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Why uncountable?

» “because it's there”: study familiar uncountable objects using
the tools of computability. One can essentially ask of anything,
“how complicated is this?”

» To understand something, generalise. New light is shed on
countable computability by comparing it with its uncountable
siblings.



So why admissibility?

» because it's there (already well studied)

» most closely resembles countable computability (techniques /
intuition)

» one method fits all sizes

Drawbacks:
» requires set-theoretic assumptions for smooth development

» only one size at a time



So how does it go?

Various approaches yield the same notion of computability:

» A Turing machine with an uncountable tape which is allowed to
run with ordinal time.

» Equational deduction calculus.
» Definability (descriptive complexity).

With time one develops an understanding similar to the
Church-Turing thesis.



Countable computability

Two ideas:

» Y1 (computably enumerable) is a good basic concept. The rest
follows.

» A natural way to formalise mathematical practice is by using
set theory.

Let H,, = (H,; €, all parameters).

Definition
A subset of H,, is c.e. if it is X1 (H,,).
(this coincides with traditional definitions for subsets of w).



Computable sets and functions

Definition
» A subset of H, is computable if it is c.e. and co-c.e.

» A partial function f: H, — H,, is partial computable if its graph
is c.e.

» A partial computable function is (total) computable if its
domain is computable.

Proposition

A set A C H, is computable if and only if its characteristic function
1, is computable.



Bounded quantification

Proposition
IfAC H,isc.e.and aeH,, then

{xeH, :Vyea [(x,y) e A]}

is c.e.



Recursion

This is a main tool.

Proposition

Letl: H, — H, be computable. There is a unique function
f:w— H, such that for all n, f(n) = I(f |,). This function f is
computable.



But | like only numbers

Does it matter if we use w or H,,?
Proposition

» If A and B are computable subsets of H, then there is a
computable bijection between A and B.

» wand H,, are computable sets.



Why ‘computable enumerability’?

Proposition

The following are equivalent for a non-empty subset A of H,:
» A is the domain of a partial computable function.
» A is the range of a computable function.
» Alisc.e.



The halting problem

Proposition
The set

{(¢,a) : Y isaX; formula, a € H, and H, = v(a)}

is c.e.

Proof.

H,, = 4(a) if and only if there is a transitive set M € H,, such that

M = 1¢(a). The latter is computable (for all formulas ). O

Note that the collection of ¥; formulas is computable. We let W, be
the c.e. subset of H,, defined by the n™ ¥; formula. The halting
problem (the universal c.e. set) is thus

P W, ={(a,n) : acW,}.



Another example

Similarly we can effectively enumerate partial computable functions
{pny (really indexed by ¥; formulas).

Proposition
If f(x,y) is a partial computable function, then there is a (total)
computable function g such that for all a, py(a) = f(a, —).

Proof.
Let ¢¥)(x,y,z) be a X; formula defining the graph of f. The set

{¢(a,y,2) - aeH.}

is computable. Then g(a) is (the natural number code, if you like, of)
Y(a,y,2). O



Relatively c.e.

Definition
A c.e. operator is a c.e. set W of pairs (o,a) where a € H,, and
o€ 2<“. ForAe 2%, we let

V(A) = {a : (0,a) € V forsome o < A}.

Proposition

The following are equivalent for sets A,B € H,,:
1. There s a c.e. operator W such that B = W(A);
2. Bis ¥;1(H,A).

We say that B is c.e.”.



Turing reducibility

A Turing operatoris a c.e. set W € 2<% x 2<“, For A € 2%, we let

U{’TI o,7) € V for some o < A}.

Proposition

The following are equivalent for A,B € H,,:
1. There is a Turing operator V such that B = V(A);
2. Bisc.e” and co-c.e.”.

We write B <1 A.



Uncountable computability

... and so on and so forth.

We can make the same definitions for x > w. Replace H,, by H,.

We assume that « is regular and that there is a computable bijection
between x and H,,. Then there are no changes to the theory.

(For kK = wy this is equivalent to R < L, in which case H,,, = L,,).



r-computability

Let H,, = (H,;¢€, all parameters).

Definition
A subset of H, is c.e. if it is X1 (Hy).



Computable sets and functions

Definition
» A subset of H,, is computable if it is c.e. and co-c.e.

» A partial function f: H, — H, is partial computable if its graph
is c.e.

» A partial computable function is (total) computable if its
domain is computable.

Proposition

A set A C H, is computable if and only if its characteristic function
1, is computable.



Bounded quantification

Proposition
IfAC H,isc.e. andaeH,, then

{xeH, :Vyea [(x,y) eA]}

is c.e.



Recursion

This is a main tool.

Proposition

Letl: H, — H, be computable. There is a unique function f: kK — H,
such that for all n, f(n) = I(f |,). This function f is computable.



But | like only ordinal numbers

Does it matter if we use k or H,;? Generally, yes. Under our
assumption, no.

Proposition

» If A and B are computable subsets of H,, then there is a
computable bijection between A and B.

