Lattice (non)-Embeddings in the α -R.E. Degrees

Noam Greenberg

June 1st, 2002

Let α be a limit ordinal. A partial function $f:L_{\alpha}\to L_{\alpha}$ is α -recursive if it is $\Sigma_1(L_{\alpha})$. Elements of L_{α} are called α -finite. α is called admissible if the α -recursive image of an α -finite set is α -finite.

Examples

- 1. ω_1^{CK} , the least non-recursive ordinal. $A \subset \omega$ is ω_1^{CK} -r.e. iff it is Π_1^1 , and ω_1^{CK} -finite iff it is hyperarithmetic (Δ_1^1).
- 2. ω_1^X ($X \subset \omega$), the least ordinal not recursive in X (these are all of the countable admissible ordinals).
- 3. δ_2^1 , the least ordinal not an order type of a Δ_2^1 well-ordering of ω .
- 4. All cardinals; all cardinals in transitive models of ZF or even KP.

We can develop recursive function theory:

- There is an α -recursive bijection $\alpha \leftrightarrow L_{\alpha}$.
- Enumeration theorem: there are universal Σ_n sets.
- Recursion: Given an α -recursive $I: L_{\alpha} \to L_{\alpha}$ there is a unique α -recursive $f: \alpha \to L_{\alpha}$ such that for all $\beta < \alpha$, $f(\beta) = I(f \upharpoonright \beta)$.
- The s-m-n theorem and the recursion theorem.

And we can define relative computability and degrees:

A *string* is a α -finite partial function $p : \alpha \to 2$. If p is a string and $A \subset \alpha$, p < A if $p \subset \chi_A$.

Definition. For $A, B \subset \alpha$, $A \leq_{\alpha} B$ if there is an α -r.e. set Φ (a "functional") such that for all strings,

$$p < A \leftrightarrow (\exists q < B)[(q, p) \in \Phi].$$

 \mathcal{R}_{α} is the structure of \equiv_{α} -degrees of α -r.e. sets with \leqslant_{α} .

Priority arguments are used to establish analogues of classical results about \mathcal{R}_{ω} :

- A positive solution to Post's problem (there are incomparable α -r.e. degrees): Sacks[1966] for $\omega_1^{\rm CK}$ and more, Sacks and Simpson[1972] for all admissible ordinals;
- Splitting (Every non-zero degree is the join of two lower ones): Shore[1975];
- Density: Shore[1976];
- A minimal pair: Lerman and Sacks [1972], Shore [1978] (still open for some α).

 M_5 (or the "1-3-1") is one of the two 5-element non-distributive lattices. It can be embedded in the classical r.e. degrees, with bottom 0 (Lachlan [1972]).

Definition. The *recursive cofinality* of a set $A \subset \alpha$ is the least $\beta \leqslant \alpha$ such that there is some cofinal $f: \beta \to \alpha$ which is weakly recursive in A. A is *hyperregular* if $rcf(A) = \alpha$.

Theorem 1. Suppose $rcf(a) > \omega$. Then M_5 cannot be embedded in \mathcal{R}_{α} with top a and bottom 0.

Thus if there are no incomplete r.e. degrees with recursive cofinality ω , then M_5 is not embeddable in the α -r.e. degrees with bottom 0 (and so the α -r.e. degrees and the classical ones are elementarily inequivalent). For example:

- Σ₂-admissible ordinals;
- \aleph_{ω}^{L} : Every incomplete r.e. degree is hyperregular;
- Every uncountable α : if a is an incomplete α -r.e. degree then rcf(a) is at least the Σ_1 -projectum of a (Shore [1976]).

Using complexity considerations (Greenberg, Shore, Slaman [2003], Greenberg [2004]) for the other cases, we get:

Theorem 2. For all admissible α , $\mathcal{R}_{\alpha} \not\equiv \mathcal{R}_{\omega}$.

Proof of Theorem 1. Suppose A_0, A_1, A_2 are α -r.e. and not α -recursive, and that for $\{i, j, k\} = \{0, 1, 2\},$

$$\Psi_i(A_j \oplus A_k) = A_i.$$

Let

$$A = A_0 \oplus A_1 \oplus A_2.$$

Definition. A computation tree is a sequence $\langle \beta_n \rangle$ such that $\beta_{n+1} = \max_{i < 3} \psi_i(A_j \oplus A_k, \beta_n)$.

Claim. For all $\beta_0 < \alpha$, the computation tree for β_0 is recognised at some α -finite stage, and thus is α -finite.

We construct E_0, E_1, E_2 such that $E_i \leq_{\alpha} E_j, E_k$ (by permitting), satisfying

• $P_{a,b,c}: \varphi_a \neq E_0 \vee \varphi_b \neq E_1 \vee \varphi_c \neq E_2$.

How? At s, we search for $\lambda < \alpha$ which is realised (by some φ_a) and such that there is some computation tree $\langle \beta_n \rangle$ with $\sup_n \beta_n < \lambda$, with one of the computations on the tree becoming incorrect at s. λ is permitted by some A_i at s and by another later.

 $P_{a,b,c}$ must succeed, for if not, we could compute each A_i by waiting for computation trees to appear, together with some appropriate λ which are realised by φ_a , φ_b and φ_c .

Theorem 3. If $rcf(a) > \omega$ then there is no M_5 embedded below a.