Lowness Properties of Computably Enumerable Degrees

Rod Downey Noam Greenberg

March 10, 2007

LOWNESS

R.W. Robinson's low-guessing trick led to the belief that all low c.e. degrees (those degrees whose Turing jump is as low as possible, i.e. computable from **0**′, the halting problem) are "nearly computable" and hence not very interesting.

Classes such as array computable (and contiguous) degrees have challenged this view. Only recently, with the discovery of the K-trivial degrees (Downey, Hirschfeldt, Nies), did the full richness of the low degrees manifest itself.

C.E. SETS AS ORACLES

A theme: understand a class of degrees by understanding how useful these degrees are as oracles for computations.

Suppose that a given c.e. set D is given. We want to construct a set A so that $A \leq_T D$.

We do an effective construction, based on an enumeration D_s of D. We build a Turing functional Γ (a partial, effectively continuous map from 2^{ω} to 2^{ω}) and approximate A, and ensure that $\Gamma(D) = A$.

To do this, the constraint is: if at stage s, an initial segment σ of D_s of length n is mapped by Γ to an initial τ of A_s , then we cannot change A below $|\tau|$ unless we are given a change in D below $|\sigma|$.

SIMPLE PERMITTING

This gives rise to the notion of permitting. The idea is that the more often a c.e. set changes, the more it can compute.

Simple permitting (Yates) is granted by all non-computable c.e. degrees. Here, repeated requests for change are eventually granted. This allows finite-injury constructions to run successfully. For example, every non-computable c.e. degree bounds an incomparable pair of c.e. degrees.

HIGH PERMITTING

This is due to Martin. To make an infinite-injury argument work, we need that almost all requests (from an infinite stream of requests) for change will be granted. This holds if the degree $\bf d$ is high: $\bf d' \geq \bf 0''$.

This is due to a domination property: Martin showed that a degree is high iff it computes a function f which dominates all computable functions.

PROMPT PERMITTING

This is determined by how quickly permission is granted, rather than the number of permissions.

For example, every promptly permitting degree bounds a minimal pair (a pair of degrees which have greatest lower bound **0**).

ARRAY COMPUTABILITY

Together with non-low₂ permitting, this is a middle ground between simple and high permitting: rather than grant almost all requests, determine in advance how many (finitely many) permissions each requirement needs.

This too is related to domination: a degree is array non-computable iff it computes some function which is not dominated by any function which is ω -c.e.

ω -C.E. FUNCTIONS AND SETS

LEMMA (SHOENFIELD)

A function $f: \omega \to \omega$ is Δ_2^0 (i.e. computable from $\mathbf{0}'$) iff it has a computable approximation: a computable function g(x,s) whose pointwise limit (in the discrete topology on ω) is f. Associated with any computable approximation g(x,s) is the mind-change function:

$$h(x) = \#\{s : g(x, s+1) \neq g(x, s)\}.$$

A function is ω -c.e. if it has some computable approximation whose mind-change function is bounded by some computable function.

FROM DOMINATION TO APPROXIMATION

FACT

A c.e. degree is array computable iff every function computable from it has a computable approximation whose mind-change function is bounded by the identity function.

This leads us to think of approximation properties of functions computable in a c.e. set as a key to permitting.

TOTALLY ω -C.E. DEGREES

DEFINITION

A degree **d** is totally ω -c.e. if every $f \leqslant_T \mathbf{d}$ is ω -c.e.

The totally ω -c.e. degrees properly contain the array computable degrees and are properly contained in the low₂ degrees.

THEOREM

There are maximal totally ω -c.e. degrees.

This is analogous to the contiguous degrees.

UNIFICATION

The class of totally ω -c.e. degrees is interesting because it captures the dynamic properties of quite a number of different constructions. For example:

THEOREM (D,G, WEBER)

A c.e. degree **d** is not totally ω -c.e. iff it bounds a critical triple: degrees $\mathbf{a}_0, \mathbf{a}_1$ and \mathbf{b} such that $\mathbf{a}_0 \equiv_{\mathbf{b}} \mathbf{a}_1$ and if $\mathbf{e} \leqslant \mathbf{a}_0, \mathbf{a}_1$ then $\mathbf{e} \leqslant \mathbf{b}$.

Other constructions involve the wtt-structure of a Turing degree, presentation of left-c.e. reals, and splittings of c.e. sets. It turns out that this notion sheds light on the dual question: what kind of sets can compute the given set *D*?

THEOREM (CHISHOLM ET. AL.; D,G)

A c.e. degree is totally ω -c.e. iff every c.e. set $D \in \mathbf{d}$ is wtt-reducible to a ranked set.

DEFINABILITY

The result regarding critical triples shows that the totally ω -c.e. degrees are definable in the c.e. degrees in a natural way.

