complexity and tiny use

Johanna Franklin, Noam Greenberg, Frank Stephan, Guohua Wu

30th September 2009

BACKGROUND: STRONG REDUCIBILITIES AND RANDOMNESS

Turing reducibility is not a measure of relative randomness: it is possible for a non-random set to compute a random set. Some restrictions of Turing reducibility attempt to bridge the gap between \leqslant_T and measures of relative randomness, such as \leqslant_K .

One way is to limit the use of the reduction.

USE

Let $A, B \in 2^{\omega}$, and suppose that $A \leq_T B$ by an oracle computation procedure Φ . The use of the computation on input n, denoted $\varphi^B(n)$, is the least upper bound of all the numbers which occur as oracle queries during the computation $\Phi(B, n)$.

Shifting slightly, $B \upharpoonright_{\varphi^B(n)}$ is the shortest initial segment of B which via Φ is mapped to $A \upharpoonright_n$.

Lipschitz reductions [Downey, hirschfeldt, LaForte]

A Turing reduction $A = \Phi(B)$ is a computable Lipschitz reduction if $\varphi^B(n) \leqslant n + c$ for some constant c. We write $A \leqslant_{\mathsf{CL}} B$.

FACT

If $A \leq_{cL} B$, and A is random, then so is B.

WTT

Computable Lipschitz is a special case of weak truth table reductions. A Turing reduction $\Phi(B) = A$ is a weak truth table reduction if φ^B is bounded by a computable function. We write $A \leqslant_{\mathsf{wtt}} B$.

The associated degree structure, $\mathcal{D}_{\text{wtt}},$ has been studied, but not as extensively as the Turing degrees.

ORDER FUNCTIONS [SCHNORR]

An order function is a non-decreasing, unbounded computable function.

Order functions serve as gauges for computable rates of growth, usually slow ones.

TINY USE

We say that A is reducible to B with tiny use, $A <_{tu} B$, if for every order function h, there is a reduction $A = \Phi(B)$ such that φ^B is bounded by h.

Note:

- 1. This is not a reflexive relation. In fact, $A <_{tu} A$ if and only if A is computable.
- 2. For some A, it is quite possible that for no B do we have $A \leqslant_{\mathsf{tu}} B$ (not even A'). If $A \leqslant_{\mathsf{tu}} B$, then B is much more compressible than A (beyond all computable compression rates). Hence if A is random, then for no B do we have $A \leqslant_{\mathsf{tu}} B$.
- 3. The relation $<_{tu}$ is invariant in \mathcal{D}_{wtt} .

SOME MOTIVATION FOR TINY USE

THEOREM (G, NIES)

If A is strongly jump-traceable, and B is an ω -c.e. random set, then $A \leq_{tu} B$.

COMPLEX SETS [KJOS-HANSSEN, MERKLE, STEPHAN]

Let C denote plain Kolmogorov complexity.

A set A is complex if there is some order function f such that for all n, $C(A|_{f(n)}) \ge n$.

FACT

A set A is complex if and only if there is some fixed-point-free function $f \leq_{\text{wtt}} A$.

ANTI-COMPLEX SETS

THEOREM

The following are equivalent for a set A:

- 1. For every order function f, for almost all n, $C(A|_{f(n)}) \leq n$.
- 2. For all $f \leq_{\text{wtt}} A$, $C(f(n)) \leq^+ n$.

We call these sets anti-complex.

TRACEABILITY [TERWIJN, ZAMBELLA, RAISONNIER]

Let $f: \omega \to \omega$. A trace for f is a sequence of finite sets $\langle T_n \rangle$ such that for all n, $f(n) \in T_n$.

• The trace is called computable if the sequence $\langle T_x \rangle$ is computable. The trace is called c.e. if the sequence $\langle T_x \rangle$ is uniformly c.e.

We say that a trace $\langle T_x \rangle$ is bounded by a function f if for all n, $|T_x| \leq f(n)$.

DEFINITION

Let h be an order function. A collection \mathcal{F} of functions is h-computably traceable if every $f \in \mathcal{F}$ has a computable trace which is bounded by h.

Similarly define, *h*-c.e. traceable.

FACT

If $\mathcal F$ is closed under some computable operations, then the following are equivalent:

- 1. For some order function h, \mathcal{F} is h-computably traceable.
- 2. For all order functions h, \mathcal{F} is h-computably traceable.

The same holds for c.e. traceable.

We thus say that \mathcal{F} is computably traceable, analogously, c.e. traceable.

TRACEABILITY IN COMPUTABILITY

THEOREM (ISHMUKHAMETOV)

Every c.e. traceable Turing degree has a strong minimal cover.

THEOREM (G, DOWNEY, AFTER KUMMER)

Let $A \in 2^{\omega}$. If $\deg_{wtt}(A)$ is c.e. traceable, then the effective packing dimension of A is 0.

LOWNESS IN ALGORITHMIC RANDOMNESS

Let \mathcal{R} be a relativisable notion of randomness. We say that A is low for \mathcal{R} if $\mathcal{R} = \mathcal{R}^A$.

THEOREM (TERWIJN, ZAMBELLA; KJOS-HANSSEN, STEPHAN, NIES)

A Turing degree is low for Schnorr randomness if and only if it is computably traceable.

TRIVIALITY

Sometimes, associated with a notion of randomness is a measure of compression. For example, associated with Martin-Löf randomness is prefix-free Kolmogorov complexity K:

THEOREM (SCHNORR)

A is Martin-Löf random if and only if $K(A \upharpoonright_n) \ge^+ n$.

We can then define a notion of triviality (being far from random):

DEFINITION (SOLOVAY)

A set $A \in 2^{\omega}$ is Martin-Löf trivial if $K(A \upharpoonright_n) \leqslant^+ K(n)$.

In the case of Martin-Löf randomness, we have a remarkable convergence:

THEOREM (NIES)

A set A is Martin-Löf-trivial if and only if $\deg_T(A)$ is low for Martin-Löf randomness.

SCHNORR TRIVIALITY

Schnorr randomness is characterised by an analogue of K – prefix-free complexity, restricted to machines whose domain's measure is computable. Thus we get a notion of Schnorr triviality.

THEOREM (FRANKLIN, STEPHAN)

A set A is Schnorr trivial if and only if $deg_{tt}(A)$ is computably traceable.

Schnorr triviality is not invariant in \mathcal{D}_{wtt} .

THE COINCIDENCE THEOREM

THEOREM

The following are equivalent for a set A.

- 1. There is some B such that $A <_{tu} B$.
- 2. A is anti-complex.
- 3. $deg_{wtt}(A)$ is c.e. traceable.
- 4. $A \leq_{\text{wtt}} B$ for some Schnorr-trivial set B.

The collection of such sets induces an ideal in \mathcal{D}_{wtt} .

A QUESTION

What is the distribution of anti-complex sets in the Turing degrees?

 If a Turing degree a is c.e. traceable, then every set in a is anti-complex. This applies to every array computable c.e. Turing degree.

THEOREM

Every high Turing degree contains both anti-complex sets, and sets which are not anti-complex.

A CONJECTURE

CONJECTURE

There is a c.e. Turing degree which does not contain any anti-complex sets.