
RELATIONSHIPS BETWEEN COMPUTABILITY-THEORETIC

PROPERTIES OF PROBLEMS

ROD DOWNEY, NOAM GREENBERG, MATTHEW HARRISON-TRAINOR,
LUDOVIC PATEY, AND DAN TURETSKY

Abstract. A problem is a multivalued function from a set of instances to
a set of solutions. We consider only instances and solutions coded by sets

of integers. A problem admits preservation of some computability-theoretic

weakness property if every computable instance of the problem admits a solu-
tion relative to which the property holds. For example, cone avoidance is the

ability, given a non-computable set A and a computable instance of a problem

P, to find a solution relative to which A is still non-computable.
In this article, we compare relativized versions of computability-theoretic

notions of preservation which have been studied in reverse mathematics, and

prove that the ones which were not already separated by natural statements
in the literature actually coincide. In particular, we prove that it is equivalent

to admit avoidance of 1 cone, of ω cones, of 1 hyperimmunity or of 1 non-Σ0
1

definition. We also prove that the hierarchies of preservation of hyperimmunity

and non-Σ0
1 definitions coincide. On the other hand, none of these notions

coincide in a non-relativized setting.

1. Introduction

In this article, we classify computability-theoretic preservation properties studied
in reverse mathematics, namely cone avoidance, preservation of hyperimmunities,
preservation of non-Σ0

1 definitions, among others. Many of these preservation prop-
erties have already been separated using natural problems in reverse mathematics
– that is, there is a natural problem which is known to admit preservation of one
property but not preservation of the other. The observation that emerges from
our work is that those properties which have not already been separated in fact
coincide.1

Reverse mathematics is a foundational program whose goal is to determine the
optimal axioms for proving ordinary theorems. It uses subsystems of second-order
arithmetics, with a base theory, RCA0, capturing computable mathematics. See
Simpson’s book [31] for a reference in reverse mathematics. A structure in this
language is a tuple (N,S,+N ,∗N ,<N ,0N ,1N), where N stands for the first-order
part, and S for the set of reals. We are in particular interested in structures in
which the first-order part consists of the standard integers ω, equipped with the
natural operations. These structures are called ω-structures, and are fully specified
by their second-order part S. The choice of the axioms of RCA0 yields a nice
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characterization of the second-order part of ω-models of RCA0 in terms of Turing
ideals.

Definition 1.1. A Turing ideal is a collection of reals S ⊆ 2ω which is closed under
the effective join and downward-closed under the Turing reduction. In other words

(a) ∀X,Y ∈ S,X ⊕ Y = {2n ∶ n ∈X} ∪ {2n + 1 ∶ n ∈ Y } ∈ S
(b) ∀X ∈ S,∀Y ⩽T X,Y ∈ S

Many statements studied in reverse mathematics can be formulated as mathe-
matical problems, with instances and solutions. For example, weak König’s lemma
(WKL) asserts that every infinite, finitely branching subtree of 2<ω has an infinite
path. Here, an instance is such a tree T , and a solution to T is an infinite path
through it. An ω-structure M with second-order part S is a model of a problem
P (written M ⊧ P) if every instance in S has a solution in it. In this case we also
say that P holds in S. In order to separate a problem P from another problem Q in
reverse mathematics, one usually constructs a Turing ideal S in which P holds, but
not Q. However, when closing the Turing ideal with solution to instances of P, one
must be careful not to make it a model of Q. This motivates the use of preservation
properties.

Definition 1.2. Fix a collection of sets W ⊆ 2ω downward-closed under Turing
reduction. A problem P admits preservation of W if for every set Z ∈ W and every
Z-computable instance X of P, there is a solution Y to X such that Z ⊕ Y ∈ W.

The following basic lemma is at the core of separations in reverse mathematics.

Lemma 1.3. Suppose a problem P admits preservation of some collection W, but
another problem Q does not. Then there is a Turing ideal S ⊆ W in which P holds,
but not Q.

Proof. Since Q does not admit preservation of W, there is some Z ∈ W, and a Q-
instance XQ ⩽T Z such that for every solution Y to XQ, Z ⊕ Y /∈ W. We will build
a Turing ideal S ⊆ W containing Z and in which P holds. In particular, Q cannot
hold in any such Turing ideal. We build a countable sequence of sets Z0, Z1, . . .
such that for every n ∈ ω, ⊕s<nZs ∈ W, and for every P-instance X ⩽T ⊕s<nZs,
there is some m ∈ ω such that Zm is a P-solution to X. Start with Z0 = Z. Having
defined Z0, . . . , Zn−1, pick the next P-instance X ⩽T ⊕s<nZs by ensuring that each
instance will receive attention at a finite stage. Since P admits preservation of W,
there is a P-solution Zn to X such that ⊕s⩽nZs ∈ Wn. Then go to the next stage.
The collection S = {X ∶ (∃s)X ⩽T ⊕s<nZs} is a Turing ideal included in W in
which P holds but not Q. �

Many statements in reverse mathematics, mostly coming from Ramsey theory,
have been separated by looking at the appropriate computability-theoretic notion
of preservation. We now detail some outstanding ones, which will serve as a basis
for our classification study.

1.1. Cone avoidance. Perhaps the most important property of preservation in re-
verse mathematics is the notion of cone avoidance, both for its intrinsic significance,
namely, the inability to code sets into the solutions of a computable instance of a
problem, and as a tool to separate statements from the Arithmetic Comprehension
Axiom (ACA).
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Definition 1.4. Fix n ⩽ ω. A problem P admits avoidance of n cones if for every
set Z and every collection {Bs ∶ s < n} of non-Z-computable sets, every P-instance
X ⩽T Z has a solution Y such that for every s < n, Bs /⩽T Z ⊕ Y .

This definition can be understood in terms of Definition 1.2 by defining

W(Bs ∶ s < n) = {Y ∶ (∀s < n)Bs /⩽T Y }.
Then P admits avoidance of n cones precisely if it admits preservation of W(Bs ∶
s < n) for every collection {Bs ∶ s < n}. A similar analysis applies to all of the
avoidance properties we will study, although for the rest we will not take the time
to make it explicit.

Jockusch and Soare [13, Theorem 2.5] proved that weak König’s lemma (WKL)
admits avoidance of ω cones.2 Seetapun’s celebrated theorem (see [29]) states that

Ramsey’s theorem for pairs (RT2
2) admits avoidance of ω cones, answering a long-

standing open question. On the other hand, Jockusch [12] proved that Ramsey’s

theorem for triples (RT3
2) does not. Later, Wang [34] proved the surprising result

that for every n ⩾ 2, there is some k ∈ ω such that RTnk+1,k admits avoidance of
ω cones, where RTnk+1,k asserts that for every coloring f ∶ [ω]n → k + 1, there is
an infinite set H ⊆ ω such that ∣f[H]n∣ ⩽ k. By looking at the literature, one can
observe that all the proofs of cone avoidance hold for ω cones simultaneously. In
this paper, we justify this observation by proving that avoidance of 1 cone and of
ω cones coincide.

1.2. Preservation of non-Σ0
1 definitions. Wang [33] dramatically simplified sep-

aration proofs of the Erdős-Moser (EM) from the Ascending Descending Sequence
(ADS) of Lerman, Solomon and Towsner [18] by proving that some problems “pre-
serve” the arithmetical hierarchy, in the sense that given a fixed strictly non-Σ0

n

set A and given a P-instance, there is a solution Y such that A is not Σ0
n(Y ). We

consider the case of non-Σ0
1 sets.

Definition 1.5. Fix n ⩽ ω. A problem P admits preservation of n non-Σ0
1 defini-

tions if for every set Z and every collection {Bs ∶ s < n} of non-Z-c.e. sets, every
P-instance X ⩽T Z has a solution Y such that for every s < n, Bs is not Z ⊕ Y -c.e.

This framework was very successful in proving separation results between Ramsey-
like statements over ω-models. Wang [33] proved that WKL and the Erdős-Moser
theorem (EM) admits preservation of ω non-Σ0

1 definitions, while the thin set theo-

rem for pairs (TS2ω) does not. Patey [24] proved that for every k ⩾ 1, RT2
k+1,k admits

preservation of k but not k+1 non-Σ0
1 definitions. In particular, Ramsey’s theorem

for pairs and two colors admits preservation of 1 but not 2 non-Σ0
1 definitions.

1.3. Preservation of hyperimmunities. The proof that Ramsey’s theorem for
triples does not admit cone avoidance consists of constructing a computable coloring
f ∶ [ω]3 → 2 such that every f -homogeneous set H = {x0 < x1 < . . .} is so sparse
that its principal function pH ∶ ω → ω defined by pH(n) = xn grows faster than
the settling time of the halting set. Actually, all the proofs that a Ramsey-like
statement does not admit cone avoidance exploit the existence of instances whose
solutions are all sufficiently sparse to compute fast-growing functions dominating
moduli of computation [26]. It is therefore natural to consider which problems have
the ability to compute fast-growing functions.

2Avoidance of ω cones is known as cone avoidance in the literature.
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A function f ∶ ω → ω is hyperimmune if it is not dominated by any computable
function. An infinite set A = {x0 < x1 < . . .} is hyperimmune if its principal function
pA is hyperimmune. Equivalently, a set A is hyperimmune if for every computable
sequence of pairwise disjoint non-empty finite coded sets F0, F1, . . . , there is some
n ∈ ω such that A ∩ Fn = ∅.

