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LOWNESS

R.W. Robinson’s low-guessing trick led to the belief that all low
c.e. degrees (those degrees whose Turing jump is as low as
possible, i.e. computable from 0′, the halting problem) are
“nearly computable” and hence not very interesting.

Classes such as array computable (and contiguous) degrees
have challenged this view. Only recently, with the discovery of
the K -trivial degrees (Downey, Hirschfeldt, Nies), did the full
richness of the low degrees manifest itself.



C.E. SETS AS ORACLES

A theme: understand a class of degrees by understanding how
useful these degrees are as oracles for computations.

Suppose that a given c.e. set D is given. We want to construct
a set A so that A 6T D.

We do an effective construction, based on an enumeration Ds
of D. We build a Turing functional Γ (a partial, effectively
continuous map from 2ω to 2ω) and approximate A, and ensure
that Γ(D) = A.
To do this, the constraint is: if at stage s, an initial segment σ of
Ds of length n is mapped by Γ to an initial τ of As, then we
cannot change A below |τ | unless we are given a change in D
below |σ|.



SIMPLE PERMITTING

This gives rise to the notion of permitting. The idea is that the
more often a c.e. set changes, the more it can compute.

Simple permitting (Yates) is granted by all non-computable c.e.
degrees. Here, repeated requests for change are eventually
granted. This allows finite-injury constructions to run
successfully. For example, every non-computable c.e. degree
bounds an incomparable pair of c.e. degrees.



HIGH PERMITTING

This is due to Martin. To make an infinite-injury argument work,
we need that almost all requests (from an infinite stream of
requests) for change will be granted. This holds if the degree d
is high: d′ ≥ 0′′.

This is due to a domination property: Martin showed that a
degree is high iff it computes a function f which dominates all
computable functions.



PROMPT PERMITTING

This is determined by how quickly permission is granted, rather
than the number of permissions.
For example, every promptly permitting degree bounds a
minimal pair (a pair of degrees which have greatest lower
bound 0).



ARRAY COMPUTABILITY

Together with non-low2 permitting, this is a middle ground
between simple and high permitting: rather than grant almost
all requests, determine in advance how many (finitely many)
permissions each requirement needs.

This too is related to domination: a degree is array
non-computable iff it computes some function which is not
dominated by any function which is ω-c.e.



ω-C.E. FUNCTIONS AND SETS

LEMMA (SHOENFIELD)
A function f : ω → ω is ∆0

2 (i.e. computable from 0′) iff it has a
computable approximation: a computable function g(x , s)
whose pointwise limit (in the discrete topology on ω) is f .
Associated with any computable approximation g(x , s) is the
mind-change function:

h(x) = #{s : g(x , s + 1) 6= g(x , s)}.

A function is ω-c.e. if it has some computable approximation
whose mind-change function is bounded by some computable
function.



FROM DOMINATION TO APPROXIMATION

FACT
A c.e. degree is array computable iff every function computable
from it has a computable approximation whose mind-change
function is bounded by the identity function.
This leads us to think of approximation properties of functions
computable in a c.e. set as a key to permitting.



TOTALLY ω-C.E. DEGREES

DEFINITION
A degree d is totally ω-c.e. if every f 6T d is ω-c.e.
The totally ω-c.e. degrees properly contain the array
computable degrees and are properly contained in the low2
degrees.

THEOREM
There are maximal totally ω-c.e. degrees.
This is analogous to the contiguous degrees.



UNIFICATION

The class of totally ω-c.e. degrees is interesting because it
captures the dynamic properties of quite a number of different
constructions. For example:

THEOREM (D,G, WEBER)
A c.e. degree d is not totally ω-c.e. iff it bounds a critical triple:
degrees a0, a1 and b such that a0 ≡b a1 and if e 6 a0, a1 then
e 6 b.
Other constructions involve the wtt-structure of a Turing degree,
presentation of left-c.e. reals, and splittings of c.e. sets.
It turns out that this notion sheds light on the dual question:
what kind of sets can compute the given set D?

THEOREM (CHISHOLM ET. AL.; D,G)
A c.e. degree is totally ω-c.e. iff every c.e. set D ∈ d is
wtt-reducible to a ranked set.



DEFINABILITY

The result regarding critical triples shows that the totally ω-c.e.
degrees are definable in the c.e. degrees in a natural way.

THEOREM (NIES, SHORE, SLAMAN)
A relation on the c.e. degrees which is invariant under the
double jump is definable in the c.e. degrees iff it is definable in
arithmetic.



