Computing K-trivial sets by incomplete random sets

Noam Greenberg Work with Laurent Bienvenu, Antonin Kučera, André Nies and Dan Turetsky

Victoria University of Wellington

3rd July 2013

Random sets and c.e. sets

What are the possible interactions, in the Turing degrees, between c.e. sets and random sets?

- An incomplete c.e. set cannot compute a random set (follows from Arslanov)
- Chaitin's Ω computes every c.e. set. However, this is atypical: the cone above a non-computable set is null.

Two questions:

- 1. Which random sets can compute non-computable c.e. sets?
- 2. Which c.e. sets can be computed from an incomplete random set? [Recall that Stephan says that incomplete randoms are not PA, and in that sense quite far from being complete.]

Computing c.e. sets

Theorem (Kučera)

Every Δ_2^0 random set computes a non-computable c.e. set.

Theorem (Hirschfeldt, Miller)

A random set computes a non-computable c.e. set if and only if it is not an element of any null Π_2^0 class if and only if it forms a minimal pair with \varnothing' .

Computability and compressibility

Theorem (Chaitin)

A set A is computable if and only if $C(A \upharpoonright_n) \leq^+ C(n)$.

However, Solovay built a non-computable set A such that $K(A \upharpoonright_n) \leqslant^+ K(n)$, and called these sets K-trivial. Such sets are "anti-random". Chaitin's argument shows that such sets are Δ_2^0 .

Theorem (Nies)

- 1. Every K-trivial set is superlow.
- 2. A set is K-trivial iff it is low for ML-randomness iff it is low for K.
- 3. Every K-trivial set is computable from a c.e., K-trivial set.

Theorem (Hirschfeldt, Nies, Stephan)

A set A is K-trivial if and only if it is computable from some random^A set.

The covering problem

Corollary (Hirschfeldt, Nies, Stephan)

If Z is random and incomplete, A is c.e. and $A \leq_T Z$, then A is K-trivial.

Stephan asked if the converse holds:

Question

Is every K-trivial set computable from an incomplete random set?

Strong variants

Theorem (Kučera, Slaman)

There is a low degree which bounds all K-trivial sets.

Question

Is there a single incomplete random set Turing above all K-trivial sets? Is every K-trivial set computable from a low random set?

Fact

If Y and Z are relatively random and $A \leq_T Y, Z$ then A is K-trivial.

Ouestion

Is every K-trivial set computable from both halves of a random?

Cost functions

Cost functions measure how much a computable approximation of a Δ_2^0 set changes. Formalised by Nies, they are a generalisation of the Downey-Hirschfeldt-Nies-Stephan construction of a c.e., K-trivial set.

Notation: $\mathbf{c}_s(x)$ is the cost of changing our guess about A(x) at stage s. For example, if we want A to be K-trivial, putting x into A at stage s would require us to issue new descriptions of $A_{s+1} \upharpoonright_y$ for all y > x, and so the cost would be

$$\mathbf{c}_{\mathfrak{K}}(x,s) = \sum_{y>x} 2^{-K_s(y)}.$$

Cost functions

We say that a set A obeys a cost function \mathbf{c} if there is some approximation $\langle A_s \rangle$ for A such that the total amount paid

$$\sum_{s} \mathbf{c}_{s}(x_{s}) \ [x_{s} \text{ is least } x \text{ for which } A_{s+1}(x) \neq A_{s}(x)]$$

is finite.

Nies showed that a set is K-trivial if and only if it obeys the standard cost function $\mathbf{c}_{\mathcal{K}}$.

The Kučera and Hirschfeldt-Miller theorems are also essentially cost-function constructions.

Generalised tests

Recall that a Martin-Löf test is a uniform sequence $\langle \mathcal{U}_n \rangle$ of effectively open sets such that $\lambda(\mathcal{U}_n) \leqslant 2^{-n}$. The intersection is not only a null, effectively G_{δ} set; it is effectively null.

To define stronger notions of randomness we can relax the second condition. For example, weak 2 randomness (mentioned in the Hirschfeldt-Miller theorem) is determined by dropping the second condition completely.

Cost functions can be used to calibrate the rate of convergence of $\lambda(\mathcal{U}_n)$ to 0 between these two extremes. A **c**-test is one for which $\lambda(\mathcal{U}_n) \leqslant \mathbf{c}(n)$.

