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Let α be a limit ordinal. A partial function
f : Lα → Lα is α-recursive if it is Σ1(Lα).
Elements of Lα are called α-finite. α is called
admissible if the α-recursive image of an α-finite
set is α-finite.

Examples

1. ωCK
1 , the least non-recursive ordinal.

A ⊂ ω is ωCK
1 -r.e. iff it is Π1

1, and ωCK
1 -finite

iff it is hyperarithmetic (∆1
1).

2. ωX1 (X ⊂ ω), the least ordinal not
recursive in X (these are all of the countable
admissible ordinals).

3. δ12, the least ordinal not an order type of a
∆1

2 well-ordering of ω.

4. All cardinals; all cardinals in transitive
models of ZF or even KP.



We can develop recursive function theory:

• There is an α-recursive bijection α↔ Lα.

• Enumeration theorem: there are universal
Σn sets.

• Recursion: Given an α-recursive
I : Lα → Lα there is a unique α-recursive
f : α→ Lα such that for all β < α,
f(β) = I(f ↾ β).

• The s-m-n theorem and the recursion
theorem.



And we can define relative computability and
degrees:

A string is a α-finite partial function p : α→ 2. If
p is a string and A ⊂ α, p < A if p ⊂ χA.

Definition. For A,B ⊂ α, A 6α B if there is an
α-r.e. set Φ (a “functional”) such that for all
strings,

p < A↔ (∃q < B)[(q, p) ∈ Φ].

Rα is the structure of ≡α-degrees of α-r.e. sets
with 6α.



Priority arguments are used to establish
analogues of classical results about Rω:

• A positive solution to Post’s problem (there
are incomparable α-r.e. degrees):
Sacks[1966] for ωCK

1 and more, Sacks and
Simpson[1972] for all admissible ordinals;

• Splitting (Every non-zero degree is the join of
two lower ones): Shore[1975];

• Density: Shore[1976];

• A minimal pair: Lerman and Sacks [1972],
Shore [1978] (still open for some α).



M5 (or the “1-3-1”) is one of the two 5-element
non-distributive lattices. It can be embedded in
the classical r.e. degrees, with bottom 0 (Lachlan
[1972]).

Definition. The recursive cofinality of a set
A ⊂ α is the least β 6 α such that there is some
cofinal f : β → α which is weakly recursive in A.
A is hyperregular if rcf(A) = α.

Theorem 1. Suppose rcf(a) > ω. Then M5

cannot be embedded in Rα with top a and
bottom 0.



Thus if there are no incomplete r.e. degrees with
recursive cofinality ω, then M5 is not
embeddable in the α-r.e. degrees with bottom 0

(and so the α-r.e. degrees and the classical ones
are elementarily inequivalent). For example:

• Σ2-admissible ordinals;

• ℵLω: Every incomplete r.e. degree is
hyperregular;

• Every uncountable α: if a is an incomplete
α-r.e. degree then rcf(a) is at least the
Σ1-projectum of a (Shore [1976]).

Using complexity considerations (Greenberg,
Shore, Slaman [2003], Greenberg [2004]) for the
other cases, we get:

Theorem 2. For all admissible α, Rα 6≡ Rω.



Proof of Theorem 1. Suppose A0, A1, A2 are
α-r.e. and not α-recursive, and that for
{i, j, k} = {0,1,2},

Ψi(Aj ⊕ Ak) = Ai.

Let

A = A0 ⊕ A1 ⊕ A2.

Definition. A computation tree is a sequence
〈βn〉 such that βn+1 = max

i<3
ψi(Aj ⊕Ak, βn).

Claim. For all β0 < α, the computation tree for
β0 is recognised at some α-finite stage, and thus
is α-finite.

We construct E0, E1, E2 such that Ei 6α Ej, Ek

(by permitting), satisfying

• Pa,b,c : ϕa 6= E0 ∨ ϕb 6= E1 ∨ ϕc 6= E2.



How? At s, we search for λ < α which is realised
(by some ϕa) and such that there is some
computation tree 〈βn〉 with supn βn < λ, with
one of the computations on the tree becoming
incorrect at s. λ is permitted by some Ai at s and
by another later.

Pa,b,c must succeed, for if not, we could compute
each Ai by waiting for computation trees to
appear, together with some appropriate λ which
are realised by ϕa, ϕb and ϕc.

Theorem 3. If rcf(a) > ω then there is no M5

embedded below a.


