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Random sets and c.e. sets

What are the possible interactions, in the Turing degrees, between
c.e. sets and random sets?

� An incomplete c.e. set cannot compute a random set (follows
from Arslanov)

� Chaitin’s Ω computes every c.e. set. However, this is atypical:
the cone above a non-computable set is null.

Two questions:

1. Which random sets can compute non-computable c.e. sets?

2. Which c.e. sets can be computed from an incomplete random
set? [Recall that Stephan says that incomplete randoms are not
PA, and in that sense quite far from being complete.]



Computing c.e. sets

Theorem (Kučera)
Every ∆0

2 random set computes a non-computable c.e. set.

Theorem (Hirschfeldt,Miller)

A random set computes a non-computable c.e. set if and only if it is
not an element of any null Π0

2 class if and only if it forms a minimal
pair withH1.



Computability and compressibility

Theorem (Chaitin)
A set A is computable if and only if CpAænq ¤� Cpnq.

However, Solovay built a non-computable set A such that
KpAænq ¤� Kpnq, and called these sets K-trivial. Such sets are
“anti-random”. Chaitin’s argument shows that such sets are ∆0

2.

Theorem (Nies)

1. Every K-trivial set is superlow.

2. A set is K-trivial iff it is low for ML-randomness iff it is low for K.

3. Every K-trivial set is computable from a c.e., K-trivial set.

Theorem (Hirschfeldt,Nies,Stephan)

A set A is K-trivial if and only if it is computable from some randomA

set.



The covering problem

Corollary (Hirschfeldt,Nies,Stephan)

If Z is random and incomplete, A is c.e. and A ¤T Z, then A is
K-trivial.

Stephan asked if the converse holds:

Question

Is every K-trivial set computable from an incomplete random set?



Strong variants

Theorem (Kučera,Slaman)

There is a low degree which bounds all K-trivial sets.

Question

Is there a single incomplete random set Turing above all K-trivial
sets? Is every K-trivial set computable from a low random set?

Fact
If Y and Z are relatively random and A ¤T Y,Z then A is K-trivial.

Question

Is every K-trivial set computable from both halves of a random?



Cost functions

Cost functions measure how much a computable approximation of a
∆0

2 set changes. Formalised by Nies, they are a generalisation of the
Downey-Hirschfeldt-Nies-Stephan construction of a c.e., K-trivial
set.

Notation: cspxq is the cost of changing our guess about Apxq at
stage s. For example, if we want A to be K-trivial, putting x into A at
stage s would require us to issue new descriptions of As�1 æy for all
y ¡ x, and so the cost would be

cKpx, sq �
¸

y¡x

2�Kspyq.



Cost functions

We say that a set A obeys a cost function c if there is some
approximation xAsy for A such that the total amount paid

¸

s

cspxsq vxs is least x for which As�1pxq � Aspxqw

is finite.

Nies showed that a set is K-trivial if and only if it obeys the standard
cost function cK.

The Kučera and Hirschfeldt-Miller theorems are also essentially
cost-function constructions.



Generalised tests

Recall that a Martin-Löf test is a uniform sequence xUny of
effectively open sets such that λpUnq ¤ 2�n. The intersection is not
only a null, effectively Gδ set; it is effectively null.

To define stronger notions of randomness we can relax the second
condition. For example, weak 2 randomness (mentioned in the
Hirschfeldt-Miller theorem) is determined by dropping the second
condition completely.

Cost functions can be used to calibrate the rate of convergence of
λpUnq to 0 between these two extremes. A c-test is one for which
λpUnq ¤ cpnq.

Lemma
If a set A obeys a cost function c, then A is computable from every
random set which is captured by a c-test.



Additive cost functions

Nies showed that K-trivial sets obey all cost functions of the form
cspnq � βs � βn for some left-c.e. real β. These are called additive
cost functions, since they satisfy cpa, cq � cpa,bq � cpb, cq.

Corollary

If A is K-trivial, then A is computable from every random set which is
captured by some additive-cost-function-test.



Changing test components

Demuth used another way to strengthen Martin-Löf randomness.
This time we keep λpUnq ¤ 2�n but relax the requirement that the
sequence is uniform. Each Un is effectively open, but its index is not
necessarily obtained computably, but only approximated. We
change our mind finitely many times about what Un actually is. The
more times we are allowed to change our mind, the more powerful
the test notion.

� No restrictions: weak 2 randomness.

� Computable bound: weak Demuth randomness.

� bound Op2nq: balanced randomness
(Figueira,Hirschfeldt,Miller,Ng,Nies).



Coherently moving tests

We say that the changes to Un are coherent if for all n, if s   t are
successive stages at which we change Un�1, then we also
change Un at stage s or at stage t. Intuition: compared to a
balanced test, the opponent cannot “reserve changes” for later use.

Proposition

Additive-cost-function-tests and coherently-moving-tests capture
the same reals.

We call the resulting randomness notion OW-randomness.

Corollary

Every K-trivial set is computable from every random set which is
not OW-random.



Smart K-trivials

Theorem
There is a K-trivial set which is not computable from any
OW-random set.

(New idea: no allocation of capital).

Corollary

If every K-trivial set is computable from some incomplete random
set, then there is an incomplete random set which computes every
K-trivial set.



Computational strength

Proposition (FHMNN)

If X ` Y is random, then either X or Y is not balanced random.

Corollary

There is a K-trivial set which is not computable from both halves of
a random set.

Proposition (FHMNN)

If X is random but not balanced random, then X is not superlow.

Proposition

If X is random but not OW random, then X is superhigh. Indeed,
every X-random is 2-random.

Corollary

There is a K-trivial set which is not computable from any low,
random set.



Analytic concepts

Proposition

If X is OW random and d is a c.e. martingale, then

lim
nÑ8

d pXænq

exists.

Corollary

If X is OW random and P is an effectively closed set with X P P, then

lim
nÑ8

λpP|Xænq � 1.

Notation: ρpP|Xq � 1.



Density and completeness

Theorem (Franklin,Ng;Bienvenu,Hölzl,Miller,Nies)

Let X be random. Then X �¥T H
1 if and only if for every effectively

closed set P with X P P,

ρpP|Xq � lim inf
nÑ8

λpP|Xænq ¡ 0.

And we notice: if X is random and ρpP|Xq   1 for some effectively
closed set P containing X, then, since X cannot be OW random, X
must compute all K-trivial sets.



The solution

Theorem (Day,Miller)

There is a random set X such that:

� ρpP|Xq ¡ 0 for every effectively closed set P containing X (and
so, is incomplete); and

� For some effectively closed set P containing X, ρpP|Xq   1.

Corollary (everyone)

There is an incomplete random set X which computes every K-trivial
set.



Questions

� Does density characterise OW randomness? (related work by
the Madison group)

� How does density and OW randomness relate to LR-hardness?

� How do the K-trivial sets look under the ‘reducibility’ A ¤ B if
every random above B is also above A? (There is a greatest
degree; surely they are not linearly ordered?)

� What is lowness for OW randomness?

� What are the randoms which compute all SJT sets?


