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Abstract. We show that the collection of array non-recursive degrees, the

collection of non-jump-traceable degrees, and the collection of degrees which

compute a function not dominated by any ω-computably approximable func-
tion, are all degree spectra of countable structures.

1. Introduction

A central concern of computable model theory is the restriction that algebraic
structure imposes on the information content of an object of study. One asks
about a countable object, what information is coded intrinsically into this object,
which cannot be avoided by passing to an isomorphic copy of the object? Given a
countable structure M, we define the degree spectrum of M to be

SpecpMq “ tX P 2ω : DN –M pN ďT Xqu ,

where we identify N with its atomic diagram. In the language of mass problems,
SpecpMq is the problem of computing a copy of M. Since SpecpMq is degree-
invariant, we often replace SpecpMq by the collection of Turing degrees of elements
of SpecpMq. One of the major aims of computable model theory is understanding
which collections of Turing degrees can be the spectra of some countable structures.
Intuitively, the isomorphism type of a structure M captures the computability-
theoretic properties of SpecpMq. In this way, classes of degrees which cannot be
captured by any single countable set (as they may not have least elements), are
nonetheless captured by a single countable structure. For example, Slaman [Sla98]
and Wehner [Weh98] showed that the collection of nonzero Turing degrees is a
degree spectrum, and so there is a structure which captures the property of being
non-computable. Recently [GMS], the collection of non-hyperarithmetic degrees
has also been shown to be a degree spectrum.

Of particular relevance to this paper are results by Csima and Kalimullin [CK10],
who showed that the collection of hyperimmune degrees form a degree spectrum.
Their interest in this class is part of effort to understand large degree spectra, for ex-
ample co-null spectra. Certainly co-countable spectra (such as the non-computable
and non-hyperarithmetic degrees) are large; Csima and Kalimullin were interested
in large spectra whose complements are nonetheless uncountable. An underlying
question was whether degree spectra can differentiate between measure and cate-
gory; this was answered in the affirmative (and in both directions) in [GMS].

In this paper we show that a number of classes closely investigated by com-
putability theorists – namely the class of array non-recursive degrees, of non jump-
traceable degrees, and the degrees which compute a function not dominated by any
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ω-computably-approximable function – all form degree spectra; indeed, they are
degree spectra of countable families of sets. The first is a natural class which is null
and co-meagre, again showing a separation between measure and category among
degree spectra.

Our techniques owe much to those of Csima’s and Kalimullin’s. The underlying
theme, though, is that domination properties, rather than sparsity properties of
sets, are particularly amenable to being captured by degree spectra. The situation
vis-a-vis traceability notions is less clear. In particular we ask, is the collection of
non-c.e.traceable degrees a degree spectrum?

2. Enumerating families of functions

Knight (see [AK00]) and Khoussainov [Kho86] have shown how to code families
of sets into graphs, converting the problem of enumerating or computing the family
of sets to the problem of computing a copy of the graph. Thus, collections of
degrees which can enumerate a particular family of sets are particularly nice degree
spectra, and have been studied, for example, by Kalimullin in [Kal08], who tries to
find conditions on a family of countable families of sets which are related to having
the collection of degrees enumerating the family co-null.

Recall that a Turing degree a can enumerate a countable family F of sets of
natural numbers if there is a uniformly a-c.e. array xAny such that tAn : n P ωu “
F ; repetitions are allowed, and so we may assume that each set appears infinitely
often in an enumeration. To code a particular set A Ď ω, we let HpAq be the
“flower graph” starting with a central vertex v and adding a loop from v to itself
of length n ` 3 for each n P A. The “bouquet graph” HpFq of a family of sets F
consists of infinitely many disjoint copies of the flower graph HpAq for each A P F .
Then it is easy to see that a Turing degree a can enumerate a family F if and only
if it computes a copy of HpFq.

We also note that a countable list xFnynPω of families can be coded by passing to
the family tttnu ‘A : A P Fnu : n P ωu. This shows that the collection of Turing
degrees a which, uniformly in n, can enumerate Fn, is a degree spectrum. Note
that here it is important that we enumerate the families in order; this is not the
same as the problem of enumerating a countable family of families of sets.

The technique of coding the enumeration of sets into graphs can be used to code
partial functions. If P is a countable family of partial functions from ω to ω, then
we say that a Turing degree a can effectively list the family P if there is a uniformly
a-partial computable list of functions xψny such that tψn : n P ωu “ P. Again,
repetitions are allowed. Now it is easy to see that effectively listing a family of
functions P is equivalent to enumerating the family of their graphs. Thus:

Proposition 2.1. The collection of degrees which can effectively list a countable
family of partial functions P is a degree spectrum; so is the collection of degrees
which, uniformly in n, can effectively list a countable family Pn of partial functions.