» k and H,, are computable sets.



Why ‘computable enumerability’?

Proposition

The following are equivalent for a non-empty subset A of H,;:
» A is the domain of a partial computable function.
» A is the range of a computable function.
» Alisc.e.



The halting problem

Proposition
The set

{(v,a) : YisaX, formula, a € H, and H, =(a)}
is c.e.

Proof.
H,. = 1(a) if and only if there is a transitive set M € H,; such that
M = 1¢(a). The latter is computable (for all formulas ). O

Note that the collection of ¥; formulas is computable. We let W, be
the c.e. subset of H,. defined by the n" ¥, formula. The halting
problem (the universal c.e. set) is thus

P W, ={(a,n) : ac W,}.



Another example

Similarly we can effectively enumerate partial computable functions
{pny (really indexed by ¥; formulas).

Proposition
If f(x,y) is a partial computable function, then there is a (total)
computable function g such that for all a, py(a) = f(a, —).

Proof.
Let ¢¥)(x,y,z) be a X; formula defining the graph of f. The set

{¢(a,y,2) - aeH.}

is computable. Then g(a) is (the natural number code, if you like, of)
Y(a,y,2). O



Relatively c.e.

Definition
A c.e. operator is a c.e. set W of pairs (o,a) where a € H, and
o€ 2" ForAe2", welet

V(A) = {a : (0,a) € V forsome o < A}.

Proposition

The following are equivalent for sets A,B € H,.:
1. There s a c.e. operator W such that B = W(A);
2. Bis¥X;1(H,A).

We say that B is c.e.”.



Turing reducibility

A Turing operator is a c.e. set W € 2<% x 2<%  For A € 2", we let

U{’TI 0,7) € V for some o < A}.

Proposition

The following are equivalent for A)B € H,;:
1. There is a Turing operator V such that B = V(A);
2. Bisc.e” and co-c.e.”.

We write B <1 A.



Computable model theory

The Turing degree of a structure of size k is the x-Turing degree of
its atomic (or quantifier-free) diagram.
Examples
(k = wy, so CH):
" (R;+,',<,O,l) .

» (C;+,0,1,exp) and in fact, with all entire analytic functions at
once.



Saturated models

Recall that under our assumption, xk = 2<%,

Proposition
Let T be a complete theory, |T| < k. The saturated model of T of
Size k has a decidable presentation.




Intrinsic relations

Let M be a structure, and let R be a relation on M. R is relatively
intrinsically X, if for any isomorphism f: M — N, f[R] is £, (N).
Following [Ash,Knight,Mannase,Slaman / Chisholm]:
Proposition (Greenberg,Knight for o = 1; Carson,Johnson,
Knight,Lange,McCoy,Wallbaum for all a < k)

A relation R on M is relatively intrinsically ¥, if and only ifitis
i,-definable in M.

hmm... whatis 3,7

Answer: use the logic L.+ ,, and allow formulas with < x many
variables.

Indeed, we can allow relations of arity any « < « in our notion of
“structure”.

[Diamondstone,Greenberg, Turetsky] This makes sense for many
o > kK too.



Relative computable categoricity

A structure M is relatively computably categorical if for any N =~ M
there is an isomorphism f: N'— M computable in N & M.

Again following [Ash,Knight,Mannase,Slaman / Chisholm], saying
that the back-and-forth construction is the only way to make this
hold:

Proposition (Greenberg,Knight)
A structure M is relatively computably categorical if and only if
(letting X = {x, : a < K} be a fixed set of variables) there an
expansion M’ = (M, ¢) of M by < k many constants, a computable
closed unbounded set € of [X]=" and a c.e. set of 3;-formulas
V = {4, : a € C} such that:

» W defines the orbits of < x-tuples in M’; and

» Ifa; C a, € ... are elements of C then inq a IS equivalent to

/\i<'y wai'



An example

Theorem (Dzgoev,Goncharov/Remmel)

A countable linear ordering is (relatively) computably categorical if
and only if it has only finitely many adjacencies.

Theorem (Greenberg,Kach,Lempp,Turetsky, following an
idea of Knight’s)

A linear ordering L of size X, is (relatively computably categorical) if
and only if there is a countable subset C c L such that:

» Every C-interval is either finite or saturated (dense is not
enough!);

» For all n, the set of C-intervals which have either n elements or
are saturated, is c.e.



An example

The proof uses the Hausdorff analysis of countable linear orderings,
and so does not generalise to kK > N,.

Unlike the countable world, there are linear orderings £ of size N;
which are not computably categorical, but for a cone of degrees d,
every two d-computable copies of £ are isomorphic by a
d-computable isomorphism.



Further work

» [Johnson] Computable categoricity of Zilber fields and other
structures

» [Greenberg, Turetsky] A generalisation of Hausdorff’s derivative
operation and of the Ash-Watnick theorem.

» [Greenberg,Melnikov] Computable categoricity of completely
decomposable torsion-free abelian groups.