Definition 1.6. Fix n ⩽ ω. A problem P admits preservation of n hyperimmunities
if for every set Z and every collection {fs ∶ s < n} of Z-hyperimmune functions,
every P-instance X ⩽T Z has a solution Y such that for every s < n, fs is Z ⊕ Y -
hyperimmune.

Jockusch and Soare [13, Theorem 2.4] proved that WKL admits preservation
of ω hyperimmunities (in fact, every computable instance of WKL has a solution
of hyperimmune-free degree). Patey [25] proved that the Erdős-Moser theorem

admits preservation of ω hyperimmunities and that for every k ⩾ 1, RT2
k+1,k admits

preservation of k, but not k + 1, hyperimmunities. He also proved that the thin set
theorem for pairs admits preservation of k hyperimmunities for every k ∈ ω, but
not of ω hyperimmunities.

As it happens, all the separations over ω-models and over computable reduction
which have been proven by notions of preservation of non-Σ0

1 definitions can also
be proved by preservation of hyperimmunities, and vice versa. We prove in this
paper that this is not a coincidence, and that the two notions of preservation are
indeed equivalent.

1.4. Constant-bound trace avoidance. Both the original proof of cone avoid-
ance of Ramsey’s theorem for pairs by Seetapun [29] and the proof by Cholak,
Jockusch and Slaman [4] involve Mathias-like notions of forcing within models of
weak König’s lemma. Their proofs seem to make an essential use of compactness,
and the community naturally wondered whether this use was necessary. Liu [19]
recently negatively answered the long-standing open question of whether Ramsey’s
theorem for pairs implies weak König’s lemma in reverse mathematics. He later [20]

refined his argument and proved that RT2
2 does not even imply the existence of

Martin-Löf randoms, using the notion of constant-bound trace avoidance for closed
sets3.

Given a closed set C ⊆ 2ω, a trace is a collection of finite coded sets of strings
F0, F1, . . . such that for every n ∈ ω, Fn contains only strings of length exactly n,
and C ∩ [Fn] ≠ ∅ where [Fn] is the clopen set generated by Fn. In other words, for
every n ∈ ω, there is a string σ ∈ Fn with ∣σ∣ = n such that σ ≺ P for some P ∈ C. A
k-trace of C is a trace such that ∣Fn∣ = k for every n ∈ ω. A constant-bound trace of
C is a k-trace for some k ∈ ω.

Definition 1.7. Fix n ⩽ ω. A problem P admits avoidance of constant-bound traces
for n closed sets if for every set Z and every collection of closed sets {Cs ⊆ 2ω ∶ s <
n} with no Z-computable constant-bound trace, every P-instance X ⩽T Z has a
solution Y such that for every s < n, Cs has no Z ⊕ Y -computable constant-bound
trace.

3In his article, Liu calls this notion constant-bound enumeration avoidance. We rechristen it
in keeping with the notion of traces as studied in algorithmic randomness [32]
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This notion of avoidance, which at first sight seems slightly more artificial, hap-
pens to be a very powerful tool to prove that Ramsey-like statements do not imply
notions of compactness.

Liu [20] proved that Ramsey’s theorem for pairs and two colors (RT2
2) admits

avoidance of constant-bound traces for 1 closed set, while weak König’s lemma
(WKL) does not. Patey [22] proved that the Erdős-Moser theorem (EM) admits
avoidance of constant-bound traces for ω closed sets, and that for every k ⩾ 1,
RT2

k+1,k admits avoidance of constant-bound traces for k but not k + 1 closed sets,

and that TS2ω admits avoidance of constant-bound traces for k closed sets for every
k ∈ ω, but not for ω closed sets.

1.5. Other preservation notions. As explained, the notion of hyperimmunity
can be expressed both in terms of fast-growing functions, and as sets which can-
not be traced by computable strong arrays. Hyperimmunity strengthens another
property of sets called immunity, which refers to the impossibility of computing an
infinite subset of the set. Immunity is a natural notion to look at when consid-
ering Ramsey-like theorems, since their sets of solutions are closed under infinite
subsets. Although hyperimmunity is a strengthening of immunity, preservation of
hyperimmunity is actually strictly weaker than preservation of immunity.

Definition 1.8. Fix n ⩽ ω. A problem P admits preservation of n immunities if
for every set Z and every collection {Bs ∶ s < n} of Z-immune sets, every P-instance
X ⩽T Z has a solution Y such that for every s < n, Bs is Z ⊕ Y -immune.

Very few statements in reverse mathematics admit preservation of ω immunities.
The most notable is the cohesiveness principle (COH). All the statements which are
known to admit preservation of ω immunities actually also preserve the following
seemingly stronger notion.

Definition 1.9. Fix n ⩽ ω. A problem P admits avoidance of n closed sets in the
Baire space if for every set Z and every collection {Cs ∶ s < n} of closed sets in
the Baire space with no Z-computable member, every P-instance X ⩽T Z has a
solution Y such that for every s < n, Cs has no Z ⊕ Y -computable member.

A similar notion can be defined for closed sets in the Cantor space. We will prove
that avoiding closed sets in the Cantor space or in the Baire space are equivalent.
We leave open the question whether every problem admitting preservation of ω
immunities also admits avoidance of ω closed sets.

1.6. Summary of the relations between properties of preservation. The
notions of preservation admit a combinatorial counterpart, in which no effectiveness
restriction is imposed on the instance of the problem. This is the notion of strong
preservation.

Definition 1.10. Fix a collection of setsW ⊆ 2ω downward-closed under the Turing
reduction. A problem P admits strong preservation of W if for every set Z ∈ W and
every (not-necessarily Z-computable) instance X of P, there is a solution Y to X
such that Z ⊕ Y ∈ W.

Considering strong preservation has two main justifications. First, its reflects the
combinatorial weakness of problems, as opposed to the computational weakness of
standard notions of preservation. Indeed, by proving that the infinite pigeonhole
principle admits strong avoidance of ω cones, Dzhafarov and Jockusch [8] show
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Avoidance of
ω closed sets

Avoidance of
1 closed set

Preservation of
ω immunities

Preservation
of 1 immunity

Avoidance of cb traces
for ω closed sets

Avoidance of cb traces
for 2 closed sets

Avoidance of cb
traces for 1 closed set

Preservation of ω
hyperimmunities

Preservation of ω
non-Σ0

1 definitions

Preservation of 2
hyperimmunities

Preservation of 2
non-Σ0

1 definitions

Preservation of 1
hyperimmunity

Preservation of 1
non-Σ0

1 definition
Avoidance
of 1 cone

Avoidance
of ω cones

Figure 1. Diagram of relations between properties of preserva-
tion. A double arrow denotes a strict implication, a dotted double
arrows express a strict hierarchy, while a bidirectional arrow is an
equivalence. The only unknown arrow is the reversal from preser-
vation of ω immunities to avoidance of ω closed sets.

that there is an intrinsic combinatorial weakness in the pigeonhole principle which
prevents the coding of arbitrary sets in the collection of solutions. On the other
hand, the proof of Seetapun [29] that Ramsey’s theorem for pairs admits avoidance
of ω cones strongly relies on the effectiveness of the colorings of pairs. When
removing the effectiveness restriction, one can code any hyperarithmetical set, and
therefore RT2

2 does not admit strong avoidance of ω cones. These results can be
considered as interesting per se.

The second reason is more technical, and specific to Ramsey-like statements.
Many such statements are about colorings over [ω]n and are parametrized by the
size n of the tuples. See for example Ramsey’s theorem [12], the thin set [3], free
set [3], and rainbow Ramsey [34] theorems. Such theorems admit inductive proofs
based on n. Proofs that such a statement Pn+1 admits some preservation are usually
obtained by proving that Pn admits strong preservation of the property, and then
deducing the non-strong version for Pn+1. One can even obtain reversals for the
notions of avoidance mentioned in this article. See for example Theorem 1.5. of [5].



RELATIONSHIPS BETWEEN PROPERTIES OF PROBLEMS 7

One can directly deduce implications between strong notions of preservation from
their corresponding weak notions of preservation.

Theorem 1.11. Suppose preservation of W1 implies preservation of W2. Then
strong preservation of W1 implies strong preservation of W2.

Proof. Let P be a problem which admits strong preservation of W1. We prove that
P admits strong preservation ofW2. Fix a set Z ∈ W2 and an instance X of P. Let P̃
be the problem whose unique instance is ∅, and whose solutions are the P-solutions
of X. In particular, P̃ admits preservation of W1, so it admits preservation of W2.
Let Y be a P̃-solution to the P̃-instance ∅ such that Z ⊕ Y ∈ W2. In particular, Y
is a P-solution to the P-instance X. �

The remainder of this article is devoted to proving the equivalences and non-
equivalences of the notions of preservation presented above.

2. Avoiding cones

The goal of this section is to prove the following theorem. The variety of notions
of preservation which happen to be equivalent can be taken as an argument in favor
of the naturality of the notion.

Theorem 2.1. Let P be a problem. Then the following are equivalent:

(1) P admits avoidance of 1 cone.
(2) P admits avoidance of ω cones.
(3) P admits preservation of 1 non-Σ0

1 definition.
(4) P admits preservation of 1 hyperimmunity.

