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Computable algebra

Computable algebra examines the effective properties of countable
structures. Typical questions are:

I How hard to perform are standard algebraic constructions?

I How hard is it to find isomorphisms between two effectively
presented copies of a structure?

I What information can be coded into isomorphism classes of
structures?



Examples

Theorem (Metakides,Nerode)

There is a computable, infinite-dimensional vector space with no
infinite, c.e., linearly independent set.

Theorem (Remmel;Dzgoev)

Let L be a computable linear ordering. There is an effective
isomorphism between L and any given computable copy of L if and
only if L contains only finitely many successor pairs.

Theorem (Richter)

For any nonzero Turing degree a and every linear ordering L, there
is a copy of L which does not compute a.



Uncountable structures

The restriction to countable structures comes from computability
theory, not from algebra.

Yet there are tools to measure the complexity of uncountable sets
as well. We use admissible computability, given by Σ1 definitions
over Lα.

For simplicity, work with structures of size ℵ1. Assume that all reals
are constructible.



Finite vs. countable

Theorem (G,Knight)

For every ω1-Turing degree a, there is a linear ordering whose
copies lie precisely in the degrees above a.

The key is the difference between the number of possible cuts in a
finite linear ordering, compared to the number of possible cuts in a
countable one.



Different methods of coding

Theorem (G,Knight)

There is an ω1-computable field F such that for every computable
K ∼= F, the collection of irreducible polynomials in K[x] computes the
halting problem.

This is analogous to a theorem of Fröhlich and Shepherdson
(following van der Waerden). However, their coding method, using
prime numbers, cannot generalise to the uncountable case. Instead,
we use Borel coding of graphs into fields (Friedman and Stanley).
Each bit of information about the graph is coded by a countable
piece of the field, and so can be recovered by an ω1-computation.



Computably categorical linear orderings

Theorem (G,Kach,Lempp,Turetsky)

The following are equivalent for an ω1-computable linear ordering
L:

I L is computably categorical: for any ω1-computable linear
ordering K which is isomorphic to K, there is an ω1-computable
isomorphism between L and K.

I There is a countable set Q ⊂ L such that:

1. Every Q-interval of L is either finite, or is ω1-saturated; and
2. For each n, the collection of cuts of Q which define L-intervals

which are either for size n, or are saturated, is computably
enumerable.

Heavy usage of the dichotomy scattered / nonscattered among the
countable linear orderings.

Question

Which ω2-computable linear orderings are ω2-computably
categorical?



Computable model theory

Computable model theory examines the effective content of
theorems of model theory. For instance, it looks at definability:

Theorem (Ash,Knight,Manasse,Slaman;Chisholm)

Let A be a countable structure, and let R be a relation on A. The
following are equivalent:

I For every isomorphism f : A→ B, the image f [R] is Σ0
1(B);

I R is defined in A by an effective infinitary existential formula
(in the language of A).

The same theorem holds in the uncountable context (G,Knight). The
defining formula is obtained by building a generic copy (forcing with
partial isomorphisms) and then examining the forcing relation. In
the uncountable case, we use the fact that the forcing relation is
countably closed.



Scott families

Theorem (Scott)

The following are equivalent for a countable structure A:

I For every copy B of A, there is an isomorphism between A and
B which is computable in A ∨B.

I After naming finitely many constants, the orbits of A are
definable by an A-c.e. family of existential formulas.

A similar theorem holds in the uncountable setting (G,Knight), with
one added feature: restricted to a closed unbounded subset of
[A]ℵ0 , the Scott family is continuous (think of the back-and-forth
construction).

So far, examples for the necessity of continuity have relations with
countable arities. Is this necessary?



The successor relation

For a linear ordering L, the collection Succ(L) of all successor pairs
in L is Π0

1(L), and so if L is computable, Succ(L) has c.e. degree.

In the countable context, a theorem of Downey, Lempp and Wu
(extending work by Frolov) states that for any computable L, for
every c.e. degree a > degT(Succ(L)), there is a computable copy L′

of L such that degT(Succ(L′)) = a.

This is not so for linear orderings of size ℵ1. Interesting things
happen if there is a countable subset Q of L for which every
Q-interval of L is either finite or dense.



Questions

I Do the effective versions of combinatorial objects like diamond
sequences or Souslin lines affect the theory?

I Does the wealth of countably closed forcing notions give rise to
interesting “generic structures”?

I What happens if we do not assume that all reals are
constructible? Should we then move away from Lω1?
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