THEOREM (NIES, SHORE, SLAMAN)

A relation on the c.e. degrees which is invariant under the double jump is definable in the c.e. degrees iff it is definable in arithmetic.

NATURALLY DEFINABLE CLASSES

Not many examples!

THEOREM (DOWNEY, LEMPP)

A c.e. degree is contiguous iff it is locally distributive.

THEOREM (AMBOS-SPIES, FEJER)

A c.e. degree is contiguous iff it is not the top of a copy (in the c.e. dgerees) of the non-modular, non-distributive 5 element lattice N_5 .

THEOREM (AMBOS-SPIES ET. AL.)

A degree permits promptly iff it is not the half of a minimal pair.

BEYOND ω

The Ershov hierarachy for Δ_2^0 functions allows us to consider more complicated sets and functions. A function is α -c.e. if it has a computable approximation g such that for every x, the sequence of mind-changes for g(x,s) is accompanied with an effective, decreasing sequence from α .

We can thus define the totally α -c.e. degrees and the totally $< \alpha$ -c.e. degrees. All such degrees are low₂.

For the lower levels we have a concrete characterization: a function is ω^{n+1} -c.e. if it has a computable approximation whose mind-change function is bounded by some ω^n -c.e. function.

A PROPER HIERARCHY

THEOREM

There is a totally α -c.e. degree which is not totally $< \alpha$ -c.e. iff $\alpha = \omega^{\gamma}$ for some γ .

THEOREM

There is a totally $< \alpha$ -c.e. degree which is not totally β -c.e. for any $\beta < \alpha$ iff $\alpha = \omega^{\gamma}$ for some limit ordinal γ .

There are maximal degrees in all levels of the hierarchy, but no degree at any level is maximal for a higher level.

ANOTHER NATURALLY DEFINABLE LEVEL

THEOREM

A c.e. degree is not totally $<\omega^{\omega}$ -c.e. iff it bounds a copy of the 1-3-1 lattice.

This level unifies quite a number of constructions as well. For example, a c.e. degree is not totally $<\omega^{\omega}$ -c.e. iff it contains a pair of c.e. sets A_0 and A_1 whose wtt-degrees have an infimum which is strictly Turing below that degree.

No m-topped degree can be totally $<\omega^\omega$ -c.e.; on the other hand, there is an m-topped degree which is totally ω^ω -c.e.

AN APPLICATION TO HIGHER COMPUTABILITY THEORY

THEOREM (G)

If $\kappa > \omega$ is an admissible ordinal and **a** is an incomplete κ -c.e. degree, then **a** bounds a 1-3-1 iff it bounds a critical triple.

COROLLARY

There is a single, natural, elementary statement which holds in the classical c.e. degrees but not in the κ -c.e. degrees for an admissible $\kappa > \omega$ (including ω_1^{CK}).

K-TRIVIALITY

THEOREM (DOWNEY, HIRSCHFELDT, NIES)

The following are equivalent for any $A \in 2^{\omega}$:

- 1. A is K-trivial: the sequence $\langle K(A \upharpoonright n) K(n) \rangle$ is bounded.
- 2. A is low for ML-randomness: every ML-random real is ML-random over A.
- 3. A is low for K: The sequence $\langle K(n) K^A(n) \rangle$ is bounded.
- 4. A is a base for ML-randomness: there is some $R \ge_T A$, ML-random over A.
- 5. A has an approximation which obeys a cost-function condition.

Crucial here is the decanter method. It allows us to show that the collection of K-trivial degrees is an ideal, properly contained in the superlow degrees, which is generated by its c.e. elements.

SMALLER CLASSES?

The following classes of reals A are contained in the K-trivials:

- ▶ ML-non-cuppable: there is no incomplete ML-random R such that $R \oplus A \ge_T \mathbf{0}'$.
- ▶ ML-coverable: there is some incomplete ML-random $R \ge_T A$.
- ► A computable from every ML-random R such that **0**′ is K-trivial relative to R.

The cost functions involved in showing these classes are non-empty are more stringent that the standard one. So perhaps these classes are properly contained in the *K*-trivials?

[However, the low for strong 1-randomness, at first considered such a class, were shown (Downey, Miller, Nies, Weber, Yu) to be the same as the K-trivials.]

QUESTION

Is there a natural, proper sub-ideal of the K-trivials?

TRACES

DEFINITION (TERWIJN, ZAMBELLA)

A trace for a (partial) function $f: \omega \to \omega$ is a sequence of finite sets $\langle F_x \rangle$ such that for all $x \in \text{dom } f$,

$$f(x) \in F_x$$
.

A trace is computable if the sequence of (canonical indexes for the) finite sets is computable. A trace is c.e. if the sequence of finite sets is uniformly c.e.

ORDERS

DEFINITION

An order is a computable, non-decreasing, and unbounded function $h \colon \omega \to \omega$.