The proof of Theorem 2.1 breaks into several parts, corresponding to subsections.
In the first part, we prove the equivalence between avoiding 1 cone and avoiding
ω cones. Then, we prove the equivalence between avoiding 1 cone and preserving
1 non-Σ0

1 definition. Last, we prove the equivalence between avoiding 1 cone and
preserving 1 hyperimmunity.

2.1. Avoiding ω cones. We start by proving that the notions of avoidance of 1
cone and of ω cones coincide. For this, we need to prove two lemmas which say
that given a collection of non-zero Turing degrees d0,d1, . . . , one can always find a
degree e relative to which these degrees collapse into a single non-zero degree.

Lemma 2.2. Fix Z and B,A0,A1, . . . ≰T Z. Then there is G such that A0,A1, . . . ≰T
Z ⊕G but A0,A1, . . . ⩽T Z ⊕G⊕B.

Proof. We may assume that B is not Σ0
1(Z) (otherwise we replace it by its comple-

ment). We build G by finite extensions as the union of a sequence σ−1 ⊆ τ0 ⊆ σ0 ⊆
τ1 ⊆ σ1 ⊆ τ1 ⊆ ⋯.

Begin σ−1 = ∅. In general, let σ⟨j,k⟩ = τ⟨j,k⟩ˆ⟨Aj(k)⟩. Given σi, define τi as

follows. Let i = ⟨j, k⟩. Define a Σ0
1(Z) set D such that n ∈ D if and only if there

are ρ0, ρ1 ⪰ σiˆ0nˆ1 and ` with

ΦZ⊕ρ0j (`) ≠ ΦZ⊕ρ1j (`).
Now as B is not Σ0

1(Z) there is n ∈ B △D. If n ∈ B −D, then let τi = σiˆ0nˆ1. If
n ∈D −B, find the first witness (ρ0, ρ1, `) and choose τi to be whichever ρ has

ΦZ⊕ρj (`) ≠ Ak(`).
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This completes the construction of G.
First we claim that Ak ≰T Z⊕G. Indeed, suppose that ΦZ⊕Gj = Ak. Let i = ⟨j, k⟩.

Then, when defining τi, we must have had n ∈ B −D, or we would have chosen τi
such that for some `

ΦZ⊕τij (`) ≠ Ak(`).
So we set τi = σiˆ0nˆ1 and for all ρ0, ρ1 ⪰ τi and `,

ΦZ⊕ρ0j (`) ↓ and ΦZ⊕ρ1j (`) ↓ Ô⇒ ΦZ⊕ρ0j (`) = ΦZ⊕ρ1j (`).

Thus Z ⩾T Ak, a contradiction.
Finally, we argue that for each j, Aj ⩽T Z ⊕G⊕B. This is because Z ⊕G⊕B

can reconstruct the sequence σ−1 ⊆ τ0 ⊆ σ0 ⊆ τ1 ⊆ ⋯, and σ⟨j,k⟩ = τ⟨j,k⟩ˆ⟨Aj(k)⟩.
Indeed, given τi, G can determine σi+1. Given σi, using G we can find n such that
σiˆ0nˆ1 ≺ G. If n ∈ B, then τi = σiˆ0nˆ1. If n ∉ B, let i = ⟨j, k⟩ and search for the
first ρ0, ρ1 ⪰ σi and ` with

ΦZ⊕ρ0j (`) ≠ ΦZ⊕ρ1j (`).

Then τi is whichever ρ has ρ ≺ G. �

Lemma 2.3. Fix Z and B,A0,A1,A2, . . . ≰T Z. Then there is G such that B ≰T
Z ⊕G but, for each i, B ⩽T Z ⊕G⊕Ai.

Proof. Using Lemma 2.2 we can inductively choose G0,G1,G2, . . . such that for
each n, B,An+1,An+2, . . . ≰T Z ⊕G0 ⊕⋯⊕Gn but B ⩽T Z ⊕G0 ⊕⋯⊕Gn ⊕An.

We will define H = ⊕Hn where Hn =∗ Gn. We want to have that B ≰T Z ⊕H;
since Hn =∗ Gn, it will be automatic that for each i, B ⩽T Z⊕H⊕Ai. We define H
by forcing; our conditions are of the form H0 ⊕⋯⊕H` where Hn =∗ Gn. We argue
that given a Turing reduction Φ and a condition H0⊕⋯⊕H`, there is an extension
H0 ⊕⋯⊕Hk such that we either force that ΦZ⊕H is partial or that ΦZ⊕H ≠ B. If
there are x, k, σ`+1, . . . , σk such that

ΦZ⊕H0⊕⋯⊕H`⊕σ`+1⊕⋯⊕σk(x) ↓≠ B(x)

then we can find a condition extending H0 ⊕⋯⊕H` which forces that ΦZ⊕H ≠ B.
Otherwise, suppose that for each x there are σ`+1, . . . , σk such that

ΦZ⊕H0⊕⋯⊕H`⊕σ`+1⊕⋯⊕σk(x) ↓ .

Then B ⩽T Z ⊕H0 ⊕⋯⊕H`, a contradiction. So there must be some x such that
for all σ`+1, . . . , σk,

ΦZ⊕H0⊕⋯⊕H`⊕σ`+1⊕⋯⊕σk(x) ↑ .
Then H0 ⊕⋯⊕H` already forces that ΦZ⊕H(x) does not converge. �

Corollary 2.4. Avoidance of 1 cone implies avoidance of ω cones.

Proof. Let P be a problem admitting avoidance of 1 cone. Fix some set Z, non-Z-
computable sets A0,A1, . . . and a Z-computable instance X of P. By Lemma 2.3,
letting B = A0, there is a set G such that B ≰T Z ⊕ G but, for each i, B ⩽T
Z ⊕G⊕Ai. Since P admits avoidance of 1 cone, there is a P-solution Y to X such
that B ≰T Z⊕G⊕Y . We claim that for every i ∈ ω, Ai ≰T Z⊕Y . Indeed, otherwise,
B ⩽T Z ⊕G⊕Ai, but then B ⩽T Z ⊕G⊕ Y , contradiction. �
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However, when considering non-relativized versions of cone avoidance, avoiding
2 cones is strictly stronger than avoiding 1 cone. We call unrelativized a notion for
which the ground set Z is ∅. A pair of Turing degrees a,b is minimal if they are
both non-zero, 0 is the only degree below both of them.

Theorem 2.5. There is a problem which admits non-relativized avoidance of 1
cone, but not of 2 cones.

Proof. Fix two sets A and B whose Turing degrees form a minimal pair. Let P be
the problem with unique instance ∅. A solution is either of A or B. P does not
admit non-relativized avoidance of 2 cones, as witnessed by taking the cones A and
B. On the other hand, P admits non-relativized avoidance of 1 cone. Indeed, let C
be a non-computable set, and consider the unique instance ∅ of P. By minimality
of the pair of degrees of A and B, either A /⩾T C or B /⩾T C. In either case, there
is a P-solution Y ∈ {A,B} to ∅ such that C /⩽T Y . �

The equivalence between the two relativized notions show in particular that there
is no pair of Turing degrees which is minimal relative to every degree which lies
above neither of them. Indeed, if there were such a pair A,B, one could define the
problem P whose unique instance is ∅ and whose solutions are either A or B. The
problem P would not admit avoidance of 2 cones as witnessed by the cones above
A and B. However, by relativizing the argument of Theorem 2.5, one could prove
that P admits avoidance of 1 cone, contradicting Corollary 2.4.

2.2. Preserving 1 hyperimmunity. We now prove that preserving 1 cone is
equivalent to preserving 1 hyperimmunity. The forward implication is relatively
simple.

Lemma 2.6. Fix a set Z and a nondecreasing Z-hyperimmune function f ∶ ω → ω.
There is a set G and a ∆0

2(G) set A /⩽T Z ⊕G such that f is a G-modulus for A.

Proof. We construct G which will be a ∆0
2-approximation of A, with f a G-modulus

for A. More precisely,

(∀x)(∀y > f(x))G(x, y) = G(x, f(x)) = A(x)

It is now clear that for any h dominating f , A ⩽T G ⊕ h. It remains only to
show that A /⩽T Z ⊕ G. We will construct our set G by forcing. A condition is
a partial function σ ∶ ω2 → 2 with finite domain. The function σ is a stem for
the ∆0

2 approximation G ∶ ω2 → 2. We moreover require that there can only be
(x, y), (x, z) ∈ dom(σ) with σ(x, z) ≠ σ(x, y) if f(x) ⩾ min(y, z). This ensures that
f is a modulus for the convergence of G.

A condition τ extends σ (written τ ⩽ σ) if τ ⊇ σ. Every sufficiently generic filter
yields G such that G is a stable function whose limit is A ∶= limsG(⋅, s). We now
prove that the set of conditions forcing ΦG⊕Ze ≠ A is dense.

Fix a condition σ. For each x ⩽ n, let sx be largest with (x, sx) ∈ dom(σ), if
this exists, and sx = 0 otherwise. For every n, we define h(n) by a Z-computable
search. We search for τ ⊇ σ such that:

● For all x ⩽ n and all t, r ⩾ sx with (x, t), (x, r) ∈ dom(τ), τ(x, t) = τ(x, r);
and

● Φτ⊕Z(n) ↓.
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We define h(n) = ∣τ ∣ for the first such τ found, and h(n) ↑ if there is no such τ .
Note that we are not restricting our search to conditions, as that would not be a
Z-computable search. We have two cases.

