Yet more on strongly jump-traceable reals

Noam Greenberg

$2^{\text {nd }}$ June 2009

DEFINITIONS

A TRACE for a partial function $p: \omega \rightarrow \omega$ is a uniformly c.e. sequence of finite sets $\left\langle S_{x}\right\rangle$ such that for all $x \in \operatorname{dom} p$, $p(x) \in S_{x}$.

An ORDER is a non-decreasing and unbounded recursive function.

A trace $\left\langle S_{x}\right\rangle$ is Bounded by an order h if for all $x,\left|S_{x}\right| \leqslant h(x)$.

Strong Jump-TRACEABILITY

Definition (Figueira, Nies, Stephan)
A Turing degree a is strongly jump-Traceable if for every order function h, every a-partial computable function has a trace which is bounded by h.

Theorem (Figueira, Nies, Stephan)
There is a promptly simple c.e. degree which is strongly jump-traceable.

C.E. SJTs - STRUCTURE

Theorem (Cholak, Downey, G)
The c.e. strongly jump-traceable degrees form an ideal, which is strictly contained in the K-trivial degrees.

Robustness of SJT

Theorem (G, Hirschfeldt, Nies)
The following are equivalent for a c.e. set A.

1. A is computable from every superlow random set.
2. A is computable from every superhigh random set.
3. $\operatorname{deg}_{T}(A)$ is strongly jump-traceable.

What about non-c.E. SJTs?

Theorem

Every strongly jump-traceable degree is K-trivial.

The PROOF

Let A be a set whose Turing degree is strongly jump-traceable.
Fact (Zambella)
If A is K-trivial, then A is a path on a Δ_{2}^{0} tree which has finitely many paths:

$$
\{\sigma: K(\sigma) \leqslant K(|\sigma|)+d\} .
$$

We will find such a tree T.

A SIMPLIFICATION

Without loss of generality, the function $n \mapsto K(n)$ is computable:
Theorem (Bienvenu, Downey)
There is a computable function g such that for all X, if for all n,

$$
K(X \upharpoonright n) \leqslant+g(n),
$$

then X is K-trivial.
So the tree above is actually Σ_{1}^{0}.

THE GENERAL PLAN

So we want to enumerate a tree T such that A is a path on T, and such that

$$
\sum_{\sigma \in T} 2^{-K(|\sigma|)}
$$

is finite. (We then use the KC theorem.)
The price for enumerating σ on T is

$$
c(|\sigma|)=\sum_{m \leqslant|\sigma|} 2^{-K(m)}
$$

REQUIREMENTS

To make sure that the total price of T is finite, we consider infinitely many "requirements".

For $q \in \mathbb{Q}, q<c(\omega)=\lim _{n} c(n)=\Omega$, let n_{q} be the least n such that $c(n) \geq q$.

For $k \geq 1$, we let

$$
T_{k}=\left\{\sigma \in T:|\sigma|=n_{2-k}, n_{2 \cdot 2^{-k}}, n_{3 \cdot 2^{-k}}, \ldots\right\}
$$

Goal: enumerate T so that T_{k} has at most k leaves.

THE GOAL IS SUFFICIENT

If σ is a leaf of $T_{k},|\sigma|=n_{m \cdot 2^{-k}}$, and $I=n_{(m-1) 2^{-k}}$, we charge to σ the enumeration of all strings

$$
\sigma \upharpoonright(I+1), \sigma \upharpoonright(I+2), \ldots, \sigma
$$

into T. The cost is at most

$$
m 2^{-k}-(m-1) 2^{-k}=2^{-k}
$$

Hence the total charges are bounded by

$$
\sum_{k} \sum_{\sigma \text { a leaf of } T_{k}} 2^{-k} \leqslant \sum_{k} k 2^{-k}
$$

which is finite.

THE GOAL IS SUFFICIENT

Every string on T is accounted for: let $\sigma \in T$, let $q=c(|\sigma|)$, and let k such that $q=m 2^{-k}$ for some m.

Ask: is σ a leaf of T_{k} ? If not, then either:

- $\sigma \in T_{k-1}$; or
- σ has an immediate successor τ on T_{k} which is in T_{k-1}.

In the second case, charge σ to τ, and then pass on the charge if necessary.

But how do we get the trees T_{k} ?

Tracing gives us a mechanism of testing strings, with a prescribed degree of certainty.

Formally, we define a functional ψ and a slow-growing order function h. By the recursion theorem, we get a trace $\left\langle S_{x}\right\rangle$ for ψ^{A} which is bounded by h (ignore overheads).

We say that x is a k-box if $h(x) \leqslant k$. Defining h allows us to specify, for each k, how many k-boxes we need for the argument. This number must be computable.

Testing a string σ in a box x means defining $\Psi^{\sigma}(x) \downarrow=\sigma$. The test is successful if σ shows up in S_{x}. Note that when we issue an instruction to test σ on x, we need to make sure that we did not previously test on x any string comparable with σ.

FIRST APPROXIMATION TO T_{k} : PRE-APPROVAL

For every $q \in\left\{2^{-k}, 2 \cdot 2^{-k}, 3 \cdot 2^{-k}, \ldots\right\}$, we test all strings of length n_{q} on a k box. This gives us, for every such q, at most k possibilities for $A \upharpoonright n_{q}$.

THE MAIN STEP

Let B_{1} the set of (at most k) strings which are pre-approved for the first level of T_{k}.

To enumerate strings into the second level of T_{k}, we need to guess which strings on the first level of T_{k} are leaves of T_{k}. Thus for every subset D of B_{1} we test the strings in D on a dedicated k-box.

One can think of these boxes as forming a k-dimensional vector space over \mathbb{F}_{2}. Each string in B_{1} corresponds to a hyperplane of this space.

THE MAIN STEP, REPEATED

Now for every string σ in B_{2}, we repeat this process, localised to every box whose guess about the first-level leaves is consistent with σ being on T_{k}. Note that this keeps the testing requirements consistent.

Hence we need, for every $D \subseteq B_{1}$, to split the box dedicated for D (to test all subsets of B_{2} consistent with D). Hence instead of a single box for each D, we have a conglomeration of boxes (a "meta box").

What Next?

QUESTION

Let A be strongly jump-traceable. Is A computable from a c.e., strongly jump-traceable set?
If so, we get some nice results:

- The strongly jump-traceable degrees form an ideal.
- Strong superlowness and strong jump-traceability coincide.