We will also need a property stronger than merely listing partial functions. If P
is again a family of partial functions, then we say that a Turing degree a can
compute P if there is a uniformly a-computable list xψny which forms a listing
of P, such that the sequence of sets xdomψnynPω is uniformly a-computable. By
passing from a partial function ψ to a total extension mapping each n R domψ
to some designated marker (say ´1), we see that we can reduce the problem of
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computing a family of partial functions to the problem of enumerating a family of
partial functions. Hence:

Proposition 2.2. The collection of degrees which can compute a countable family
of partial functions P is a degree spectrum; so is the collection of degrees which,
uniformly in n, can compute a countable family Pn of partial functions.

3. Array non-recursive degrees

Recall [DJS96] that a Turing degree a is array non-recursive if for every function
f ďwtt H

1 there is some function g P a which is not dominated by f . The infinite
collection of functions (those weak truth-table reducible to H1) can be replaced by
a single function: let µ “ mH1 be the modulus function for H1. Then a degree is
array non-recursive if and only if it contains some function which is not dominated
by µ. As mentioned above, the array non-recursive degrees have measure 0 but are
co-meagre.

Theorem 3.1. The array non-recursive degrees form a degree spectrum.

Proof. Let

P “ tϕ | ϕ is a finite partial function and pDn P domϕqrϕpnq ą µpnqsu.

To prove Theorem 3.1, we show that a Turing degree is array non-recursive if
and only if it can compute P, and then we appeal to Proposition 2.2.

(ðù) Suppose that xψnynPω is a listing of P which witnesses that a degree a com-
putes P; so xdomψny are uniformly computable from a. We construct a function f
computable from a which is not dominated by the modulus function µ.

The idea is to string together functions g0, g1, . . . from P whose domains are
disjoint; certainly this produces a function which is not dominated by µ. For
example, we can let g0 “ ψ0 and inductively let gi`1 to be ψn for some n such that
min domψn ą max dom gi. Since a does not have access to a canonical finite index
for the functions ψn, such a sequence cannot be computed from a; but it can be
approximated, in a process of finite injury.

The sequence xgjy. For any stage s, we enumerate a finite sequence g0,s, . . . , gs,s,
each gj,s designated by an index n “ nj,s such that gj,s “ ψn. At stage s, the
“observable universe” consists of the natural numbers up to s. Restricted to this
observable universe, we require that max dom gj,s ă min dom gj`1,s for all j ď s.
Formally, this means that we require that for all j “ 1, . . . , s,

bj,s : max pdom gj´1,s X t0, . . . , suq ă min dom gj,s;

Note that if min dom gj,s ą s then the condition bj,s holds.
At stage 0, we start by letting g0,0 “ ψ0. At stage s ą 0 we are given

g0,s´1, . . . , gs´1,s´1. We let js be the least j P t1, . . . , s ´ 1u such that bj,s would
fail if we didn’t change the functions gj and gj´1. Equivalently, it is the least j
such that s P dom gj´1,s´1. If there is no such j, we let js “ s. We then initialise
at js; this means that for j ă js we let gj,s “ gj,s´1, but for all j P tjs, . . . , su we
let gj,s be some function ψn such that min domψn ą s.

This concludes the construction. To obtain the required sequence xgjy, we show
that injury is finite: for all i, for almost all s, we have js ą i; we let si be the
greatest stage s ě i such that js ď i (and then we let gi “ gi,si “ gi,s for all s ě si
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be the “limit function”). That si exists for all i is proved by induction on i ě 0.
We have s0 “ 0. Certainly for all s we have js ą 0. For i ě 0, assuming that si
exists, and so gi is defined. At stage si the permanent value of gi is chosen, with
min dom gi ą si. For s ą si, we have js “ i`1 if and only if s P dom gi. Hence si`1

exists and equals max dom gi.
As we choose min dom gi`1 ą si`1 at stage si`1, we see that indeed max dom gi ă

min dom gi`1 for all i.

The function f . We now implement the original plan. We show that there is an a-
computable function f such that for all i, for all n P dom gi, we have fpnq “ gipnq.
Since the domain of each gi contains some n such that gipnq ą µpnq, we see that f
will not be dominated by µ.