NATURALLY DEFINABLE CLASSES

Not many examples!

THEOREM (DOWNEY, LEMPP)
A c.e. degree is contiguous iff it is locally distributive.

THEOREM (AMBOS-SPIES, FEJER)
A c.e. degree is contiguous iff it is not the top of a copy (in the
c.e. dgerees) of the non-modular, non-distributive 5 element
lattice N5.

THEOREM (AMBOS-SPIES ET. AL.)
A degree permits promptly iff it is not the half of a minimal pair.



BEYOND ω

The Ershov hierarachy for ∆0
2 functions allows us to consider

more complicated sets and functions. A function is α-c.e. if it
has a computable approximation g such that for every x , the
sequence of mind-changes for g(x , s) is accompanied with an
effective, decreasing sequence from α.

We can thus define the totally α-c.e. degrees and the totally
< α-c.e. degrees. All such degrees are low2.

For the lower levels we have a concrete characterization: a
function is ωn+1-c.e. if it has a computable approximation whose
mind-change function is bounded by some ωn-c.e. function.



A PROPER HIERARCHY

THEOREM
There is a totally α-c.e. degree which is not totally < α-c.e. iff
α = ωγ for some γ.

THEOREM
There is a totally < α-c.e. degree which is not totally β-c.e. for
any β < α iff α = ωγ for some limit ordinal γ.
There are maximal degrees in all levels of the hierarchy, but no
degree at any level is maximal for a higher level.



ANOTHER NATURALLY DEFINABLE LEVEL

THEOREM
A c.e. degree is not totally < ωω-c.e. iff it bounds a copy of the
1-3-1 lattice.
This level unifies quite a number of constructions as well. For
example, a c.e. degree is not totally < ωω-c.e. iff it contains a
pair of c.e. sets A0 and A1 whose wtt-degrees have an infimum
which is strictly Turing below that degree.
No m-topped degree can be totally < ωω-c.e.; on the other
hand, there is an m-topped degree which is totally ωω-c.e.



AN APPLICATION TO HIGHER COMPUTABILITY THEORY

THEOREM (G)
If κ > ω is an admissible ordinal and a is an incomplete κ-c.e.
degree, then a bounds a 1-3-1 iff it bounds a critical triple.

COROLLARY
There is a single, natural, elementary statement which holds in
the classical c.e. degrees but not in the κ-c.e. degrees for an
admissible κ > ω (including ωCK

1 ).



K -TRIVIALITY

THEOREM (DOWNEY, HIRSCHFELDT, NIES)
The following are equivalent for any A ∈ 2ω:

1. A is K -trivial: the sequence 〈K (A � n)− K (n)〉 is bounded.
2. A is low for ML-randomness: every ML-random real is

ML-random over A.
3. A is low for K : The sequence 〈K (n)− K A(n)〉 is bounded.
4. A is a base for ML-randomness: there is some R ≥T A,

ML-random over A.
5. A has an approximation which obeys a cost-function

condition.



Crucial here is the decanter method. It allows us to show that
the collection of K -trivial degrees is an ideal, properly
contained in the superlow degrees, which is generated by its
c.e. elements.



SMALLER CLASSES?

The following classes of reals A are contained in the K -trivials:

I ML-non-cuppable: there is no incomplete ML-random R
such that R ⊕ A ≥T 0′.

I ML-coverable: there is some incomplete ML-random
R ≥T A.

I A computable from every ML-random R such that 0′ is
K -trivial relative to R.



The cost functions involved in showing these classes are
non-empty are more stringent that the standard one. So
perhaps these classes are properly contained in the K -trivials?

[However, the low for strong 1-randomness, at first considered
such a class, were shown (Downey, Miller, Nies, Weber, Yu) to
be the same as the K -trivials.]

QUESTION

Is there a natural, proper sub-ideal of the K -trivials?



TRACES

DEFINITION (TERWIJN, ZAMBELLA)
A trace for a (partial) function f : ω → ω is a sequence of finite
sets 〈Fx〉 such that for all x ∈ dom f ,

f (x) ∈ Fx .

A trace is computable if the sequence of (canonical indexes for
the) finite sets is computable. A trace is c.e. if the sequence of
finite sets is uniformly c.e.



ORDERS

DEFINITION
An order is a computable, non-decreasing, and unbounded
function h : ω → ω.
A trace 〈Fx〉 for a function f respects an order h if for all x ,

|Fx | 6 h(x).



