a c.e. set $\Psi \subseteq 2^{<\kappa} \times 2^{<\kappa}$. For $A \in 2^{\kappa}$, we let

$$\Psi(\mathsf{A}) = \bigcup \left\{ \tau : (\sigma, \tau) \in \Psi \text{ for some } \sigma < \mathsf{A} \right\}.$$

Proposition

The following are equivalent for $A, B \subseteq H_{\kappa}$:

- **1.** There is a Turing operator Ψ such that $B = \Psi(A)$;
- **2.** *B* is c.e.^A and co-c.e.^A.

We write $B \leq_T A$.

The Turing degree of a structure of size κ is the κ -Turing degree of its atomic (or quantifier-free) diagram.

Examples

- ($\kappa = \omega_1$, so CH):
 - $\blacktriangleright \ (\mathbb{R};+,\cdot,<,0,1) \ .$
 - ${}^{\succ}$ $(\mathbb{C};+,0,1,exp)$ and in fact, with all entire analytic functions at once.

Recall that under our assumption, $\kappa = 2^{<\kappa}$.

Proposition

Let T be a complete theory, $|T| < \kappa$. The saturated model of T of size κ has a decidable presentation.

Intrinsic relations

Let \mathcal{M} be a structure, and let R be a relation on \mathcal{M} . R is relatively intrinsically Σ_{α} if for any isomorphism $f \colon \mathcal{M} \to \mathcal{N}, f[R]$ is $\Sigma_{\alpha}(\mathcal{N})$. Following [Ash,Knight,Mannase,Slaman / Chisholm]:

Proposition (Greenberg,Knight for $\alpha = 1$; Carson,Johnson, Knight,Lange,McCoy,Wallbaum for all $\alpha < \kappa$)

A relation R on \mathfrak{M} is relatively intrinsically Σ_{α} if and only if it is \exists_{α} -definable in \mathfrak{M} .

hmm... what is \exists_{α} ? Answer: use the logic $L_{\kappa^+,\kappa}$ and allow formulas with $< \kappa$ many variables.

Indeed, we can allow relations of arity any $\alpha < \kappa$ in our notion of "structure".

[Diamondstone,Greenberg,Turetsky] This makes sense for many $\alpha>\kappa$ too.

A structure \mathcal{M} is relatively computably categorical if for any $\mathcal{N} \cong \mathcal{M}$ there is an isomorphism $f \colon \mathcal{N} \to \mathcal{M}$ computable in $\mathcal{N} \oplus \mathcal{M}$. Again following [Ash,Knight,Mannase,Slaman / Chisholm], saying that the back-and-forth construction is the only way to make this hold:

Proposition (Greenberg,Knight)

A structure \mathfrak{M} is relatively computably categorical if and only if (letting $X = \{x_{\alpha} : \alpha < \kappa\}$ be a fixed set of variables) there an expansion $\mathfrak{M}' = (\mathfrak{M}, \overline{c})$ of \mathfrak{M} by $< \kappa$ many constants, a computable closed unbounded set \mathfrak{C} of $[X]^{<\kappa}$ and a c.e. set of \exists_1 -formulas $\Psi = \{\psi_a : a \in \mathfrak{C}\}$ such that:

- Ψ defines the orbits of $< \kappa$ -tuples in \mathcal{M}' ; and
- ▶ If $a_1 \subseteq a_2 \subseteq ...$ are elements of C then $\psi_{\bigcup_{i < \gamma} a_i}$ is equivalent to $\bigwedge_{i < \gamma} \psi_{a_i}$.

Theorem (Dzgoev,Goncharov/Remmel)

A countable linear ordering is (relatively) computably categorical if and only if it has only finitely many adjacencies.

Theorem (Greenberg,Kach,Lempp,Turetsky, following an idea of Knight's)

A linear ordering \mathcal{L} of size \aleph_1 is (relatively computably categorical) if and only if there is a countable subset $C \subset \mathcal{L}$ such that:

- Every C-interval is either finite or saturated (dense is not enough!);
- For all n, the set of C-intervals which have either n elements or are saturated, is c.e.

The proof uses the Hausdorff analysis of countable linear orderings, and so does not generalise to $\kappa \ge \aleph_2$. Unlike the countable world, there are linear orderings \mathcal{L} of size \aleph_1 which are not computably categorical, but for a cone of degrees **d**, every two **d**-computable copies of \mathcal{L} are isomorphic by a **d**-computable isomorphism.

- [Johnson] Computable categoricity of Zilber fields and other structures
- [Greenberg, Turetsky] A generalisation of Hausdorff's derivative operation and of the Ash-Watnick theorem.
- [Greenberg,Melnikov] Computable categoricity of completely decomposable torsion-free abelian groups.