Lowness in algorithmic randomness

Noam Greenberg

Victoria University of Wellington

13" January 2012

Lowness

Definition
A set (an oracle) A is called low if A’ =1 (/.

That is, applying the Turing jump operator erases the difference
between A and the computable sets. The general question is:

» How do we extend computability “just a little bit” beyond the
computable sets (but not going near the halting problem)?
What oracles are close to useless?

Low basis

A basis theorem says that problems in a certain class always have
simple solutions. The following is prominent (and useful):
Theorem (Josckusch,Soare)

Every nonempty effectively closed subset of Cantor space 2%
contains a low element.

Equivalently, every infinite, computable, binary branching tree
contains a low path. This is useful because some such trees do not
contain computable paths.
So for example:

» There is a low completion of Peano Arithmetic.

» There is a low Martin-Lof random set.

Forcing

Basis theorems are usually proved by forcing arguments. In
computability, this is just a fancy (but useful) way to say that an
object is constructed by a sequence of approximations. Each step
specifies an easily describable (and usually closed) subset of Cantor
space 2%, and the final object will lie in their intersection.

For example, for the low basis theorem, we “force with M9-classes”
(i.e., computable trees). We repeatedly trim the tree, ensuring that
all paths have a desired property (deciding the jump). While each
stage specifies a computable object (the tree), the final object will
be incomputable.

What about randomness?

Let C be a notion of randomness (such as Martin-L6f’s, Schnorr's,
Demuth’s,...). We can relativise using an oracle A to obtain G4, the
class of A-random sets. An oracle may detect more regularities than
computable strategies, and so G4 C €, and in general C* C C.

Definition
An oracle A is low for C if G4 = C.

Note a similarity with lowness: a set A is low if and only if
AY(A) = AI.

A double goal:
» Understand € by understanding its possible relativisations;

» Understand weak oracles.

A good example: Schnorr

Theorem (Terwijn,Zambella;Kjos-Hanssen,Nies,Stephan)

An oracle is low for Schnorr randomness if and only if it is
computably traceable.

Traceability is a uniform version of being computably dominated.
Definition
An oracle A is computably traceable if for all f <7 A there is a
computable sequence (T,) of finite sets such that for all n,

» |T,| <n;and

» f(n) € Ty.

Note: for the bound on the size of T,,, we can take any order
function.

How is this done?

One direction: use tracing to cover an A-Schnorr test by an
unrelativised Schnorr test.

Other direction: use forcing.

1. Force with Schnorr closed sets of positive measure. (A closed
set is a Schnorr set if its measure is computable.) This gives a
Schnorr random set X.

2. Code functions f by a sequence of independent clopen sets
(Bn,f(n)>. Show that if (almost) all of these are (almost) disjoint
from a fixed Schnorr closed set (of positive measure), then f
has a computable trace. (Requires some calculations.)

3. Hence, if A is not computably traceable, witnessed by f, then
we can force X to be contained in the A-Schnorr test (Bnyf(n)).

~ VIEXTED VIOTORS -~

The same method can be used for Demuth randomness
[Bienvenu,Downey,Greenberg,Nies, Turetsky]. Part (2) - obtaining
the traces - required some probability theory.

An issue which comes up in this case: what is the correct
relativisation of a randomness notion? Perhaps some of the
ingredients should remain computable.

So we get a deeper understanding of the notion of randomness
itself.

But this is not the same for all notions of
randomness

For example,

Theorem (Nies)
An oracle is low for computable randomness if and only if it is
computable.

In this way, randomness captures computability.

The curious case of ML randomness

Another deviation from the path is lowness for ML randomness.
Theorem (Nies)
The following are equivalent for an oracle A:
1. K(A],) <t K(n);
2. KA=TK;
3. Ais low for ML randomness.
There are only countably many such oracles. They are generated by

c.e. sets. So: unlike lowness for Schnorr and Demuth, they cannot
be created using forcing.

Capturing K-triviality?

Nonetheless, we seek a combinatorial characterisation of lowness
for ML randomness - one that does not mention measure,
randomness, or Kolmogorov complexity.

Definition

Let h be an order function (a computable growth rate). An oracle A
is h-jump-traceable if every A-partial computable function i) has a
uniformly c.e. trace bounded by h.

Question: does h-jump-traceability for a class of order functions h
capture lowness for ML randomness?

Theorem (Holzl,Kraling,Merkle)

An oracle is low for ML randomness if and only if it is

O(g(n) — K(n))-jump-traceable for every Solovay function g (think:
time bounded complexity).

Question: can we get rid of O? Is every K-trivial set

log n-jump-traceable?

Random sets in the Turing degrees

Lowness and traceability play a role in understanding how the
random degrees sit in the Turing degrees, especially with respect to
c.e. degrees.

Theorem (Kucera;Gacs)
Every set is computable from a ML random set.

Theorem (Kucera)
Every AS random set computes a noncomputable c.e. set.

ML covering

Theorem (Hirschfeldt,Nies,Stephan)

1. Every c.e. set computable from an incomplete ML random set is
low for ML randomness.

2. Anoracle A is low for ML randomness if and only if there is
some A-ML random set which computes A.

The converse of (1) is an interesting open problem.

Random covering

We can vary the notion of randomness and ask analogues of the
incomplete ML covering question.

Theorem (Nies,Kucera;Greenberg,Turetsky)
The following are equivalent for a c.e. set A:
1. A is computable from a Demuth random set.
2. A is h-jump-traceable for all order functions h.

SJT

Those so-called strongly jump-traceable degrees form a very
well-behaved proper subclass of the K-trivial (low for ML random)
degrees. Like the K-trivials, they form an ideal, and are essentially
enumerable. They also have characterisations as being computable
from all ML random sets in particular classes, such a superlow and
superhigh [Greenberg,Hirschfeldt,Nies]. They are also used to give
solutions to problems in c.e. degree theory.

Many other variants

1. Lowness for effective Hausdorff dimension.

2. Lowness for €2, and weak lowness for K (used by Miller to give a
characterisation of 2-randomness using K).

3. Lowness for very weak randomness, and for notions of
genericity.

4. Lowness for pairs of randomness notions.

Other issues: lowness vs. lowness for tests. Some unnerving recent
results (Diamondstone and Franklin).

Weak reducibilities

Lowness can be interpreted as being the least degree of a weak
reducibility [Nies]. Prominent is the weak reducibility corresponding
to lowness for ML randomness, denoted by <.

» Gives a fascinating degree structure.
» Uses partial relativisation.

Thank you.