COMPUTABLE TRACEABILITY

DEFINITION
A Turing degree a is computably traceable if there is some
order h such that every (total) f 6T a has a computable trace
which respect h.

THEOREM (TERWIJN, ZAMBELLA, KJOS-HANSSEN)
A degree a is computably traceable iff it is low for Schnorr
randomness.
There are 2ℵ0 many computably traceable degrees. They are
all hymperimmune-free (or 0-dominated) and so none are ∆0

2.



C.E. TRACEABILITY

DEFINITION
A degree is c.e. traceable if there is some order h such that
every (total) f 6T a has a c.e. trace which respects h.

THEOREM (ISHMUKHAMETOV)
A c.e. degree is c.e. traceable iff it is array computable. As a
result, a c.e. degree has a strong minimal cover iff it is array
computable.

THEOREM (STEPHAN)
A degree is computably traceable iff it is both c.e. traceable and
hyperimmune-free.



STRONG TRACEABILITY

Let Γ ∈ {c.e., computably}.

DEFINITION
A degree a is strongly Γ-traceable if for every order h, every
f 6T a has a Γ-trace which respects h.

THEOREM (TERWIJN, ZEMBELLA)
A degree is Γ-traceable iff it is strongly Γ-traceable.



JUMP-TRACEABILITY

DEFINITION (NIES)
A degree a is jump-traceable if there is an order h such that
every function which is partial computable in a has a c.e. trace
which respects h.

THEOREM (NIES)

1. There are 2ℵ0 many jump-traceable degrees.
2. Every K -trivial degree is jump-traceable.
3. On the c.e. degrees, superlowness coincides with

jump-traceability. They differ on the ω-c.e. degrees.



STRONG JUMP-TRACEABILITY

DEFINITION (FIGUEIRA, NIES, STEPHAN)
A degree a is strongly jump-traceable if for all orders h, every
function which is partial computable in a has a c.e. trace which
respects h.
Figueira, Nies and Stephan showed that not every
jump-traceable degree is strongly jump-traceable, but that the
latter exist.

THEOREM (FIGUEIRA, NIES, STEPHAN)
A set A has strongly jump-traceable degree iff it is “almost low
for C” in the sense that for every order h, for almost all x,

C(x)− CA(x) 6 h(CA(x)).



STRONG JUMP-TRACEABILITY IN THE C.E. DEGREES

THEOREM (CHOLAK, D, G)
In the c.e. degrees, the strongly jump-traceable degrees form
an ideal which is strictly contained in the K -trivial degrees.

THEOREM (CHOLAK, D,G)
Every c.e., strongly jump-traceable degree does not ML-cup.



WHAT ABOUT NON-C.E. SETS?

THEOREM
Every strongly jump-traceable set is ∆0

2.

QUESTION

Is every strongly jump-traceable set bounded by a c.e. one? Is
every strongly jump-traceable set K -trivial?



A SIMILAR CLASS

Figueira, Nies and Stephan also define the strongly superlow
sets, those sets such that A′ is ω-c.e. via arbitrarily slow
approximations.

The fact that on the c.e. degrees, superlowness and
jump-traceability coincide, yields also FNS’s conclusion that on
the c.e. degrees, strong jump-traceability and strong
superlowness coincide.

THEOREM (FIGUIERA, NIES, STEPHAN)
Every strongly superlow set is strongly jump-traceable.

THEOREM
Every strongly superlow set is K -trivial.

QUESTION

Do strong superlowness and strong jump-traceability coincide
for all sets?



A MIRROR IMAGE: THE HIGH DEGREES

The pseudo-jump inversion technique of Jockusch and Shore
allows us to relect the picture up to the high degrees.

QUESTION

Is there a non-computable degree which is computable from all
c.e. degrees a such that 0′ is strongly jump-traceable relative to
a? K -trivial relative to a?
This is motivated by the facts that there is a low2 c.e. degree
which bounds all K -trivials (Nies) and a low PA-degree which
bounds all K -trivials (Kućera-Slaman).



GOALS

I Understand the structure of the c.e. degrees by finding
naturally definable classes of degrees.

I Find classes of Turing degrees which are determined by
their c.e. elements.

I Understand the dynamic nature of constructions of c.e.
degrees.

I Understanding the lower regions of the c.e. degrees.
I Develop new proof techniques (anti-permitting arguments,

little boxes).


	Introduction
	Totally -c.e.
	SJTs