Case 1: h(n) ↑ for some n ∈ ω. Then let µ ≺ σ be a condition such that for
all x ⩽ n and all t with sx < t ⩽ f(x), (x, t) ∈ dom(µ) and µ(x, t) = σ(x, sx) if
(x, sx) ∈ dom(σ), and µ(x, t) = 0 otherwise. This condition forces ΦG⊕Ze (n) ↑.

Case 2: the function h is total Z-computable. Since f is Z-hyperimmune, there
is some n > ∣σ∣ such that f(n) > h(n). Let τ witness that h(n) ↓= ∣τ ∣. Let τ̂ ⊃ τ
be obtained by defining τ̂(n, s) = 1 − Φτ⊕Z(n) for all s with h(n) < s ⩽ f(n).
Note that τ has no alternations in the columns x < n that weren’t present in σ,
and any alternations in a column x ⩾ n occur before ∣τ ∣ = h(n) < f(n) ⩽ f(x).
There is possibly one more alteration in τ̂ , in column n, but by construction this
occurs before f(n). So τ̂ is a valid condition extending σ. Moreover, τ̂ forces
ΦG⊕Ze (n) ↓≠ A �

Corollary 2.7. Avoidance of 1 cone implies preservation of 1 hyperimmunity.

Proof. Suppose a problem P admits avoidance of 1 cone. Fix a set Z, a Z-
hyperimmune function f ∶ ω → ω and a P-instance X ⩽T Z. By lemma 2.6, there is
a set G and a ∆0

2(G) set A /⩽T Z⊕G such that f is a modulus for A. Since P admits
avoidance of 1 cone, then there is a P-solution Y to X such that A /⩽T Z ⊕G⊕ Y .
If f is not Z ⊕ Y -hyperimmune, then Z ⊕ Y computes a function h dominating f ,
and since f is a Z ⊕G-modulus for A, Z ⊕G⊕ Y computes A, contradiction. �

Lemma 2.8 (Patey [22]). For every set Z, every closed set C ⊆ ωω with no Z-
computable member, and every set A, there is a set G such that C has no Z ⊕G-
computable member and A is ∆0

2(G).

Proof. Consider the notion of forcing whose conditions are pairs (σ,n), where σ
is a partial function ⊆ ω2 → 2 with finite support, and n ∈ ω. Informally, σ is a
stem of the ∆0

2 approximations G ∶ ω2 → 2 of A, and n specifies that the n first
columns of σ are already locked to A↾n. Accordingly, a condition (τ,m) extends
(σ,n) (written (τ,m) ⩽ (σ,n)) if τ ⊇ σ, m ⩾ n, and for every x < n and t with
(x, t) ∈ dom τ ∖ dom(σ), τ(x, t) = A(x). Any sufficiently generic filter yields a
stable function whose limit we denote A.

We now prove that the set of conditions forcing ΦG⊕Ze not to be a member of
C is dense. Given a condition (σ,n), define a Z-computable decreasing sequence
of conditions (σ,n) ⩾ (τ0, n) ⩾ (τ1, n) ⩾ . . . such that for every i, Φτi⊕Ze (i) ↓. We
have two cases. In the first case, this sequence is finite, with some maximal element
(τk, n). Then the condition (τk, n) is an extension of (σ,n) forcing ΦG⊕Ze (k + 1) ↑.
In the second case, the sequence is infinite. Since C has no computable member,
and by closure of C, there must be some k ∈ ω such that Φτk⊕Ze ↾k ↓= ρ for some
ρ ∈ ω<ω such that C ∩ [ρ] = ∅. Again, the condition (τk, n) is an extension of (σ,n)
forcing ΦG⊕Ze not to be a member of C. This completes the proof of the lemma. �

Lemma 2.9. Fix a set Z and C ≰T Z. There is a set G and a function f ∶ω → ω
such that f is G⊕Z-hyperimmune, but Z ⊕G⊕C computes a function dominating
f .

Proof. By Lemma 2.8 applies to Z and the closed set {C}, there is G such that
C is ∆0

2(Z ⊕G) but C ≰T Z ⊕G. Fix a ∆0
2 approximation C(x, s) for C relative

to Z ⊕G. Let f ∶ω → ω be the modulus for C with respect to this approximation,
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i.e., f(n) is the least s ⩾ n such that for all m ⩽ n, C(m,s) = C(m). Note that
Z ⊕G ⊕ C ⩾T f , and any function dominating f , together with Z ⊕G, computes
C: given g dominating f , compute C(n) by finding s∗ ⩾ n such that for all s with
s∗ ⩽ s ⩽ g(s∗), C(m,s) = C(m,s∗); then C(n) = C(n, s∗) (see [10]).

Then f is G ⊕ Z-hyperimmune, as any function dominating f would together
with Z ⊕ G compute C, and C ≰T Z ⊕ G. But Z ⊕ G ⊕ C computes a function
dominating f , namely f itself. �

Corollary 2.10. Preservation of 1 hyperimmunity implies avoidance of 1 cone.

Proof. Suppose that P admits preservation of one hyperimmunity. Fix a set Z, a
C ≰T Z, and a Z-computable instance X of P. By Lemma 2.9, there is a set G and
a function f ∶ω → ω such that f is G⊕Z-hyperimmune but Z ⊕G⊕C computes a
function dominating f . Since P admits preservation of one hyperimmunity, there is
a solution Y to X such that f is Z ⊕G⊕ Y -hyperimmune. Then C ≰T Z ⊕ Y . �

Here again, we can consider unrelativized versions of these notions of preserva-
tion, and prove that they do not coincide.

Theorem 2.11. There is a problem which admits non-relativized avoidance of 1
cone, but not non-relativized preservation of 1 hyperimmunity.

Proof. Fix a ∆1
1-random set A = {x0 < x1 < . . .}, and let pA denote its principal

function, that is, the function defined by pA(n) = xn. Let P be the problem with
unique instance ∅. A solution is any function dominating pA. Since A is ∆1

1-
random, it is in particular hyperimmune [16], so P does not admit unrelativized
preservation of 1 hyperimmunity. We now prove that P admits non-relativized
avoidance of 1 cone. Fix a non-computable set C, and the unique instance ∅ of
P. If C is hyperarithmetical, then since any ∆1

1-random forms a minimal pair with
any non-zero hyperarithmetical set [7], C /⩽T A, and therefore pA is a P-solution
to ∅ such that C /⩽T pA. If C is non-hyperarithmetical, then it does not admit a
modulus [10], and therefore there is a function f ∶ ω → ω dominating pA such that
C /⩽T f . In either case, there is a P-solution f to ∅ such that C /⩽T f . �

The other direction does not hold either. A Turing degree d is hyperimmune-free
if it does not bound a hyperimmune function. There exists non-zero hyperimmune-
free degrees.

Theorem 2.12. There is a problem which admits non-relativized preservation of
1 hyperimmunity, but not non-relativized avoidance of 1 cone.

Proof. Fix a set A of non-zero hyperimmune-free degree. Let P be the problem
with unique instance ∅. The unique solution is the set A. Clearly, P does not
admit non-relativized avoidance of 1 cone. On the other hand, P admits non-
relativized preservation of 1 hyperimmunity. Indeed, fix a hyperimmune function
f and the unique P-instance ∅. Since every A-computable function is dominated
by a computable function, f is hyperimmune relative to A. �

Again, the fact that the relativized version of these notions coincide shows that
every hyperimmune function behaves, relative to some degree, like a modulus for
a non-computable set. On the other hand, no non-zero hyperimmune-free degree
remains hyperimmune-free relative to every degree not above it. Indeed, the failure
of the former property could be used to relativize the proof of Theorem 2.11, and
the failure of the latter would enable us to relativize Theorem 2.12.



12 DOWNEY, GREENBERG, HARRISON-TRAINOR, PATEY, AND TURETSKY

2.3. Preserving 1 non-Σ0
1 definition. We now prove our last equivalence of The-

orem 2.1, namely, preserving 1 non-Σ0
1 definition is equivalent to avoiding 1 cone.

The first direction is immediate, given the fact that if a set is non-computable, then
either it or its complement is not Σ0

1.

Lemma 2.13. Preservation of 1 non-Σ0
1 definition implies avoidance of 1 cone.

Proof. Suppose that P admits preservation of 1 non-Σ0
1 definition. Fix A and Z

such that A ≰T Z, and let X be a Z-computable instance of P. We may assume
that A is not Σ0

1(Z), otherwise we take the complement of A. Then there is a
solution Y to X such that A is not Σ0

1(Z ⊕ Y ), and so A ≰T Z ⊕ Y . �

The reversal requires several lemmas which will also be useful in a latter section,
when studying the hierarchy of preservation of k non-Σ0

1 definitions. In particu-
lar, these lemmas imply the non-existence of some particular enumeration degrees,
namely, totally cototal degrees.

