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Let o be a limit ordinal. A partial function

f i Lo — Lq is a-recursive ifitis 31 (Lq).
Elements of L., are called a-finite. « is called
admissible if the a-recursive image of an «o-finite
set is a-finite.

Examples

1. w§K, the least non-recursive ordinal.
A C wiswre. iffitis N1, and w$N-finite
iff it is hyperarithmetic (A1).

2. wi (X C w), the least ordinal not
recursive in X (these are all of the countable
admissible ordinals).

3. 43, the least ordinal not an order type of a
AJ well-ordering of w.

4. All cardinals; all cardinals in transitive
models of ZF or even KP.



We can develop recursive function theory:

e There is an a-recursive bijection a < L.

e Enumeration theorem: there are universal
2, Sets.

e Recursion: Given an a-recursive
I . L, — Lq there is a uniqgue a-recursive
f i o — Lq such that for all 8 < «a,

FB) =1(f18).

e The s-m-n theorem and the recursion
theorem.



And we can define relative computability and
degrees:

A string is a «-finite partial function p : a — 2. If
pisastringand A C a,p < Aifp C x4.

Definition. For A, B C o, A < B ifthereis an
a-r.e. set  (a “functional”) such that for all
strings,

p <A« (¢ < B)[(gq,p) € P].

R is the structure of =,-degrees of a-r.e. sets
with <q.



Priority arguments are used to establish
analogues of classical results about R,:

e A positive solution to Post’s problem (there
are incomparable «-r.e. degrees):
Sacks[1966] for w$K and more, Sacks and
Simpson[1972] for all admissible ordinals;

e Splitting (Every non-zero degree is the join of
two lower ones): Shore[1975];

e Density: Shore[1976];

e A minimal pair: Lerman and Sacks [1972],
Shore [1978] (still open for some «).



Mg (or the “1-3-1") is one of the two 5-element
non-distributive lattices. It can be embedded in
the classical r.e. degrees, with bottom 0 (Lachlan
[1972]).

Definition. The recursive cofinality of a set

A C «aI1s the least 8 < o such that there is some
cofinal f : B — «a which is weakly recursive in A.
A is hyperregular if rcf(A) = «a.

Theorem 1. Suppose rcf(a) > w. Then Mg
cannot be embedded in R, with top a and
bottom O.



Thus if there are no incomplete r.e. degrees with
recursive cofinality w, then My is not
embeddable in the a-r.e. degrees with bottom 0
(and so the «o-r.e. degrees and the classical ones
are elementarily inequivalent). For example:

e > >-admissible ordinals;

e RL: Every incomplete r.e. degree is
hyperregular;

e Every uncountable «: if a is an incomplete
a-r.e. degree then rcf(a) is at least the
>_1-projectum of a (Shore [1976]).

Using complexity considerations (Greenberg,
Shore, Slaman [2003], Greenberg [2004]) for the
other cases, we get:

Theorem 2. For all admissible «, Rq #Z Ruw.



Proof of Theorem 1. Suppose Ag, A1, Ao are
a-r.e. and not a-recursive, and that for

{i,j,k} = {0,1,2},
V(A4 @ Ag) = A;.
Let
A= AO o Al o AQ.

Definition. A computation tree is a sequence
<ﬁn> such that Bn—l—l = I’F<a3X wZ(A] D Ag, Bn).

Claim. For all 8g < «, the computation tree for
(o Is recognised at some «-finite stage, and thus
IS a-finite.

We construct Eg, £, E5 such that E; <q Ej, B},
(by permitting), satisfying

® Pupe:pa7? EoV oy 7#F E1 V @ec7F En.



How? At s, we search for A < a which is realised
(by some ) and such that there is some
computation tree (3,) with sup,, Bn < A, with
one of the computations on the tree becoming
Incorrect at s. A\ is permitted by some A; at s and
by another later.

P, » . Must succeed, for if not, we could compute
each A; by waiting for computation trees to
appear, together with some appropriate A which
are realised by ¢q, ¢p and @¢. []

Theorem 3. If rcf(a) > w then there is no M5
embedded below a.