Lemma

If a set A obeys a cost function \mathbf{c} , then A is computable from every random set which is captured by a \mathbf{c} -test.

Additive cost functions

Nies showed that K-trivial sets obey all cost functions of the form $\mathbf{c}_s(n) = \beta_s - \beta_n$ for some left-c.e. real β . These are called additive cost functions, since they satisfy $\mathbf{c}(a,c) = \mathbf{c}(a,b) + \mathbf{c}(b,c)$.

Corollary

If A is K-trivial, then A is computable from every random set which is captured by some additive-cost-function-test.

Changing test components

Demuth used another way to strengthen Martin-Löf randomness. This time we keep $\lambda(\mathcal{U}_n)\leqslant 2^{-n}$ but relax the requirement that the sequence is uniform. Each \mathcal{U}_n is effectively open, but its index is not necessarily obtained computably, but only approximated. We change our mind finitely many times about what \mathcal{U}_n actually is. The more times we are allowed to change our mind, the more powerful the test notion.

- No restrictions: weak 2 randomness.
- Computable bound: weak Demuth randomness.
- bound O(2ⁿ): balanced randomness (Figueira, Hirschfeldt, Miller, Ng, Nies).

Coherently moving tests

We say that the changes to \mathcal{U}_n are coherent if for all n, if s < t are successive stages at which we change \mathcal{U}_{n+1} , then we also change \mathcal{U}_n at stage s or at stage t. Intuition: compared to a balanced test, the opponent cannot "reserve changes" for later use.

Proposition

Additive-cost-function-tests and coherently-moving-tests capture the same reals.

We call the resulting randomness notion OW-randomness.

Corollary

Every K-trivial set is computable from every random set which is not OW-random.

Smart K-trivials

Theorem

There is a K-trivial set which is not computable from any OW-random set.

(New idea: no allocation of capital).

Corollary

If every K-trivial set is computable from some incomplete random set, then there is an incomplete random set which computes every K-trivial set.

Computational strength

Proposition (FHMNN)

If $X \oplus Y$ is random, then either X or Y is not balanced random.

Corollary

There is a K-trivial set which is not computable from both halves of a random set.

Proposition (FHMNN)

If X is random but not balanced random, then X is not superlow.

Proposition

If X is random but not OW random, then X is superhigh. Indeed, every X-random is 2-random.

Corollary

There is a K-trivial set which is not computable from any low, random set.

Analytic concepts

Proposition

If X is OW random and d is a c.e. martingale, then

$$\lim_{n\to\infty} d(X \upharpoonright_n)$$

exists.

Corollary

If X is OW random and \mathcal{P} is an effectively closed set with $X \in \mathcal{P}$, then

$$\lim_{n\to\infty}\lambda(\mathcal{P}|X\upharpoonright_n)=1.$$

Notation: $\rho(\mathcal{P}|X) = 1$.

Density and completeness

Theorem (Franklin, Ng; Bienvenu, Hölzl, Miller, Nies)

Let X be random. Then $X \not\geqslant_T \varnothing'$ if and only if for every effectively closed set $\mathcal P$ with $X \in \mathcal P$,

$$\underline{\rho}(\mathcal{P}|X) = \liminf_{n \to \infty} \lambda(\mathcal{P}|X \upharpoonright_n) > 0.$$

And we notice: if X is random and $\underline{\rho}(\mathbb{P}|X) < 1$ for some effectively closed set \mathbb{P} containing X, then, since X cannot be OW random, X must compute all K-trivial sets.

The solution

Theorem (Day, Miller)

There is a random set X such that:

- $\underline{\rho}(\mathbb{P}|X) > 0$ for every effectively closed set \mathbb{P} containing X (and so, is incomplete); and
- For some effectively closed set \mathcal{P} containing X, $\rho(\mathcal{P}|X) < 1$.

Corollary (everyone)

There is an incomplete random set X which computes every K-trivial set.

Questions

- Does density characterise OW randomness? (related work by the Madison group)
- How does density and OW randomness relate to LR-hardness?
- How do the K-trivial sets look under the 'reducibility' $A \leq B$ if every random above B is also above A? (There is a greatest degree; surely they are not linearly ordered?)
- What is lowness for OW randomness?
- What are the randoms which compute all SJT sets?