For each s, we note that there is at most one i ď s such that s P dom gi,s. If
there is such i, we let fpsq “ gi,spsq; otherwise, we let fpsq “ 0. The function f is
certainly a-computable. Let i P ω and s P dom gi. We observed above that s ą si,
and so gi,s “ gi, which shows that fpsq is chosen to be gipsq at stage s.

pùñq We need to show that if f is a function which is not dominated by µ, then
f can compute P. As is often the case, we show that there is an f -computable
procedure which takes a finite partial function ψ (given by a canonical finite index)
and produces an f -computation of a function ψ˚ P P. That is, we produce an
f -partial computable index for ψ˚ and an f -computable index for domψ˚. We
ensure that if ψ P P then ψ˚ “ ψ. Thus the sequence xψ˚y, as ψ ranges over all
finite partial functions, witnesses that f computes the family P.

So we are given a finite partial function ψ. The idea is to extend ψ to ψ˚ grad-
ually; whenever we discover that ψ˚ æs, the function we have so far, is dominated
by µ, we add a new element to the domain of ψ˚psq by copying f . The problem
is that fpsq ą µpsq only for infinitely many s, not for all of them, and so copying
only infinitely many values of f does not by itself guarantee escaping domination
from µ. On the other hand, because we need to compute domψ˚, we cannot define
ψ˚psq much later than stage s, while it may take a long time to discover that ψ˚ æs
is dominated by µ. The solution is to use the fact that f escapes domination by µ
another time, this time when giving a bound for our search for domination by µ.

Let xµsy be the standard computable approximation for µ: µs is the modulus
function for H1s. The property of xµsy that we use (apart from the fact that it is
increasing with time) is that for all n, for all s ě µpnq, we have µs æn`1“ µæn`1.

We define ψ˚ by first letting ψ˚ agree with ψ on all inputs s ď max domψ. At
stage s ą max domψ, we have determined ψ˚ æs, and we need to define ψ˚psq. If
there is some n P domψ˚ æs with ψ˚pnq ą µfpsqpnq, we decide that s R domψ˚.
Otherwise, we let ψ˚psq “ fpsq.

This defines ψ˚; we need to show that ψ˚ P P and that ψ˚ “ ψ if ψ P P. The
latter is immediate; if ψpnq ą µpnq for some n, then for all s ą max domψ we
have ψ˚pnq ą µfpsqpnq and so we decide that s R domψ˚ for all s R domψ. For
the former, let t be the least s ą max domψ such that fptq ą µptq. At stage t
we act so that there is some n P domψ˚ æt`1 such that ψ˚pnq ą µfptqpnq. Since
fptq ą µptq, and since we may assume that f is increasing, for all s ą t we have
ψ˚pnq ą µfpsqpnq “ µpnq. Thus, domψ˚ Ď t0, . . . , tu and ψ˚pnq ą µpnq, so
ψ˚ P P. �
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4. Escaping domination by a countable collection of functions

During the proof of Theorem 3.1 we isolated the properties of the modulus
function µ which allowed the construction to succeed.

Definition 4.1. We let S denote the collection of ∆0
2 functions h which have a

computable approximation xhsy with the following properties:

‚ For all n and s, hspnq ď hs`1pnq;
‚ If hspnq ‰ hs´1pnq then hspnq ě s, indeed, for allm ě n we have hspmq ě s.

The collection S is really the collection of modulus functions of convergent com-
putable approximations. The second condition implies that for all n and all t ě hpnq
we have ht æn`1“ hæn`1.

For any function h, let Ph be the collection of finite partial functions ψ for which
there is some n P domψ such that ψpnq ą hpnq. The proof of Theorem 3.1 actually
shows:

Proposition 4.2. If h P S then the following are equivalent for a Turing degree a:

(1) a contains a function which is not dominated by h;
(2) a computes Ph.

And so the class of degrees which compute a function not dominated by h is a
degree spectrum.

Proposition 4.2 can be extended to uniform subfamilies of S. We say that a
sequence of functions xhny is uniformly in S if there are uniformly computable
approximations xhn,sysPω, each approximation xhn,sy witnessing that hn P S.

Proposition 4.3. Suppose that xhny is a sequence of functions, uniformly in S.
The following are equivalent for a Turing degree a:

(1) a contains a function which is not dominated by any hn;
(2) Uniformly in n, a computes Phn .

And so, Proposition 2.2 guarantees that the collection of degrees computing a
function not dominated by any hn forms a degree spectrum.

Proof. (1)ùñ(2): This is just the observation that the second part of the proof
of Theorem 3.1 shows that uniformly from an approximation xhsy which witnesses
that h P S and from a function f not dominated by h we can compute Ph.

(2)ùñ(1): This is a simple adaptation of the first part of the proof of Theorem
3.1, to working with a list of functions. The only change is that for all s and j ď s,
if j codes a pair pk,mq then we choose gj,s P Phk

. �

The restriction to functions in S is not essential. This is because we can always
pass from a ∆0

2 function to its modulus.

