More on strongly jump-traceable reals

Peter Cholak, Rod Downey, Noam Greenberg, André Nies

19th May 2008

TRACEABILITY

- Originated in work of Raisonnier on rapid filters.
- Imported into computability by Terwijn and Zambella for characterising lowness for Schnorr randmoness. (recursive traceability)
- Used by Ishmukhametov for constructing strong minimal covers. (c.e. traceability)
- Relates to array computability.

DEFINITIONS

A trace for a partial function $p: \omega \to \omega$ is a uniformly c.e. sequence of finite sets $\langle T_x \rangle$ such that for all $x \in \text{dom } p$, $p(x) \in T_x$.

An order is a non-decreasing and unbounded recursive function.

A trace $\langle T_x \rangle$ obeys an order h if for all x, $|T_x| \leqslant h(x)$.

JUMP-TRACEABILITY

Let h be an order. A Turing degree \mathbf{a} is called h-jump-traceable if every \mathbf{a} -partial recursive function p has a trace which obeys h.

A Turing degree is jump-traceable if it is *h*-jump-traceable for some order *h*.

STRONG TRACEABILITY

Once a uniform bound for traces of total functions is given, one can slow it down. This is not so for partial functions.

DEFINITION (NIES, FIGUEIRA, STEPHAN)

A Turing degree **a** is **strongly jump-traceable** if it is *h*-jump-traceable for every order *h*.

They also proved they exist.

THERE IS A DIFFERENCE

Compare the following:

- [Nies] There is a perfect Π⁰₁ class of jump-traceable reals.
- There are only countably many strongly jump-traceable reals.

and:

- [Nies] A c.e. degree is jump-traceable iff it is superlow; every K-trivial degree is jump-traceable.
- The c.e., strongly jump-traceable degrees are strictly contained in the K-trivial degrees.

ARE THEY ESSENTIALLY C.E.?

Compare the following, both due to Nies.

- Every K-trivial real is bounded by a recursively enumerable one.
- The c.e. jump-traceable degrees are the same as the c.e. superlow degrees. However, no inclusion holds in the ω -c.e. degrees.

How does strong jump-traceability behave?

PARTIAL ANSWERS

Define strong superlowness in an analogous way.

THEOREM (FIGUEIRA, NIES, STEPHAN)

- 1. On the c.e. degrees, strong superlowness and strong jump-traceability coincide.
- 2. Every strongly superlow degree is strongly jump-traceable.

The latter uses a characterisation of strong jump-traceability as "almost low for C".

THEOREM

Every strongly jump-traceable set is Δ_2^0 .

Enumerability conjecture

The following conjecture implies that studying the c.e., strongly jump-traceable degrees is all that is necessary.

CONJECTURE

Every strongly jump-traceable set is bounded by a c.e. one.

Possible weaker variations would also be useful.

One corollary would be the coincidence of strong superlowness and strong jump-traceability.

A STRUCTURE THEOREM

THEOREM

The c.e., strongly jump-traceable degrees form an ideal.

The proof uses the independent version of the box-promotion method. Its logical structure is simpler than the general method, but the combinatorial details have daunted some.

COST FUNCTIONS

Say we want to enumerate a c.e. set A which doesn't change too often. One way to quantify this is using a cost function.

DEFINITION

A cost function is a recursive function $c_s(x) \colon \mathbb{N}^2 \to \mathbb{Q}^+$ which is non-decreasing in s.

Usually we also expect that for each x, the limit $c(x) = c_s(x)$ exists and that $\lim_x c(x) = 0$. Often $c_s(x)$ is non-increasing in x.

OBEYING COST FUNCTIONS

A computable approximation $\langle A_s \rangle$ of a Δ_2^0 set A obeys a cost function c if the sum

$$\sum_s c_s(x) \llbracket x ext{ is least such that } A_{s+1}(x)
eq A_s(x)
rbracket$$

is finite.

We say that a Δ_2^0 set obeys a cost function c if there is some computable approximation for A which obeys c. In the c.e. world, we restrict ourselves to computable enumerations.

