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BACKGROUND: STRONG REDUCIBILITIES AND

RANDOMNESS

Turing reducibility is not a measure of relative randomness: it is
possible for a non-random set to compute a random set. Some
restrictions of Turing reducibility attempt to bridge the gap
between 6T and measures of relative randomness, such as 6K .

One way is to limit the use of the reduction.



USE

Let A, B ∈ 2ω, and suppose that A 6T B by an oracle
computation procedure Φ. The use of the computation on input
n, denoted ϕB(n), is the least upper bound of all the numbers
which occur as oracle queries during the computation Φ(B, n).

Shifting slightly, B�ϕB(n) is the shortest initial segment of B
which via Φ is mapped to A�n.



LIPSCHITZ REDUCTIONS [DOWNEY, HIRSCHFELDT,
LAFORTE]

A Turing reduction A = Φ(B) is a computable Lipschitz
reduction if ϕB(n) 6 n + c for some constant c. We write
A 6cL B.

FACT
If A 6cL B, and A is random, then so is B.



WTT

Computable Lipschitz is a special case of weak truth table
reductions. A Turing reduction Φ(B) = A is a weak truth table
reduction if ϕB is bounded by a computable function. We write
A 6wtt B.

The associated degree structure, Dwtt, has been studied, but
not as extensively as the Turing degrees.



ORDER FUNCTIONS [SCHNORR]

An order function is a non-decreasing, unbounded computable
function.

Order functions serve as gauges for computable rates of
growth, usually slow ones.



TINY USE

We say that A is reducible to B with tiny use, A <tu B, if for
every order function h, there is a reduction A = Φ(B) such that
ϕB is bounded by h.
Note:

1. This is not a reflexive relation. In fact, A <tu A if and only if
A is computable.

2. For some A, it is quite possible that for no B do we have
A 6tu B (not even A′). If A 6tu B, then B is much more
compressible than A (beyond all computable compression
rates). Hence if A is random, then for no B do we have
A 6tu B.

3. The relation <tu is invariant in Dwtt.



SOME MOTIVATION FOR TINY USE

THEOREM (G,NIES)
If A is strongly jump-traceable, and B is an ω-c.e. random set,
then A 6tu B.



COMPLEX SETS [KJOS-HANSSEN, MERKLE, STEPHAN]

Let C denote plain Kolmogorov complexity.

A set A is complex if there is some order function f such that for
all n, C(A�f (n)) ≥ n.

FACT
A set A is complex if and only if there is some fixed-point-free
function f 6wtt A.



ANTI-COMPLEX SETS

THEOREM
The following are equivalent for a set A:

1. For every order function f , for almost all n, C(A�f (n)) 6 n.
2. For all f 6wtt A, C(f (n)) 6+ n.

We call these sets anti-complex.



TRACEABILITY [TERWIJN, ZAMBELLA, RAISONNIER]

Let f : ω → ω. A trace for f is a sequence of finite sets 〈Tn〉 such
that for all n, f (n) ∈ Tn.

• The trace is called computable if the sequence 〈Tx〉 is
computable. The trace is called c.e. if the sequence 〈Tx〉 is
uniformly c.e.

We say that a trace 〈Tx〉 is bounded by a function f if for all n,
|Tx | 6 f (n).



DEFINITION
Let h be an order function. A collection F of functions is
h-computably traceable if every f ∈ F has a computable trace
which is bounded by h.
Similarly define, h-c.e. traceable.

FACT
If F is closed under some computable operations, then the
following are equivalent:

1. For some order function h, F is h-computably traceable.
2. For all order functions h, F is h-computably traceable.

The same holds for c.e. traceable.

We thus say that F is computably traceable, analogously, c.e.
traceable.



TRACEABILITY IN COMPUTABILITY

THEOREM (ISHMUKHAMETOV)
Every c.e. traceable Turing degree has a strong minimal cover.

THEOREM (G, DOWNEY, AFTER KUMMER)
Let A ∈ 2ω. If degwtt(A) is c.e. traceable, then the effective
packing dimension of A is 0.



LOWNESS IN ALGORITHMIC RANDOMNESS

Let R be a relativisable notion of randomness. We say that A is
low for R if R = RA.
THEOREM (TERWIJN,ZAMBELLA; KJOS-HANSSEN,
STEPHAN, NIES)
A Turing degree is low for Schnorr randomness if and only if it is
computably traceable.



TRIVIALITY

Sometimes, associated with a notion of randomness is a
measure of compression. For example, associated with
Martin-Löf randomness is prefix-free Kolmogorov complexity K :

THEOREM (SCHNORR)
A is Martin-Löf random if and only if K (A�n) ≥+ n.
We can then define a notion of triviality (being far from random):

DEFINITION (SOLOVAY)
A set A ∈ 2ω is Martin-Löf trivial if K (A�n) 6+ K (n).
In the case of Martin-Löf randomness, we have a remarkable
convergence:

THEOREM (NIES)
A set A is Martin-Löf-trivial if and only if degT (A) is low for
Martin-Löf randomness.



SCHNORR TRIVIALITY

Schnorr randomness is characterised by an analogue of K –
prefix-free complexity, restricted to machines whose domain’s
measure is computable. Thus we get a notion of Schnorr
triviality.

THEOREM (FRANKLIN, STEPHAN)
A set A is Schnorr trivial if and only if degtt(A) is computably
traceable.

Schnorr triviality is not invariant in Dwtt.



THE COINCIDENCE THEOREM

THEOREM
The following are equivalent for a set A.

1. There is some B such that A <tu B.
2. A is anti-complex.
3. degwtt(A) is c.e. traceable.
4. A 6wtt B for some Schnorr-trivial set B.

The collection of such sets induces an ideal in Dwtt.



A QUESTION

What is the distribution of anti-complex sets in the Turing
degrees?

• If a Turing degree a is c.e. traceable, then every set in a is
anti-complex. This applies to every array computable
c.e. Turing degree.

THEOREM
Every high Turing degree contains both anti-complex sets, and
sets which are not anti-complex.



A CONJECTURE

CONJECTURE
There is a c.e. Turing degree which does not contain any
anti-complex sets.