Lemma 4.4. There is a computable procedure θ which, given (a computable index
for) a computable approximation xhsy for a ∆0

2 function h, outputs a computable
approximation for a function in S which dominates h.

Slightly abusively, we write θphq for the function in S whose approximation is
given by θ.
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Proof. The function θphq is the maximum of h with its modulus. We construct
an approximation xgsy for θphq obeying the conditions for θphq P S; at stage s,
if hspnq ‰ hs´1pnq (with n least such) then for all m ě n we set hspmq “
max ptsu Y thtpmq : t ď sq; for m ă n we set gspmq “ gs´1pmq. �

We say that a collection S of ∆0
2 function is effectively listable if there is a

uniformly computable sequence of computable approximations xhn,sysăω such that
denoting the limit of xhn,sy by hn, we have thn : n P ωu “ S. Lemma 4.4 and
Proposition 4.3 together imply:

Proposition 4.5. Suppose that S is an effectively listable collection of ∆0
2 functions

which is closed under applying the operation θ. Then the collection of degrees a
which compute a function not dominated by any function in S is a degree spectrum.

The family of examples we have in mind are the α-computably approximable
functions for sufficiently closed ordinals α. If α is a (notation for a) computable
ordinal, then an α-computable approximation is a computable approximation xfsy
for a function f which is coupled with a witness xosy for the approximation settling
down: the sequence xosy is a uniformly computable sequence of functions from ω
to α such that for all n and s,

‚ os`1pnq ď ospnq; and
‚ if fs`1pnq ‰ fspnq then os`1pnq ă ospnq.

A ∆0
2 function is α-computably approximable (abbreviated α-c.a.) if it has a com-

putable approximation which is an α-computable approximation. Most prominent
is the case α “ ω; a function f is ω-c.a. if and only if f ďwtt H

1.1

It is not difficult to see that for any ordinal α, the collection of all α-c.a. functions
is effectively listable; see [DG, Prop.I.2.7]. The second observation is counting the
changes in the approximation xgsy for θphq compared with the approximation xhsy
for h. We note that if gs`1pmq ‰ gspmq then hs`1pnq ‰ hspnq for some n ď m.
This shows that if h is α-c.a. and α is closed under addition, then the class of α-c.a.
functions is closed under the operation θ. This uses the operation of commutative
addition [DG, Lem.I.2.42], and assumes that α is given by a strong notation [DG,
Sec.I.2]. The ordinals which are closed under addition are the nonzero powers of ω.
Hence:

Theorem 4.6. For any nonzero ordinal α ď ε0, the class of degrees which compute
a function not dominated by any ωα-c.a. function is a degree spectrum.

Call a degree which computes a function not dominated by any α-c.a. function
α-c.a.-non-dominated. The interest in the notion of ωα-c.a.-domination stems from
the fact that it seems to be the correct generalisation of the notion, restricted to the
c.e. degrees, of being totally ωα-c.a. This notion is investigated in [DG, DGW07,
BDG10], where it is shown, for example, that a c.e. degree a is totally ω-c.a. if
and only if it does not bounds a critical triple, if and only if every set in a is
wtt-reducible to a proper initial segment of a scattered computable linear ordering.

Lemma 4.7. Let α ď ε0 be nonzero. A c.e. degree a is ωα-c.a.-dominated if and
only if it is totally ωα-c.a.

1This can be iterated; a function is ωα-c.a. if and only if it is weak truth-table reducible to the
αth iteration of the function wtt-jump. See [DG, Thm.I.2.37].
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Proof. The point is that a c.e. degree can compute a modulus for any function it
computes. So if xhsy is an approximation of h which is given by a computation
from some c.e. set A (hs “ ΓpAqrss) then A can compute θphq.

If a function f dominates θphq, then h ďwtt f . By [DG, Thm.I.2.37], if f is
ωα-c.a. then so is h. �

We get the following:

Theorem 4.8. Let α ď ε0 be nonzero. There is a countable structure M such that
a c.e. degree a computes a copy of M if and only if it is not totally ωα-c.a.

5. Jump traceable degrees

Among the by-now-familiar notions of traceability, such as c.e. traceability and
computable traceability, jump traceability is particularly interesting due to its inter-
action with classes such as the K-trivial degrees [BDG09, HKM09]. What enables
a fine look at this class is the fact that unlike other notions of traceability, the
growth-rate of the order function bounding the traces matters a great deal.