A trace $\langle F_x \rangle$ for a function f respects an order h if for all x,

$$|F_x| \leqslant h(x)$$
.

COMPUTABLE TRACEABILITY

DEFINITION

A Turing degree **a** is computably traceable if there is some order h such that every (total) $f \leq_T \mathbf{a}$ has a computable trace which respect h.

THEOREM (TERWIJN, ZAMBELLA, KJOS-HANSSEN)

A degree **a** is computably traceable iff it is low for Schnorr randomness.

There are 2^{\aleph_0} many computably traceable degrees. They are all hymperimmune-free (or **0**-dominated) and so none are Δ_2^0 .

C.E. TRACEABILITY

DEFINITION

A degree is c.e. traceable if there is some order h such that every (total) $f \leq_T \mathbf{a}$ has a c.e. trace which respects h.

THEOREM (ISHMUKHAMETOV)

A c.e. degree is c.e. traceable iff it is array computable. As a result, a c.e. degree has a strong minimal cover iff it is array computable.

THEOREM (STEPHAN)

A degree is computably traceable iff it is both c.e. traceable and hyperimmune-free.

STRONG TRACEABILITY

Let $\Gamma \in \{c.e., computably\}.$

DEFINITION

A degree **a** is strongly Γ -traceable if for *every* order h, every $f \leq_{\mathcal{T}} \mathbf{a}$ has a Γ -trace which respects h.

THEOREM (TERWIJN, ZEMBELLA)

A degree is Γ -traceable iff it is strongly Γ -traceable.

JUMP-TRACEABILITY

DEFINITION (NIES)

A degree \mathbf{a} is jump-traceable if there is an order h such that every function which is *partial* computable in \mathbf{a} has a c.e. trace which respects h.

THEOREM (NIES)

- 1. There are 2^{\aleph_0} many jump-traceable degrees.
- 2. Every K-trivial degree is jump-traceable.
- 3. On the c.e. degrees, superlowness coincides with jump-traceability. They differ on the ω -c.e. degrees.

STRONG JUMP-TRACEABILITY

DEFINITION (FIGUEIRA, NIES, STEPHAN)

A degree **a** is strongly jump-traceable if for all orders *h*, every function which is partial computable in **a** has a c.e. trace which respects *h*.

Figueira, Nies and Stephan showed that not every jump-traceable degree is strongly jump-traceable, but that the latter exist.

THEOREM (FIGUEIRA, NIES, STEPHAN)

A set A has strongly jump-traceable degree iff it is "almost low for C" in the sense that for every order h, for almost all x,

$$C(x) - C^A(x) \leqslant h(C^A(x)).$$

STRONG JUMP-TRACEABILITY IN THE C.E. DEGREES

THEOREM (CHOLAK, D, G)

In the c.e. degrees, the strongly jump-traceable degrees form an ideal which is strictly contained in the K-trivial degrees.

THEOREM (CHOLAK, D,G)

Every c.e., strongly jump-traceable degree does not ML-cup.

WHAT ABOUT NON-C.E. SETS?

THEOREM

Every strongly jump-traceable set is Δ_2^0 .

QUESTION

Is every strongly jump-traceable set bounded by a c.e. one? Is every strongly jump-traceable set *K*-trivial?

A SIMILAR CLASS

Figueira, Nies and Stephan also define the strongly superlow sets, those sets such that A' is ω -c.e. via arbitrarily slow approximations.

The fact that on the c.e. degrees, superlowness and jump-traceability coincide, yields also FNS's conclusion that on the c.e. degrees, strong jump-traceability and strong superlowness coincide.

THEOREM (FIGUIERA, NIES, STEPHAN)

Every strongly superlow set is strongly jump-traceable.

THEOREM

Every strongly superlow set is K-trivial.

QUESTION

Do strong superlowness and strong jump-traceability coincide for all sets?

A MIRROR IMAGE: THE HIGH DEGREES

The pseudo-jump inversion technique of Jockusch and Shore allows us to relect the picture up to the high degrees.

QUESTION

Is there a non-computable degree which is computable from all c.e. degrees \mathbf{a} such that $\mathbf{0}'$ is strongly jump-traceable relative to \mathbf{a} ? K-trivial relative to \mathbf{a} ?

This is motivated by the facts that there is a low_2 c.e. degree which bounds all K-trivials (Nies) and a low PA-degree which bounds all K-trivials (Kućera-Slaman).

GOALS

- Understand the structure of the c.e. degrees by finding naturally definable classes of degrees.
- Find classes of Turing degrees which are determined by their c.e. elements.
- Understand the dynamic nature of constructions of c.e. degrees.
- Understanding the lower regions of the c.e. degrees.
- Develop new proof techniques (anti-permitting arguments, little boxes).