We review some basic facts about the enumeration degrees. Enumeration re-
ducibility was introduced by Friedberg and Rogers in 1959 [9]. This reducibil-
ity mimics Turing reducibility, except that only positive information about sets
is used or required. Formally, for A,B ⊆ ω, we say that A is enumeration re-
ducible to B (and write A ⩽e B) if there is a uniform way to compute an enu-
meration of A from an enumeration of B; equivalently, if there is a c.e. set Φ
of pairs of finite sets (called an enumeration functional, or operator) such that
A = Φ(B) = ⋃{a ∶ (∃b ⊆ B) (a, b) ∈ Φ}. There is a natural embedding of the Tur-

ing degrees into the enumeration degrees, by mapping degT (A) to dege(A ⊕ A).
The latter is called the total degree of A, and the degrees thus obtained are called
total degrees (the terminology originates in viewing the enumeration degrees as the
degrees of partial functions, by identifying a partial function with its graph. The
total degrees are then the degrees containing total functions).

For our purposes, enumeration reducibility is useful since a set A is c.e. relative
to B if and only if A ⩽e B ⊕B, that is, if the enumeration degree of A lies below
the total degree of B. Thus, avoiding making A c.e. is the same as avoiding the
upper cone above A in the enumeration degrees (but considering the degree doing
the avoiding as total). Relevant here is Selman’s theorem [30], that states that
every enumeration degree is determined by the total degrees above it; indeed, every
enumeration degree is the infimum of two total degrees. It follows that enumeration
reducibility is equivalent to its non-uniform version: A ⩽e B if and only if every
enumeration of B computes an enumeration of A.

Now, the plan for showing the converse of Lemma 2.13 is as follows. We suppose
that a problem P avoids upper cones in the Turing degrees. Ignoring the parame-
ter Z for notational simplicity for the moment, let X be a computable instance of P
and let A be a set which is not c.e. We would like to “change the basis” to a pa-
rameter G which makes enumerating A equivalent to computing it; that is, some G
such that A is co-c.e. in G, but not c.e. in G (so that it is not G-computable). We
cannot always do this; but we can show that there is some B ⩽e A, still not c.e.,
such that B ∈ Π0

1(G)∖Σ0
1(G). This suffices, because avoiding the enumeration cone

above B will clearly imply avoiding the cone above A.
Now it turns out that the existence of such G is equivelnt to B being not cototal.

A set B is cototal if B ⩽e B. The reason for this terminology is a characterisation of
the total degrees as those enumeration degrees containing sets C satisfying C ⩽e C.
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Every total degree is cototal (contains a cototal set) but not vice-versa. The cototal
degrees were investigated extensively by Miller, Soskova and their co-authors [21, 1].
Now, the existence of some G making a set B co-c.e. but not c.e. is equivalent to
the existence of some total degree above degeB which is not above degeB. By

Selman’s theorem mentioned above, this is equivalent to B ≰e B, i.e., to B not
being cototal. Thus, our main technical result required for the proof is that every
nonzero enumeration degree bounds a set which is not cototal. We say that A is
totally cototal if every B ⩽e A is a cototal set. We show:

Proposition 2.14. There is no totally cototal degree above 0e.

To show Proposition 2.14, we use th notion of semi-computable sets. A set X
is semi-computable if there is a total computable function g ∶ [ω]2 → ω such that
for every {x, y} ∈ [ω]2, if {x, y} ∩X ≠ ∅ then g({x, y}) ∈ {x, y} ∩X. This notion
was introduced by Jockusch in his Ph.D. thesis [15]; he studied them in relation
to Dekker’s retraceable sets [6]. In [14], Jockusch showed that a set X is semi-
computable if and only if it is an initial segment of some computable linear ordering.
The relvance of semi-computable sets to our proof is the following:

Lemma 2.15 (Arslanov, Cooper, Kalimullin [2]). Let A be a semi-computable set.
Then:

(1) A and A form a minimal pair in the enumeration degrees.
(2) A is not cototal unless A is c.e.

Proof. For (1), suppose that B ⩽e A and B ⩽e A via enumeration operators Φ and
Ψ respectively. Let f be the function that witnesses that A is semi-computable.
Then to see that B is c.e., note that

B = {x ∶ ∃ finite sets F,G such that x ∈ ΦF , x ∈ ΨG, and for all a ∈ F and b ∈ G, f(a, b) = a}.
For (2), suppose that A is cototal. Then A ⩾e A, and so since A and A form a

minimal pair in the enumeration degrees, A ≡e ∅. �

Thus, it suffices to show that if A is non-c.e., then there is some C ⩽e A which
is semi-computable. This was independently proved by Kihara, Ng and Pauly [17,
Lem.7.12]. As we will shortly see, the main case is when A is ∆0

2. We prove:

Lemma 2.16. For every A ∈ ∆0
2 −Σ0

1, there is B ⩽e A such that:

(1) B ∈ ∆0
2; and

(2) B is neither left c.e. nor right c.e.

Here we identify the set B with the real with binary representation 0.B.

Given this lemma, we proceed as follows.

Corollary 2.17. For any set A ∈ ∆0
2−Σ0

1, there is C ⩽e A which is semi-computable
and immune.

Proof. The argument is due to Jockusch [14]. Fix B ⩽e A as from Lemma 2.16.
Since B is ∆0

2, fix a computable sequence of rationals (qe)e∈ω converging to B. Let
C = {i ∶ qi < B} = {i ∶ qi ⩽ B} (since B is noncomputable). Then C ⩽e B, and C is
semi-computable via the induced ordering from Q. C is infinite because B is not
right c.e., and it is immune because B is not left c.e. �

We remark that for our purposes now, we do not need the immunity of C; this
will be used in a later section.
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Proof of Proposition 2.14. The argument is due to Mariya Soskova (private com-
munication).

Suppose A is a totally cototal set of non-zero degree. First we argue that A is
∆0

2. Let LA be the set of all finite binary strings lexicographically to the left of
or along A. Then LA ⩽e A. Moreover, LA is semi-computable: let f(x, y) be the
left-most of x and y. Since LA ⩽e A, it is cototal, but by Lemma 2.15 LA cannot
be cototal unless it is c.e. We also have that LA ⩾T A so A is ∆0

2.
Since A is ∆0

2 and not Σ0
1, by Corollary 2.17 there is C ⩽e A which is semi-

computable and immune, hence not Σ0
1. By assumption, C must be cototal, and so

C ⩽e C. But as mentioned above, each semi-computable set forms a minimal pair
in the enumeration degrees with its complement. This gives a contradiction. �

Corollary 2.18. Avoidance of 1 cone implies preservation of 1 non-Σ0
1 definition.

Proof. Suppose a problem P admits avoidance of 1 cone. Fix a set Z, a non-Σ0
1(Z)

set A and a Z-computable instance X of P. By Proposition 2.14 relativized to Z,
there is a non-Σ0

1(Z) set C ⩽e A ⊕ Z ⊕ Z which is not Z-cototal. In other words,

there is an enumeration G of C such that C is not Σ0
1(Z ⊕ G). Since P admits

avoidance of 1 cone, there is a P-solution Y to X such that C /⩽T Z ⊕G ⊕ Y . We
claim that A is not Σ0

1(Z ⊕ Y ). Indeed, otherwise C would be Σ0
1(Z ⊕ Y ), and

therefore C ⩽T Z ⊕G⊕ Y , contradiction. �

It remains to prove Lemma 2.16.

Proof of Lemma 2.16. Fix a computable sequence (As)s∈ω converging to A. We
simultaneously construct B and an enumeration functional Φ with B = Φ(A). Our
functional Φ will have the property that for any x, there will be at most one axiom
(x,F ) ∈ Φ with F ≠ ∅; from this it follows that B ∈ ∆0

2 (using A ∈ ∆0
2).

We interpret c.e. sets as subsets of the rationals. We have the following require-
ments to meet, for all e ∈ ω:

Re: B ≠ sup(We);
Qe: B ≠ inf(We).

Our construction will be a finite injury construction, and so a strategy for a
given requirement will act under the assumption that no higher priority strategy
will ever act.

Strategy for requirement Qe:

(1) Choose a large x, and keep both x and x + 1 out of B (no axioms for x or
x + 1 are to be enumerated into Φ);

(2) Wait for a stage s and a y ∈We,s with y −Bs < 2−(x+2).
(3) Declare x ∈ B and enumerate the axiom (x,∅) into Φ.

Strategy for requirement Re:
We construct a c.e. set De as we work. This set is reset whenever the strategy

is initialized.
Our strategy will have modules for each k ∈ ω. We will begin by running the

0-module. For each k, the k-module may run the (k+1)-module, but we will argue
that this iteration will eventually terminate.

Here is the k-module:
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(1) Choose a large xk. Let the current stage be sk. Declare x,x + 1 ∈ B,
enumerating the axioms (x,Fk) and (x + 1, Fk) into Φ, where Fk is the
positive information from Ask ↾k.

(2) Wait for a stage s at which one of the following happens:
(a) As ↾k≠ Ask ↾k. In this case, enumerate axioms (x,∅) and (x + 1,∅)

into Φ, declaring x,x + 1 ∈ B. Return to Step (1).

(b) There is a y ∈ We,s with Bs − y < 2−(x+2). In this case, enumerate all
of Fk into De and proceed to Step (3).

(3) Wait for a stage s with Fk /⊆ As. While waiting, run the (k + 1)-module.
(4) Freeze the action of any running j-modules for j > k.
(5) Wait for a stage s with Fk ⊆ As. When found, return to Step (3), resuming

the action of any frozen j-modules.

