Yet more on strongly jump-traceable reals

Noam Greenberg

2nd June 2009

DEFINITIONS

A TRACE for a partial function $p: \omega \to \omega$ is a uniformly c.e. sequence of finite sets $\langle S_x \rangle$ such that for all $x \in \text{dom } p$, $p(x) \in S_x$.

An **ORDER** is a non-decreasing and unbounded recursive function.

A trace $\langle S_x \rangle$ is BOUNDED by an order *h* if for all x, $|S_x| \leq h(x)$.

STRONG JUMP-TRACEABILITY

DEFINITION (FIGUEIRA, NIES, STEPHAN)

A Turing degree **a** is **STRONGLY JUMP-TRACEABLE** if for every order function h, every **a**-partial computable function has a trace which is bounded by h.

THEOREM (FIGUEIRA, NIES, STEPHAN)

There is a promptly simple c.e. degree which is strongly jump-traceable.

C.E. SJTS – STRUCTURE

THEOREM (CHOLAK, DOWNEY, G)

The c.e. strongly jump-traceable degrees form an ideal, which is strictly contained in the K-trivial degrees.

ROBUSTNESS OF SJT

THEOREM (G, HIRSCHFELDT, NIES)

The following are equivalent for a c.e. set A.

- 1. A is computable from every superlow random set.
- 2. A is computable from every superhigh random set.
- 3. deg_T(A) is strongly jump-traceable.

WHAT ABOUT NON-C.E. SJTS?

THEOREM Every strongly jump-traceable degree is K-trivial.

THE PROOF

Let *A* be a set whose Turing degree is strongly jump-traceable.

FACT (ZAMBELLA)

If A is K-trivial, then A is a path on a Δ_2^0 tree which has finitely many paths:

$$\{\sigma : K(\sigma) \leqslant K(|\sigma|) + d\}.$$

We will find such a tree T.

A SIMPLIFICATION

Without loss of generality, the function $n \mapsto K(n)$ is computable:

THEOREM (BIENVENU, DOWNEY)

There is a computable function g such that for all X, if for all n,

$$K(X \upharpoonright n) \leqslant^+ g(n),$$

then X is K-trivial.

So the tree above is actually Σ_1^0 .

THE GENERAL PLAN

So we want to enumerate a tree T such that A is a path on T, and such that

$$\sum_{\sigma\in T} 2^{-K(|\sigma|)}$$

is finite. (We then use the KC theorem.)

The price for enumerating σ on T is

$$\boldsymbol{c}(|\sigma|) = \sum_{\boldsymbol{m} \leqslant |\sigma|} 2^{-\boldsymbol{K}(\boldsymbol{m})}.$$

REQUIREMENTS

To make sure that the total price of T is finite, we consider infinitely many "requirements".

For $q \in \mathbb{Q}$, $q < c(\omega) = \lim_{n \to \infty} c(n) = \Omega$, let n_q be the least *n* such that $c(n) \ge q$.

For $k \ge 1$, we let

$$T_{k} = \{ \sigma \in T : |\sigma| = n_{2^{-k}}, n_{2 \cdot 2^{-k}}, n_{3 \cdot 2^{-k}}, \dots \}.$$

GOAL: enumerate *T* so that T_k has at most *k* leaves.

THE GOAL IS SUFFICIENT

If σ is a leaf of T_k , $|\sigma| = n_{m \cdot 2^{-k}}$, and $l = n_{(m-1)2^{-k}}$, we charge to σ the enumeration of all strings

$$\sigma \upharpoonright (l+1), \sigma \upharpoonright (l+2), \ldots, \sigma$$

into T. The cost is at most

$$m2^{-k} - (m-1)2^{-k} = 2^{-k}$$
.

Hence the total charges are bounded by

$$\sum_{k} \sum_{\sigma \text{ a leaf of } T_{k}} 2^{-k} \leqslant \sum_{k} k 2^{-k}$$

which is finite.

THE GOAL IS SUFFICIENT

Every string on *T* is accounted for: let $\sigma \in T$, let $q = c(|\sigma|)$, and let *k* such that $q = m2^{-k}$ for some *m*.

Ask: is σ a leaf of T_k ? If not, then either:

• $\sigma \in T_{k-1}$; or

• σ has an immediate successor τ on T_k which is in T_{k-1} .

In the second case, charge σ to τ , and then pass on the charge if necessary.

BUT HOW DO WE GET THE TREES T_k ?

Tracing gives us a mechanism of **TESTING** strings, with a prescribed degree of certainty.

Formally, we define a functional Ψ and a slow-growing order function *h*. By the recursion theorem, we get a trace $\langle S_x \rangle$ for Ψ^A which is bounded by *h* (ignore overheads).

We say that x is a k-BOX if $h(x) \le k$. Defining h allows us to specify, for each k, how many k-boxes we need for the argument. This number must be computable.

TESTING a string σ in a box *x* means defining $\Psi^{\sigma}(x) \downarrow = \sigma$. The test is successful if σ shows up in S_x . Note that when we issue an instruction to test σ on *x*, we need to make sure that we did not previously test on *x* any string comparable with σ .

FIRST APPROXIMATION TO T_k : PRE-APPROVAL

For every $q \in \{2^{-k}, 2 \cdot 2^{-k}, 3 \cdot 2^{-k}, \dots\}$, we test all strings of length n_q on a k box. This gives us, for every such q, at most k possibilities for $A \upharpoonright n_q$.

THE MAIN STEP

Let B_1 the set of (at most k) strings which are pre-approved for the first level of T_k .

To enumerate strings into the second level of T_k , we need to guess which strings on the first level of T_k are leaves of T_k . Thus for every subset *D* of B_1 we test the strings in *D* on a dedicated *k*-box.

One can think of these boxes as forming a *k*-dimensional vector space over \mathbb{F}_2 . Each string in B_1 corresponds to a hyperplane of this space.

THE MAIN STEP, REPEATED

Now for every string σ in B_2 , we repeat this process, localised to every box whose guess about the first-level leaves is consistent with σ being on T_k . Note that this keeps the testing requirements consistent.

Hence we need, for every $D \subseteq B_1$, to split the box dedicated for D (to test all subsets of B_2 consistent with D). Hence instead of a single box for each D, we have a conglomeration of boxes (a "meta box").

WHAT NEXT?

QUESTION

Let *A* be strongly jump-traceable. Is *A* computable from a c.e., strongly jump-traceable set?

If so, we get some nice results:

- The strongly jump-traceable degrees form an ideal.
- Strong superlowness and strong jump-traceability coincide.