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BACKGROUND: STRONG REDUCIBILITIES AND
RANDOMNESS

Turing reducibility is not a measure of relative randomness: it is
possible for a non-random set to compute a random set. Some
restrictions of Turing reducibility attempt to bridge the gap

between <1 and measures of relative randomness, such as <.

One way is to limit the use of the reduction.



USE

Let A, B € 2¥, and suppose that A <t B by an oracle
computation procedure ®. The use of the computation on input
n, denoted ©?8(n), is the least upper bound of all the numbers
which occur as oracle queries during the computation ®(B, n).

Shifting slightly, Bl 5(5) is the shortest initial segment of B
which via ¢ is mapped to Af,.



LIPSCHITZ REDUCTIONS [DOWNEY, HIRSCHFELDT,
LAFORTE]

A Turing reduction A = ®(B) is a computable Lipschitz
reduction if ¢B(n) < n+ ¢ for some constant c. We write
A< B

FACT

If A < B, and A is random, then so is B.



WTT

Computable Lipschitz is a special case of weak truth table
reductions. A Turing reduction ®(B) = Ais a weak truth table
reduction if & is bounded by a computable function. We write
A <wtt B.

The associated degree structure, Dyit, has been studied, but
not as extensively as the Turing degrees.



ORDER FUNCTIONS [SCHNORR]

An order function is a non-decreasing, unbounded computable
function.

Order functions serve as gauges for computable rates of
growth, usually slow ones.



TINY USE

We say that A is reducible to B with tiny use, A <y, B, if for
every order function h, there is a reduction A = ®(B) such that
B is bounded by h.

Note:

1. This is not a reflexive relation. In fact, A <y, A if and only if
Ais computable.

2. For some A, it is quite possible that for no B do we have
A <y B (not even A). If A <y B, then B is much more
compressible than A (beyond all computable compression
rates). Hence if A is random, then for no B do we have
A<w B.

3. The relation <y, is invariant in Dyg.



SOME MOTIVATION FOR TINY USE

THEOREM (G,NIES)

If A is strongly jump-traceable, and B is an w-c.e. random set,
then A <y, B.



COMPLEX SETS [KJOS-HANSSEN, MERKLE, STEPHAN]

Let C denote plain Kolmogorov complexity.

A set A is complex if there is some order function f such that for
all n, C(Aff(n)) > Nn.

FACT

A set A is complex if and only if there is some fixed-point-free
function f <ui A.



ANTI-COMPLEX SETS

THEOREM
The following are equivalent for a set A:

1. For every order function f, for almost all n, C(A{f(,,)) <n
2. Forall f <wt A, C(f(n)) <* n.

We call these sets anti-complex.



TRACEABILITY [TERWIIN, ZAMBELLA, RAISONNIER]

Let f: w — w. Atrace for f is a sequence of finite sets (T,) such
that for all n, f(n) € Tj.

e The trace is called computable if the sequence (Tx) is
computable. The trace is called c.e. if the sequence (T) is
uniformly c.e.

We say that a trace (Tx) is bounded by a function f if for all n,
| Tx| < f(n).



DEFINITION

Let h be an order function. A collection F of functions is
h-computably traceable if every f € F has a computable trace
which is bounded by h.

Similarly define, h-c.e. traceable.
FACT

If F is closed under some computable operations, then the
following are equivalent:

1. For some order function h, F is h-computably traceable.
2. For all order functions h, F is h-computably traceable.

The same holds for c.e. traceable.

We thus say that F is computably traceable, analogously, c.e.
traceable.



TRACEABILITY IN COMPUTABILITY

THEOREM (ISHMUKHAMETOV)
Every c.e. traceable Turing degree has a strong minimal cover.

THEOREM (G, DOWNEY, AFTER KUMMER)

Let A € 2. Ifdeg,(A) is c.e. traceable, then the effective
packing dimension of A is 0.



LOWNESS IN ALGORITHMIC RANDOMNESS

Let R be a relativisable notion of randomness. We say that A is
low for R if R = RA.

THEOREM (TERWIIN,ZAMBELLA; KJOS-HANSSEN,
STEPHAN, NIES)

A Turing degree is low for Schnorr randomness if and only if it is
computably traceable.



TRIVIALITY

Sometimes, associated with a notion of randomness is a
measure of compression. For example, associated with
Martin-L6f randomness is prefix-free Kolmogorov complexity K:

THEOREM (SCHNORR)

A is Martin-Léf random if and only if K(Al,) > n.

We can then define a notion of triviality (being far from random):
DEFINITION (SOLOVAY)

A set A € 2¥ is Martin-Lof trivial if K(Alp) <t K(n).

In the case of Martin-L6f randomness, we have a remarkable
convergence:

THEOREM (NIES)

A set A is Martin-Léf-trivial if and only if deg+(A) is low for
Martin-L6f randomness.



SCHNORR TRIVIALITY

Schnorr randomness is characterised by an analogue of K —
prefix-free complexity, restricted to machines whose domain’s
measure is computable. Thus we get a notion of Schnorr
triviality.

THEOREM (FRANKLIN, STEPHAN)

A set A is Schnorr trivial if and only if degy;(A) is computably
traceable.

Schnorr triviality is not invariant in Dyy.



THE COINCIDENCE THEOREM

THEOREM
The following are equivalent for a set A.

1. There is some B such that A <y, B.

2. Ais anti-complex.

. deg,+(A) is c.e. traceable.

4. A <wit B for some Schnorr-trivial set B.

(O]

The collection of such sets induces an ideal in Dy.



A QUESTION

What is the distribution of anti-complex sets in the Turing
degrees?

e If a Turing degree a is c.e. traceable, then every setin a is
anti-complex. This applies to every array computable
c.e. Turing degree.

THEOREM
Every high Turing degree contains both anti-complex sets, and
sets which are not anti-complex.



A CONJECTURE

CONJECTURE
There is a c.e. Turing degree which does not contain any
anti-complex sets.