Full construction: Whenever a strategy moves between steps, we initialize all
lower priority strategies. When a Qe-strategy is initialized, we enumerate (x,∅)
and (x + 1,∅) into Φ for the strategy’s chosen x, declaring them both to be in B.
Similarly, when an Re-strategy is initialized, we enumerate (xj ,∅) and (xj + 1,∅)
into Φ for all appropriate j.

Verification:

Claim 1. For each e:

(a) The Qe-strategy eventually waits forever at Step (2) or Step (3).
(b) There is some k such that for all j < k, the j-module of the Re-strategy even-

tually waits forever at Step (3), and the k-module eventually waits forever
at Step (2) or Step (5).

Proof. By simultaneous induction. (a)e is immediate.
For (b)e, by induction there is a final time when the Re-strategy is intialized.

Let sk be the stage at which xk is chosen after this final initialization, and suppose
towards contradiction that sk is defined for all k < ω. Since (As)s∈ω converges to
A, the k-module cannot move between Steps (3) and (5) infinitely often, so it must
be that each k-module eventually waits forever at Step (3).

But then each Fk ⊆ A, and De = ⋃k Fk. Further, for any z ∈ A, there is a
sufficiently large k such that z ∈ Ask = Fk, so D = A, contrary to A not being
c.e. �

It follows that each strategy is initialized only finitely many times.

Claim 2. Each Qe-strategy meets its requirement.

Proof. Let t be the final stage at which the Qe-strategy is initialized, so no higher
priority strategy acts at any stage s > t. Consider the x chosen by this strategy.
Since lower priority strategies choose their elements large, Bs ↾x= Bt ↾x for all s > t.
Observe that by construction, x + 1 /∈ B.

If the strategy waits forever at Step (2), then certainly B ≠ inf(We).
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Suppose the strategy moves from Step (2) to Step (3) at stage t1 > t. Since
x,x + 1 /∈ Bt1 , but x ∈ B, we have

inf(We) < Bt1 + 2−(x+2)

⩽ (B ↾x)̂0∞ + 2−(x+2) + 2−(x+2)

= (B ↾x)̂1̂0∞ − 2−(x+1) + 2−(x+2) + 2−(x+2)

= (B ↾x)̂1̂0∞

⩽ B.
Thus B ≠ inf(We). �

Claim 3. Each Re-strategy meets its requirement.

Proof. Let k be such that the k-module of the strategy eventually waits forever at
Step (2) or Step (5), and let sj for j ⩽ k be the stages at which the xj is chosen
after the strategy’s final initialization. If it is defined, let sk+1 be the same for xk+1.
Note that for j < k, sj+1 is also the stage at which the j-module first reaches Step
(3). Similarly, sk+1 is defined precisely if the k-module reaches Step (3), in which
case sk+1 is the first stage at which this happens.

By construction, for any y ∈ (xj + 1, xj+1), one of the following must occur:

(i) (y,∅) has been enumerated into Φ by stage sj+1; or
(ii) For all finite sets F , (y,F ) /∈ Φ.

To see this: since xj is chosen large and no higher priority strategy acts after stage
s0, no such y can be chosen by a higher priority strategy. Also, no such y can
be chosen by a lower priority strategy after stage sj+1, since elements are always
chosen large. If y is chosen by a lower priority strategy before stage sj+1, then
at stage sj+1 we initialize that strategy and enumerate (y,∅) into Φ, if we have
not already done so. If y is chosen by no strategy, then no axioms for y are ever
enumerated into Φ.

Note also that for all j < k, xj ∈ B, and indeed xj ∈ Bs for any stage at which
the k-module is running (not frozen). So Bsk ↾xk

= Bs ↾xk
for any s > sk at which

the k-module is not frozen. The argument is now identical to the argument for the
Qe-strategy. �

This completes the proof. �

Note that the implication from preservation of 1 non-Σ0
1 definition to avoidance

of 1 cone is natural enough to hold again when considering their non-relativized
counterparts. However, these notions are not equivalent.

Lemma 2.19 (Folklore). Let A be a semi-computable set. The following are equiv-
alent:

(a) A is immune
(b) A is hyperimmune

Either implies (c) that A is not c.e.

Proof. (b) → (a) is immediate as every hyperimmune set is immune. (a) → (c) is
also immediate as every infinite c.e. set contains an infinite computable subset. Last,
we prove (a) → (b). Suppose A is not hyperimmune. Then there is a computable
strong array F0, F1, . . . such that for every n ∈ ω, Fn ∩ A ≠ ∅. By [14, Theorem
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4.1], any semi-computable set A is the initial segment of a computable linear order
L. Then {minL Fn ∶ n ∈ ω} is an infinite c.e. subset of A and contains an infinite
computable subset. �

Theorem 2.20. There is a problem which admits non-relativized avoidance of 1
cone, but not non-relativized preservation of 1 non-Σ0

1 definition.

Proof. Fix a computable linear ordering L of order type ω + ω∗ with no infinite
computable ascending or descending sequence. Such a linear order exists by Ten-
nenbaum (see [28]). Let A be the ω part of this linear order. In particular, A

and A are both ∆0
2, semi-computable and immune. By Lemma 2.19, A and A are

both non-Σ0
1 and hyperimmune. Let P be the problem with unique instance ∅. A

solution is an infinite subset of A.
For any solution Y ⊆ A, A = {x ∶ ∃y ∈ Y x ⩽L y}, so A ∈ Σ0

1(Y ), and thus P
does not admit non-relativized preservation of 1 non-Σ0

1 definition. We claim that
P admits non-relativized avoidance of 1 cone. Fix a non-computable set C and the
unique P-instance ∅. If C is not ∆0

2, then A is a P-solution to ∅ such that C /⩽T A.

If C is ∆0
2, then since A is hyperimmune and ∆0

2, by Proposition 4.4 of [11], there
is an infinite subset H ⊆ A such that C /⩽T H. In both cases, there is a Q-solution
Y to ∅ such that C /⩽T Y . �

3. The hierarchy of preservations

Given a coloring f ∶ [ω]n → k, an infinite set H ⊆ ω is f -homogeneous if f uses
only one color on [H]n. Ramsey’s theorem asserts the existence of homogeneous
sets for every k-coloring of [ω]n. Jockusch [12] proved that whenever n ⩾ 3, there
is a computable coloring f ∶ [ω]n → 2 such that every f -homogeneous set computes
∅′. However, Wang [34] proved the surprising result that this is no longer the case
when we relax the f -homogeneity condition to allow more colors.

Definition 3.1. For every n, ` ⩾ 2, let RTn<∞,` be the problem whose instances are
functions f ∶ [ω]n → k for some k ∈ ω. An RTn<∞,`-solution to f is an infinite set
H ⊆ ω such that ∣f[H]n∣ ⩽ `.

Wang [34] proved that for every n ⩾ 1, there is some ` such that RTn<∞,` ad-
mits cone avoidance. Patey [24, 25] proved the following theorem, which shows in
particular that the hierarchies of preservation of ` hyperimmunities and ` non-Σ0

1

definitions is strictly increasing.

Theorem 3.2. For every ` ⩾ 1, RT2
<∞,` admits preservation of ` but not ` + 1

non-Σ0
1 definitions, and of ` but not ` + 1 hyperimmunities.

Let us sketch the proof that RTn<∞,` does not admit preservation of ` + 1 hy-

perimmunities. Given ` ⩾ 1, build a ∆0
2 (` + 1)-partition A0 ⊔ ⋅ ⋅ ⋅ ⊔ A` = ω such

that for every i ⩽ `, Ai is hyperimmune. By Schoenfield’s limit lemma, there is a
computable coloring f ∶ [ω]2 → ` + 1 such that for every x ∈ ω, limy f(x, y) exists,

and x ∈ Alimy f(x,y). We claim that for every RT2
<∞,`-solution H to f , there is some

i ⩽ ` such that Ai is not H-hyperimmune. Since ∣f[H]2∣ ⩽ `, there is some i ⩽ ` such

that i /∈ f[H]2. In particular, H ⊆ Ai, so the principal function of H dominates the

principal function of Ai, which proves that Ai is not H-hyperimmune.
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3.1. The hyperimmunities and non-Σ0
1 definitions hierarchies. We now prove

that the two hierarchies of preservation of hyperimmunities and of non-Σ0
1 defini-

tions coincide.

Lemma 3.3. For every k ⩽ ω and every Z, for any nondecreasing functions (fi)i<k
which are not Z-computably dominated, there is a G and sets (Ai)i<k such that none
of the Ai is c.e. relative to Z ⊕G, but for any i and any function h dominating fi,
Ai is c.e. relative to Z ⊕G⊕ h.

Proof. We construct (Gi)i<k which will be Π0
2-approximations to the Ai, with each

fi a Σ0
1-modulus for Gi. That is,

x ∈ Ai ⇐⇒ ∃∞s [(x, s) ∈ Gi] ⇐⇒ ∃s > fi(x) [(x, s) ∈ Gi].
Then G = ⊕i<kGi. It is now clear that for any h dominating fi, Ai is c.e. relative
to Z ⊕G⊕ h. It remains only to show that none of the Ai is c.e. relative to Z ⊕G.

