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Definition. φ-comprehension is the state-

ment ”for all x, {y ∈ x : φ(y)} exists”.

φ-collection is the statement

(∀x ∈ u) (∃y)φ(x, y) →

(∃v) (∀x ∈ u) (∃y ∈ v)φ(x, y)

Definition (Kripke(1964), Platek(1966)).

A transitive set M is Σn-admissible if it is

closed under the Gödel operations, satis-

fies

∆0-comprehension (i.e. φ-comprehension

for all φ that are ∆0(M)) and Σn-collection.

An ordinal α is Σn-admissible if Lα is a Σn-

admissible set.

We say ”admissible” for Σ1-admissible.



Definition.

• A ⊂ Lα is α-recursively enumerable if it

is Σ1(Lα).

• A ⊂ Lα is α-recursive if it is ∆1(Lα)

(i.e. it is r.e. and co-r.e.)

• A partial function f : Lα → Lα is partial

α-recursive if it is Σ1(Lα)-definable (i.e.

its graph is r.e.)

• A is α-finite if A ∈ Lα.

Hence:

α is admissible iff the α-recursive image of

an α-finite set is α-finite.



Examples

1. ωCK
1 , the least non-recursive ordinal. A ⊂

ω is ωCK
1 -r.e. iff it is Π1

1, and ωCK
1 -finite

iff it is hyperarithmetic (∆1
1).

2. ωX
1 (X ⊂ ω), the least ordinal not recur-

sive in X (these are all of the countable

admissible ordinals).

3. δ12, the least ordinal not an order type

of a ∆1
2 well-ordering of ω.

4. All cardinals, all cardinals in transitive

models of ZF or even KP. For each car-

dinal κ, Hκ is an admissible set. If κ is

regular then κ is Σn-admissible for all

n.



Familiar Theorems from classical recursion

theory are still valid:

• There is a recursive bijection α ↔ Lα.

• Enumeration theorem: there are uni-

versal Σn sets.

• Recursion: Given a recursive

I : Lα → Lα there is a unique recursive

f : α → Lα s.t. for all β < α,

f(β) = I(f ↾ β).

• The s-m-n theorem and the recursion

theorem.

• A set is r.e. iff it is the domain of some

partial recursive function iff it is α-finite

or the range of an injective total recur-

sive function.



A string is a α-finite partial function

p : α → 2. If p is a string and A ⊂ α, p < A

if p ⊂ χA.

Definition. For A, B ⊂ α, A 6α B if there is

an α-r.e. set R (a ”functional”) such that

for all strings,

p < A ↔ (∃q < B)[(q, p) ∈ R]

Rα is the structure of ≡α-degrees of α-r.e.

sets with 6α.



Priority arguments are used to establish ana-

logues of classical results about Rω:

• A positive solution to Post’s problem

(there are incomparable α-r.e. degrees):

Sacks[1966] for ωCK
1 and more, Sacks

and Simpson[1972] for all admissible or-

dinals);

• Splitting (Every non-zero degree is the

join of two lower ones): Shore[1975]

• Density: Shore[1976]

• A minimal pair: Lerman and Sacks [1972],

Shore [1978] (still open for some α).

Question(Sacks, 1966): Are Rω and R
ωCK
1

elementary equivalent?

Answer(Shore, Slaman, c.1994): No.



Let (R, <,∨) be an upper semi-lattice, and

p̄ = (r, p, q, l) be elements of R.

Definition. The SW set defined by p̄ in R

is the set of elements x, minimal below r

w.r.t. q 6 x ∨ p.

We define a binary relation on the SW set

G = Gp̄: for x, y ∈ G, let x 6p̄ y if x 6 y ∨ l.

Theorem 1 (Slaman, Woodin(?)).Given

any recursive partial order ≺, there are

p̄ ∈ Rω s.t. <p̄
∼=≺.

Since we can interpret any structure into

partial orders, SW sets can be used to code

models of Arithmetic. Let Mp̄ be the model

(in the language of arithmetic) coded by

(Gp̄, <p̄). There is a translation taking a

formula φ in arithmetic to a formula φ̃ in

the language of partial orderings, such that

Mp̄ |= φ(x̄) iff R |= φ̃(x̄, p̄). Thus we can

put first-order conditions on p̄ so that Mp̄

models some finite fragments of arithmetic.

One can do better:



Theorem 2 (Nies,Shore,Slaman(1997)).

There is a non-empty formula χ s.t. Rω |=

χ(p̄) implies that Mp̄ is the standard model

of arithmetic. There is a formula θ s.t.

Rω |= χ(p̄) ∧ χ(p̄′) implies that θ(x, y; p̄, p̄′)

is an isomorphism between Mp̄ and M ′
p̄.

As a corollary, by quantifying over all such

p̄, we get

Theorem 3 (Harrington, Slaman(1984)).

Th(Rω) and Th(N;+,×) are recursively iso-

morphic.

What about α?

Theorem 4. Theorems 1 and 2 hold when

ω is replaced by ωCK
1 .

In addition, one can code in Mp̄ any Σ1(LωCK
1

)

subset of ω. There is an arithmetic condi-

tion φ(X) such that Kleene’s O is the ⊂-

least set satisfying φ. We add φ to the

’correctness condition’ χ and use the com-

parison maps to find the minimal set (since

some models code O). Thus we can pick

out the models coding O.



Thus:

Theorem 5. O(ω), Th(R
ωCK
1

) and

Th(L
ωCK
1

,∈) are recursively isomorphic.

This can be extended to some other ordi-

nals. If α is Σ2-admissible and cfΣ3
(α) = ω

then this coding works. On the other hand,

if every Σ3(Lα) function f : ω → α is α-

finite, one can show that more complicated

constructions cannot work, yielding an ele-

mentary difference.

Theorem 6. If α is Σ2-admissible then

Th(Rα) 6= Th(Rω).


