On The Elementary Theory of the Metarecursively Enumerable Degrees

Noam Greenberg Work with R.A. Shore

May 12th, 2001

Definition. ϕ -comprehension is the statement "for all x, $\{y \in x : \phi(y)\}$ exists". ϕ -collection is the statement

$$(\forall x \in u) (\exists y) \phi(x, y) \to (\exists v) (\forall x \in u) (\exists y \in v) \phi(x, y)$$

Definition (Kripke(1964), Platek(1966)).

A transitive set M is Σ_n -admissible if it is closed under the Gödel operations, satisfies

 Δ_0 -comprehension (i.e. ϕ -comprehension for all ϕ that are $\Delta_0(M)$) and Σ_n -collection. An ordinal α is Σ_n -admissible if L_α is a Σ_n -admissible set.

We say "admissible" for Σ_1 -admissible.

Definition.

- $A \subset L_{\alpha}$ is α -recursively enumerable if it is $\Sigma_1(L_{\alpha})$.
- $A \subset L_{\alpha}$ is α -recursive if it is $\Delta_1(L_{\alpha})$ (i.e. it is r.e. and co-r.e.)
- A partial function $f: L_{\alpha} \to L_{\alpha}$ is partial α -recursive if it is $\Sigma_1(L_{\alpha})$ -definable (i.e. its graph is r.e.)
- A is α -finite if $A \in L_{\alpha}$.

Hence:

 α is admissible iff the α -recursive image of an α -finite set is α -finite.

Examples

- 1. ω_1^{CK} , the least non-recursive ordinal. $A\subset \omega$ is ω_1^{CK} -r.e. iff it is Π_1^1 , and ω_1^{CK} -finite iff it is hyperarithmetic (Δ_1^1) .
- 2. ω_1^X ($X \subset \omega$), the least ordinal not recursive in X (these are all of the countable admissible ordinals).
- 3. δ_2^1 , the least ordinal not an order type of a Δ_2^1 well-ordering of ω .
- 4. All cardinals, all cardinals in transitive models of ZF or even KP. For each cardinal κ , H_{κ} is an admissible set. If κ is regular then κ is Σ_n -admissible for all n.

Familiar Theorems from classical recursion theory are still valid:

- There is a recursive bijection $\alpha \leftrightarrow L_{\alpha}$.
- Enumeration theorem: there are universal Σ_n sets.
- Recursion: Given a recursive $I: L_{\alpha} \to L_{\alpha}$ there is a unique recursive $f: \alpha \to L_{\alpha}$ s.t. for all $\beta < \alpha$, $f(\beta) = I(f \upharpoonright \beta)$.
- The s-m-n theorem and the recursion theorem.
- A set is r.e. iff it is the domain of some partial recursive function iff it is α -finite or the range of an injective total recursive function.

A *string* is a α -finite partial function $p: \alpha \to 2$. If p is a string and $A \subset \alpha$, p < A if $p \subset \chi_A$.

Definition. For $A, B \subset \alpha$, $A \leq_{\alpha} B$ if there is an α -r.e. set R (a "functional") such that for all strings,

$$p < A \leftrightarrow (\exists q < B)[(q, p) \in R]$$

 \mathcal{R}_{α} is the structure of \equiv_{α} -degrees of α -r.e. sets with \leqslant_{α} .

Priority arguments are used to establish analogues of classical results about \mathcal{R}_{ω} :

- A positive solution to Post's problem (there are incomparable α -r.e. degrees): Sacks[1966] for $\omega_1^{\rm CK}$ and more, Sacks and Simpson[1972] for all admissible ordinals);
- Splitting (Every non-zero degree is the join of two lower ones): Shore[1975]
- Density: Shore[1976]
- A minimal pair: Lerman and Sacks [1972], Shore [1978] (still open for some α).

Question(Sacks, 1966): Are \mathcal{R}_{ω} and $\mathcal{R}_{\omega_1^{CK}}$ elementary equivalent?

Answer(Shore, Slaman, c.1994): No.

Let $(R, <, \lor)$ be an upper semi-lattice, and $\bar{p} = (r, p, q, l)$ be elements of R.

Definition. The *SW* set defined by \bar{p} in R is the set of elements x, minimal below r w.r.t. $q \leqslant x \lor p$.

We define a binary relation on the SW set $G = G_{\bar{p}}$: for $x, y \in G$, let $x \leq_{\bar{p}} y$ if $x \leq_{\bar{p}} y \vee l$.

Theorem 1 (Slaman, Woodin(?)). Given any recursive partial order \prec , there are $\bar{p} \in \mathcal{R}_{\omega}$ s.t. $<_{\bar{p}} \cong \prec$.

Since we can interpret any structure into partial orders, SW sets can be used to code models of Arithmetic. Let $M_{\overline{p}}$ be the model (in the language of arithmetic) coded by $(G_{\overline{p}},<_{\overline{p}})$. There is a translation taking a formula ϕ in arithmetic to a formula $\widetilde{\phi}$ in the language of partial orderings, such that $M_{\overline{p}} \models \phi(\overline{x})$ iff $R \models \widetilde{\phi}(\overline{x},\overline{p})$. Thus we can put first-order conditions on \overline{p} so that $M_{\overline{p}}$ models some finite fragments of arithmetic. One can do better:

Theorem 2 (Nies, Shore, Slaman (1997)).

There is a non-empty formula χ s.t. $\mathcal{R}_{\omega} \models \chi(\bar{p})$ implies that $M_{\bar{p}}$ is the standard model of arithmetic. There is a formula θ s.t. $\mathcal{R}_{\omega} \models \chi(\bar{p}) \wedge \chi(\bar{p}')$ implies that $\theta(x, y; \bar{p}, \bar{p}')$ is an isomorphism between $M_{\bar{p}}$ and $M'_{\bar{p}}$.

As a corollary, by quantifying over all such \bar{p} , we get

Theorem 3 (Harrington, Slaman(1984)). $Th(\mathcal{R}_{\omega})$ and $Th(\mathbb{N}; +, \times)$ are recursively isomorphic.

What about α ?

Theorem 4. Theorems 1 and 2 hold when ω is replaced by ω_1^{CK} .

In addition, one can code in $M_{\overline{p}}$ any $\Sigma_1(L_{\omega_1^{CK}})$ subset of ω . There is an arithmetic condition $\phi(X)$ such that Kleene's O is the \subset -least set satisfying ϕ . We add ϕ to the 'correctness condition' χ and use the comparison maps to find the minimal set (since some models code O). Thus we can pick out the models coding O.

Thus:

Theorem 5. $O^{(\omega)}$, $Th(\mathcal{R}_{\omega_1^{CK}})$ and $Th(L_{\omega_1^{CK}}, \in)$ are recursively isomorphic.

This can be extended to some other ordinals. If α is Σ_2 -admissible and $\mathrm{cf}_{\Sigma_3}(\alpha) = \omega$ then this coding works. On the other hand, if every $\Sigma_3(L_\alpha)$ function $f:\omega\to\alpha$ is α -finite, one can show that more complicated constructions cannot work, yielding an elementary difference.

Theorem 6. If α is Σ_2 -admissible then $Th(\mathcal{R}_{\alpha}) \neq Th(\mathcal{R}_{\omega})$.