We will construct our Gi generically. Conditions in our notion of forcing are
pairs of sequences ((σi)i<k, (Ni)i<k), with:

● σi ∈ 2<ω×ω;
● Ni ∈ [ω]<ω;
● If x ∈ Ni, s > fi(x) and (x, s) ∈ dom(σi), then σi(x, s) = 0; and
● All but finitely many of the σi and Ni are empty.

Of course the last requirement only matters when k = ω. Extension is defined
elementwise.

Note that for a sufficiently generic filter F , x ∈ AFi ⇐⇒ x /∈ NF
i .

Note also that for any s > fj(x) and any condition ρ = ((σi)i<k, (Ni)i<k), if
σj(x, s) = 1 then ρ ⊩ [x /∈ Ni]. So for a sufficiently generic filter F , each AFi is
infinite.

For a c.e. operator W and a j < k, we must show that for a sufficiently generic
G, Aj ≠ WZ⊕G. Given a condition ρ = ((σi)i<k, (Ni)i<k), we define a function g.
For each n, search Z-effectively for a (τi)i<k and a y ∈ ω such that:

● y > n;
● For each i < k, τi extends σi;
● For all i < k, x ∈ Ni and s > fi(x), we have τi(x, s) ≠ 1; and

● y ∈WZ⊕(τi)i<k .

Note that this search is Z-effective, albeit nonuniformly in the information {(i, x, fi(x)) ∶
x ∈ Ni}. For the first y and (τi)i<k found, define g(n) to be the largest s with
τj(y, s) = 1, or g(n) = 0 if no such s exists.

If some g(n) is undefined, then no extension of ρ forces any y > n into WZ⊕G, and
so WZ⊕G is finite. But we already said that Aj is infinite, and so ρ ⊩ [Aj ≠WZ⊕G

j ].
If g is total, then since g is Z-computable, there must be an n with g(n) < fj(n).

Let (τi)i<k and y be the witnesses to the definition of g(n). Define Mi = Ni for i ≠ j,
and define Mj = Nj∪{y}. Since fj(n) ⩽ fj(y), there is no s > fj(y) with τj(y, s) = 1,
so ρ̂ = ((τi)i<k, (Mi)i<k) is a condition extending ρ, and ρ̂ ⊩ [y ∈WZ⊕G −Aj]. �

Corollary 3.4. For any k ⩽ ω, preservation of k non-Σ0
1 definitions implies preser-

vation of k hyperimmunities.

Proof. Suppose a problem P admits preservation of k non-Σ0
1 definitions. Fix a set

Z, k Z-hyperimmune functions f0, f1, . . . , fk−1 and a Z-computable P-instance X.
By lemma 3.3, there is a G and sets (Ai)i<k such that none of the Ai is Σ0

1(Z ⊕G),
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but for any i and any function h dominating fi, Ai is Σ0
1(Z ⊕ G ⊕ h). Since P

admits preservation of k non-Σ0
1 definitions, there is a P-solution Y to X such that

for every i < k, Ai is not Σ0
1(Z ⊕ G ⊕ Y ). In particular, for every i < k, fi is

Z ⊕G⊕ Y -hyperimmune. �

Lemma 3.5. For every set Z, every countable sequence of non-Z-c.e. sets B0,B1, . . . ,
and every set A, there is a set G such that Bi is not Z ⊕G-c.e. for every i ∈ ω and
A is ∆0

2(G).

Proof. Consider again the notion of forcing whose conditions are pairs (σ,n), where
σ is a partial function ⊆ ω2 → 2 with finite support, and n ∈ ω. A condition (τ,m)
extends (σ,n) if τ ⊇ σ, m ⩾ n, and for every (x, y) ∈ dom τ ∖ domσ such that x < n,
τ(x, y) = A(x). Any sufficiently generic filter yields a stable function whose limit
is A.

We now prove that the set of conditions forcing WG⊕Z
e ≠ Bi is dense. Given a

condition (σ,n), let U = {x ∶ ∃(τ, n) ⩽ (σ,n)x ∈ W τ⊕Z
e }. The set U is Σ0

1(Z), so
Bi∆U ≠ ∅. If there is some x ∈ Bi ∖ U then the condition (σ,n) already forces
x /∈ WG⊕Z

e are we are done. If there is some x ∈ U ∖ Bi, then then condition
(τ, n) ⩽ (σ,n) such that x ∈ W τ⊕Z

e is an extension forcing x ∈ WG⊕Z
e . In both

cases, there is an extension forcing WG⊕Z
e ≠ Bi. This completes the proof of the

lemma. �

Corollary 3.6. For any k ⩽ ω, preservation of k hyperimmunities implies preser-
vation of k non-Σ0

1 definitions.

Proof. Suppose some problem P admits preservation of k hyperimmunites. Fix a
set Z and k non-Σ0

1(Z) sets ⟨Ai ∶ i < k⟩. By Lemma 3.5, there is a set G such that
for every i < k, Ai is not Σ0

1(Z ⊕ G), but ⊕i<kAi is ∆0
2(G). By Corollary 2.17,

there are semi-Z ⊕G-computable sets ⟨Bi ∶ i < k⟩ such that for every i < k, Bi ⩽e
Ai ⊕ Z ⊕ G ⊕ Z ⊕ G and Bi is Z ⊕ G-immune. By Lemma 2.19, Bi is Z ⊕ G-
hyperimmune. Since P admits preservation of k hyperimmunites, there is a P-
solution Y to X such that Bi is Z ⊕G⊕Y -hyperimmune for every i < k. We claim
that Ai is not Σ0

1(Z ⊕G⊕Y ). Indeed, otherwise, Bi would be Σ0
1(Z ⊕G⊕Y ), and

by Lemma 2.19, Bi would not be Z ⊕G⊕ Y -hyperimmune. �

3.2. The hierarchy of constant-bound traces of closed sets. One can de-
fine a similar hierarchy for avoidance of constant-bound traces of closed sets. By
the hyperimmune-free basis theorem, WKL admits preservation of ω hyperimmu-
nities (hence of ω non-Σ0

1 definitions as well). On the other hand, WKL does not
admit avoidance of constant-bound traces of even 1 closed set. Indeed, letting
C be the effectively closed set of all the completions of Peano arithmetics, every
constant-bound trace of C computes a member of C. This separates the hierarchies
of preservation of hyperimmunities and non-Σ0

1 definitions from the hierarchy of
constant-bound traces of closed sets.

On the other direction, avoidance of constant-bound traces for closed sets does
not imply the preservation of more hyperimmunities than closed sets, as shows the
following theorem.

Theorem 3.7. For every ` ⩾ 1, there is a problem which admits avoidance of
constant-bound traces for ` closed sets, but not preservation of `+1 hyperimmunities.
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Proof. Patey [22] proved that RT2
<∞,` admits avoidance of constant-bound traces

of ` closed sets. On the other hand, we already argued that RT2
<∞,` does not admit

preservation of ` + 1 hyperimmunities. �

We finish this section by proving that avoidance of constant-bound traces for k
closed sets implies preservation of k hyperimmunities.

Lemma 3.8. For any k ⩽ ω, for any Z ∈ 2ω and (fi)i<k such that each fi is Z-
hyperimmune, there is a G ∈ 2ω and closed sets (Ci)i<k in Cantor space such that
each Ci has no constant-bound (Z ⊕G)-trace, but for any function h dominating
fi, there is a (Z ⊕G⊕ h)-computable element of Ci.

Proof. We construct sets (Ei)i<k and (Fi)i<k, which will be Σ0
2 approximations to

sets Ai and Bi, respectively, and such that each fi is a Π0
1-modulus for Ai and Bi.

That is,

x ∈ Ai ⇐⇒ ∃s∀t > s [(x, t) ∈ Ei] ⇐⇒ ∀t > fi(x) [(x, t) ∈ Ei]

and

x ∈ Bi ⇐⇒ ∃s∀t > s [(x, t) ∈ Fi] ⇐⇒ ∀t > fi(x) [(x, t) ∈ Fi].
Then G = ⊕i<kEi ⊕⊕i<k Fi.

Our sets will have the property that Ai ∩Bi = ∅. Each Ci will then be the set
of separators of Ai and Bi. That is, Ci = {X ∈ 2ω ∶ Ai ⊆ X ∧ Bi ⊆ X}. Observe
that if h dominates fi, then Ai and Bi are Π0

1(h ⊕G), and so h ⊕G computes an
element of Ci. It remains only to show that none of the Ci has a constant-bound
trace relative to Z ⊕G.

We will construct our Ei and Fi simultaneously generically. Conditions in our
notion of forcing are tuples of sequences ((σi)i<k, (Ni)i<k, (τi)i<k, (Mi)i<k) with:

● σi, τi ∈ 2<ω×ω;
● Ni,Mi ∈ [ω]<ω;
● If x ∈ Ni, s > fi(x) and (x, s) ∈ dom(σi), then σi(x, s) = 1;
● If x ∈Mi, s > fi(x) and (x, s) ∈ dom(τi), then τi(x, s) = 1;
● Ni ∩Mi = ∅; and
● All but finitely many of the σi, τi,Ni and Mi are empty.