Recall that an order function is a non-decreasing and unbounded computable
function h : ω Ñ ωzt0u, and that if h is an order function, then an h-trace is a
uniformly c.e. sequence xTxy such that for all x, |Tx| ď hpxq. To deal with an
arbitrary degree which is not jump traceable, we need to work uniformly relative
to an order function, and this is why we need to consider partial order functions.

Definition 5.1. A partial order function is a partial computable function h : ω Ñ
ωzt0u whose domain is an initial segment of ω, which is non-decreasing on its
domain, and is unbounded if it is total.

If h is a partial order function, then an h-trace is a uniformly c.e. sequence xTxy
such that for all x P domh, |Tx| ď hpnq, and for all x R domh, Tx is empty.

It is not difficult to construct a computable list xhny of partial order functions
which contains all order functions. Uniformly in n we can list all

?
hn-traces

@

T 0,n
x

D

,
@

T 1,n
x

D

, . . . . Letting V nx “
Ť

eď
?
hnpxq

T e,nx we obtain, uniformly in n, a

“universal” hn-trace xV nx yxPω.

Recall that an oracle A is jump traceable if there is some order function h such
that for every A-partial computable ϕ there is an h-trace xTxy such that for all
x P domϕ we have ϕpxq P Tx. Instead of looking at all A-partial computable
functions, it suffices to require a trace for JA, the universal A-partial computable
function; and rather than requiring ϕpxq P Tx for all x P domϕ, we can allow
finitely many x for which this conditions fail.

Our listing and universality of the traces xV nx y give the following:

‚ A set A is jump traceable if there is some n such that for every A-partial-
computable function ϕ, for all but finitely many elements x of domϕ, x P
V nx (for such n, hn of course must be total, and so an order function).

‚ A set A is jump traceable if and only if there is some n such that for all
but finitely many elements x of dom JA, JApxq P V nx .

Theorem 5.2. The collection of Turing degrees which are not jump traceable forms
a degree spectrum.
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Proof. For n P ω, let Pn be the collection of finite partial functions ψ such that for
some x P domψ, ψpxq R V nx ; and let Pn,e be the collection of functions ψ P Pn such

that domψ Ă ωres (the eth column of ω). Note that universality of the trace xV nx y
shows that for all e, Pe,n is nonempty, indeed infinite.

We show that a degree a is not jump traceable if and only if uniformly in n and
e, a can effectively list Pn,e. The theorem then follows from Proposition 2.1.

(ðù) Suppose that uniformly in n and e, xψn,ek y
kPω

is a a-effective listing of
Pn,e. For each n such that hn is an order function, we wish to enumerate a partial
function f such that for infinitely many x P dom f , fpxq R V nx . This would show
that no order function can witness that a is jump traceable.

The construction is easy. For each e, let ge “ ψn,e0 be the first function enumer-
ated in Pn,e, and let f “

Ť

e ge, which is well-defined because the functions ge have
pairwise disjoint domains. The function f is as required.

(ùñ) Suppose that a set A is not jump traceable. Uniformly in n and e we
obtain an A-effective list of Pn,e by again, using the oracle A to extend any given

finite partial function ψ whose domain is contained in ωres to a function ψ˚ P Pn,e,
making sure that if ψ P Pn,e then ψ˚ “ ψ. This time around, we only need to
enumerate the graph of ψ˚, and we do not need to compute its domain.

The point is that uniformly in e, A can enumerate the graph of a partial function
fe : ωres Ñ ω such that for all n, there are infinitely many x P dom fe such that
fepxq R V

n
x . We use the universal function JA and copy it: we simply let fepe, xq “

JApxq. If for all but finitely many x P dom fe we have fepe, xq P V
n
pe,xq then we can

convert xV nx y to give a c.e. trace for JA bounded by the order function x ÞÑ hnpe, xq,
contradicting the assumption that A is not jump traceable.

Fix n, e and a finite partial function ψ (given by a canonical finite index), whose
domain is contained in ωres. We define the function ψ˚ by enumerating its graph; at
stage s we have enumerated the graph of a function ψ˚s . We start with ψ˚0 “ ψ. At
stage s, if we see that for all x P domψ˚s we have ψ˚pxq P V nx , and we see an input
x P dom fezdomψ˚s , then we set ψ˚s`1pxq “ fepxq for the least such x. Otherwise,
we let ψ˚s`1 “ ψ˚s . It is now easy to verify that if ψ P Pn,e then ψ˚ “ ψ, and that
for any ψ, ψ˚ P Pn,e, as required. �

We end with a question.

Question 5.3. Does the collection of degrees which are not c.e. traceable form a
degree spectrum? What about the degrees which are not strongly jump traceable?
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