THEOREM (DOWNEY, HIRSCHFELDT, NIES, STEPHAN; KUMMER)

If c is a cost function (which satisfies the desirable properties) then there is a promptly simple c.e. set A which obeys c.

THE K-TRIVIAL COST FUNCTION

The best-known cost function is c_K , the cost function which characterises K-triviality, defined by

$$c_{\mathcal{K},s}(x) = \sum_{y \geq x} 2^{-K_s(y)}.$$

THEOREM (NIES)

A set A is K-trivial iff it obeys c_K .

BENIGN COST FUNCTIONS

Nice cost functions don't surprise us by amassing cost repeatedly.

DEFINITION

A cost function c is benign if there is a computable function $b\colon \mathbb{Q}^+ \to \mathbb{N}$ such that for every rational $\epsilon > 0$, every collection \mathcal{I} of pairwise disjoint intervals of the form [n,s) such that for all $[n,s)\in \mathcal{I}$,

$$c_s(n) \geq \epsilon$$

contains at most $b(\epsilon)$ many such intervals.

FOR EXAMPLE

For example, c_K is benign, because if $n < s \le m < t$ and

$$c_{\mathcal{K},s}(n), c_{\mathcal{K},t}(m) > \epsilon$$

Then the descriptions in the universal prefix-free machine which induce these costs are disjoint. So the witness for c_K is $b(\epsilon) = 1/\epsilon$.

A CHARACTERISATION

THEOREM

A c.e. set A is strongly jump-traceable iff it obeys every benign cost function.

However, no single benign cost function is sufficient for characterising the strongly jump-traceable c.e. sets.

COROLLARY

The c.e., strongly jump-traceable degrees are strictly contained in the c.e. K-trivial degrees.

DIAMONDS

Let $C \subseteq \mathbb{R}$. We let C^{\diamond} be the ideal of all c.e. degrees **a** such that for all $X \in \mathsf{MLR} \cap C$, $\mathbf{a} \leqslant_T X$.

THEOREM

- 1. [Miller, Hirschfeldt] If C is a null Σ_3^0 class, then C^{\diamond} contains a promptly simple c.e. degree.
- 2. [Nies, Stephan] If C contains an incomplete random real, then C^{\diamond} is contained in the the class of K-trivial degrees.

The relevance here is that sometimes there is a benign cost function, obedience to which ensures membership in C^{\diamond} .

C = LR-COMPLETE

One example is the class of LR-complete (or almost everywhere dominating) degrees.

THEOREM

Every c.e., strongly jump-traceable degree is in (LR-complete). As a result, every c.e., strongly jump-traceable degree is ML-coverable and not ML-cuppable.

$\mathcal{C} = \omega$ -R.E.

THEOREM (FOLLOWING KUČERA)

If X is random, then there is a cost function c such that every c.e. set obeying c is X-computable.

If *X* is also ω -r.e., then the cost function *c* is benign.

COROLLARY

Every c.e., strongly jump-traceable degree is in $(\omega$ -r.e.) $^{\diamond}$.

Question: do we get equality?

SUPERLOW CUPPING

THEOREM (NIES)

For all $B \in \mathbb{R}$ there is a random X such that $(X \oplus B)' \leqslant_{tt} B'$.

COROLLARY

Every $\mathbf{a} \in (\omega$ -r.e.) \diamond is almost superdeep.

This extends results of Diamondstone and Ng.

OTHER TOPICS

- The hierarchy of h-jump-traceable degrees, and K-triviality.
 [Barmpalias, Downey, G; Ng]
- Stronger notions: relativising sit. [Ng]
- · The corresponding highness properties. [Ng]

QUESTIONS

- The enumerability conjecture (hopefully, my next project).
- A direct box-promotion proof that every c.e. sjt is almost superdeep.
- Does c.e., sjt = (ω-r.e.)[◊]? Other natural ideals between sjt and K-trivial?
- Questions relating to the highness notions (relates to general questions about pseudo-jump inversion).
- Are these classes definable?