Extension is defined elementwise.
Note that for a sufficiently generic filter, Ai = Ni and Bi =Mi.
For a b ∈ ω, a j < k and a Turing functional Φ, we must show that for a sufficiently

generically chosen G, ΦZ⊕G is not a b-bounded trace of Cj . We may assume that
for all oracles X and all n ∈ ω, ΦX(n) is a subset of 2n of size at most b. Given a
condition ρ = ((σi)i<k, (Ni)i<k, (τi)i<k, (Mi)i<k), we define a function g. On input
n, we search for (σ̂i)i<k and (τ̂i)i<k such that:

● For each i, σ̂i extends σi, and τ̂i extends τi;
● For all i < k, x ∈ Ni and s > fi(x) with (x, s) ∈ dom(σ̂i), we have σ̂i(x, s) = 1;
● For all i < k, x ∈Mi and s > fi(x) with (x, s) ∈ dom(τ̂i), we have τ̂i(x, s) = 1;

and
● ΦZ⊕(σ̂i)i<k⊕(τ̂i)i<k(n + b)↓.

Note that this search is Z-effective, albeit nonuniformly in the information {(i, x, fi(x)) ∶
x ∈ Ni ∪Mi}. For the first (σ̂i)i<k and (τ̂i)i<k found, define g(n) to be the largest s
with σ̂j(n+a, s) = 0 or τ̂j(n+a, s) = 0 for some a < b, or g(n) = 0 if no such s exists.
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If some g(n) is undefined, then no extension of ρ forces ΦZ⊕G(n + b)↓, and so ρ
forces that ΦZ⊕G is partial, and thus not a b-bounded trace.

If g is total, then since it is Z-computable, there must be an n with g(n) <
fj(n). Let (σ̂i)i<k and (τ̂i)i<k be the witnesses to the definition of g(n). Let

ΦZ⊕(σ̂i)i<k⊕(τ̂i)i<k(n + b) = {π0, . . . , πb−1}. Define N̂i = Ni and M̂i = Mi for i ≠ j.
Define N̂j = Nj ∪ {a < b ∶ πa(n+ a) = 0} and M̂j =Mj ∪ {a < b ∶ πa(n+ a) = 1}. Since
fj(n) > g(n), there is no s > fj and a < b with σ̂j(n + a, s) = 0 or τ̂j(n + a, s) = 0, so

ρ̂ = ((σ̂i)i<k, (N̂i)i<k, (τ̂i)i<k, (M̂i)i<k) is a condition extending ρ, and ρ̂ forces that
no element of ΦZ⊕G(n) is extendible to an element of Cj . �

Corollary 3.9. For all k ⩽ ω, avoidance of constant-bound traces for k closed sets
implies preserving k hyperimmunities.

Proof. Suppose a problem P admits avoidance of constant-bound traces for k closed
sets. Fix a set Z, a collection of Z-hyperimmune functions (fi)i<k and a Z-
computable P-instance X. By Lemma 3.8, there is a G and closed sets (Ci)i<k
in the Cantor space such that none of the Ci has a constant-bound Z⊕G-trace, but
for any function h dominating fi, there is a Z ⊕G ⊕ h-computable element of Ci.
Since P admits avoidance of constant-bound traces for k closed sets, there is a P-
solution Y to X such that for every i < k, Ci has no constant-bound Z⊕G⊕Y -trace.
In particular, for every i < k, fi is Z ⊕G⊕ Y -hyperimmune. �

4. Immunity and closed sets

This last section is devoted to the study of two notions of preservation whose hi-
erarchies collapse, namely, preservation of immunities and avoidance of closed sets.
These notions are strictly stronger than the notions of preservation we considered
so far, and are not known to be distinct.

Lemma 4.1. Fix a set Z and A0,A1, . . . all Z-immune. There is a set G which is
Z-immune and such that for every n, G[n] =∗ An.

Proof. Write ω[n] = {⟨n,x⟩ ∶ x ∈ ω}. We will define G = ⊕n∈ωGn where Gn =∗ An.
We want G to be Z-immune, so that no Z-computable set is a subset of G. Since
each An is immune, no Z-computable infinite set which is a subset of ω[0]∪⋯∪ω[n]

can be a subset of G.
Let B0,B1, . . . be a list of the infinite Z-computable sets which intersect infinitely

many of the ω[n]. Suppose that we have defined a0 < a1 < ⋯ < ak and G0, . . . ,Gk
such that for each i ⩽ k, Bi ∩ ω[ak] ⊈ ⟨k,Gk⟩. Then for some ak+1 > ak, Bk+1
intersects ω[ak+1], say ⟨ak+1, n⟩ ∈ Bk+1. Set Gi = Ai for ak < i < ak+1, and Gak+1 =
Aak+1 − {n}. So no Bi is a subset of G, and hence G = ⊕n∈ωGn is Z-immune. �

Theorem 4.2. Let P be a problem. Then the following are equivalent:

(1) P admits preservation of 1 immunity.
(2) P admits preservation of ω immunities.

Proof. (2)⇒(1) is obvious. For (1)⇒(2): Let Z be a set and X a Z-computable
instance of P. Suppose that A1,A2, . . . are Z-immune. Let G be as in Lemma 4.1:
G is Z-immune, and G[i] =∗ Ai for all i. Then there is a solution Y to X such that
G is Z ⊕ Y -immune. If, for some i, Ai was not Z ⊕ Y -immune, then Z ⊕ Y would
compute an infinite subset of Ai, and hence of G (since G[i] =∗ Ai). This cannot
happen as G is Z ⊕ Y -immune. �
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Lemma 4.3. Preservation of ω immunities implies avoidance of constant-bound
traces for ω closed sets.

Proof. Suppose a problem P admits preservation of ω immunities. Fix a set Z and
a countable collection of closed sets C0,C1, ⋅ ⋅ ⋅ ⊆ 2ω with no Z-computable constant-
bound trace. For every n, k ∈ ω, let An,k be the set of all finite coded k-sets F
of binary strings such that every string in F has the same length, and such that
[F ] ∩ Cn ≠ ∅. Every infinite subset of An,k computes a k-trace of Cn, so An,k is
Z-immune. Conversely, every k-trace of Cn computes an infinite subset of An,k.
Since P admits preservation of ω immunities, there is a P-solution Y to X such
that for every n, k, An,k is Z ⊕Y -immune. In particular, for every n ∈ ω, Cn has no
Z ⊕ Y -computable constant-bound trace. �

Lemma 4.4. Fix a set Z and a closed set C ⊆ ωω in the Baire space with no
Z-computable member. There exists a closed set D ⊆ 3ω with no Z-computable
member, and such that every member of C computes a member of D.

Proof. Fix Z and C. Let T ⊆ 2<ω be a Z-computable infinite tree with no Z-
computable infinite path. Given some P ∈ C, let P̂ ∈ 3ω be defined by σ02σ12σ22σ32 . . . ,
where for every n ∈ ω, σn is the left-most string in T of length P (n). Let D be the

closure of {P̂ ∶ P ∈ C}. Note that for any X ∈ D ∖ {P̂ ∶ P ∈ C}, X = σ̂Y for some

σ ∈ 3<ω and Y ∈ [T ], and that neither {P̂ ∶ P ∈ C} nor [T ] has Z-computable mem-
bers. Therefore D has no Z-computable member. Moreover any P ∈ C computes
P̂ ∈ D. �

Corollary 4.5. Avoidance of 1 closed set in the Cantor space implies avoidance of
ω closed sets in the Baire space.

Proof. Suppose a problem P admits avoidance of 1 closed set in the Cantor space.
Fix a set Z, countably many closed sets in the Baire space C0,C1, ⋅ ⋅ ⋅ ⊆ ωω with no
Z-computable member, and a Z-computable P-instance X. Let E = {n⌢P ∶ P ∈ Cn}.
In particular, E is a closed set with no Z-computable member. By Lemma 4.4, there
is a closed set D ⊆ 3ω with no Z-computable member, and such that every member
of E computes a member of D. Let D̃ ⊆ 2ω be the closed set obtained from D
by fixing a binary coding of the ternary strings. In particular, any member of Cn
computes a member of D̃, and D̃ has no Z-computable members. Since P admits
avoidance of 1 closed set in the Cantor space, there is a P-solution Y to X such
that D̃ has no Z ⊕Y -computable member. In particular, for every n ∈ ω, Cn has no
Z ⊕ Y -computable member. �

We now prove that preservation of 1 immunity is strictly above the hierarchy of
avoidance of constant-bound traces. Let EM (Erdős-Moser) be the problem whose
instances are colorings f ∶ [ω]2 → 2. An EM-solution to f is an infinite set H ⊆ ω
such that for every x < y < z ∈H, and every i < 2, if f(x, y) = i and f(y, z) = i, then
f(x, z) = i.

Theorem 4.6. There is a problem that admits avoidance of constant-bound traces
for ω closed sets but not preservation of 1 immunity.

Proof. Patey [22] proved that EM admits avoidance of constant-bound traces for
ω closed sets. On the other hand, Rice [27] constructed a computable instance
of EM such that every solution computes a diagonally non-computable function,
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while Patey [23] constructed a ∆0
2 immune set A such that every diagonally non-

computable function computes an infinite subset of A. This shows that EM does
not admit preservation of 1 immunity. �

The following question is left open:

Question 4.7. Does preservation of 1 immunity implies avoidance of 1 closed set?

The combinatorics used to prove that a problem admits preservation of 1 im-
munity and avoidance of 1 closed set are very similar, which could be taken as an
argument in favor of a positive answer.
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