Rashina Hoda

Engineering and Computer Science
Victoria University of Wellington
Wellington
New Zealand

rashina@ecs.vuw.ac.nz

Agility in Context

Philippe Kruchten

Electrical and Computer Engineering
University of British Columbia
Vancouver
Canada

pbk®@ece.ubc.ca

James Noble
Stuart Marshall

Engineering and Computer Science
Victoria University of Wellington
Wellington
New Zealand

Abstract

Evangelists for Agile methods strongly encourage all projects
to follow every practice of their chosen method. Based on a
Grounded Theory study involving 40 participants at 16 or-
ganizations, and corroborated by 4 independent case studies,
we argue that development methods and practices must be
adapted to fit their contexts. Understanding Agility in con-
text will help development teams, their managers, and Agile
coaches to adapt development processes to fit their projects’
contexts.

Categories and Subject Descriptors K.6.1 [Project and
People Management]: Management techniques; K.6.3 [Soft-
ware Management]: Software development/process

General Terms software development, human factors,
management

Keywords Agility, Context, Agile Software Development,
Adaptation

1. Introduction

Agile evangelists exhort teams to adopt their methods whole.
For example, every project following Scrum must adopt ev-
ery practice, enacted precisely as described in the Scrum
manuals, books and courses [77]. Projects that do not fol-
low these methods “by-the-book™ are derided as “Scrum-
butts”, and invited to measure “the Ten Ways You are Not
AGILE”, or take the Nokia Test [18, 77, 79]. After all, if you
are almost doing XP, then you are not doing XP [27]. Prac-
titioners must have the courage to try [9] because “Scrum
works in any environment and can scale to programming in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA/SPLASH’10, October 17-21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0203-6/10/10. .. $10.00

kjx,stuart@ecs.vuw.ac.nz

the large” [78], and if pain persists then “you first have to
believe” [48].

In contrast, an increasing number of practitioners and re-
searchers support a contextual approach to Agile develop-
ment, where Agile methods are adapted to suit their context
[2, 24, 25]. Conboy and Fitzgerald study of experts’ opinion
on Agile methods notes that “the very name agile suggests
that the method should be easily adjusted to suit its environ-
ment” [25].

We have conducted a large-scale Grounded Theory study
of Agile practices involving 40 Agile practitioners from 16
software development organizations in New Zealand (NZ)
and India [42-46]. In this paper, we present the results of
our study as they relate to the adaptation of Agile methods to
suit their projects’ context. We have corroborated our study
by four independent case studies.

Agile methods work well for projects within particular
contexts: small; co-located teams; customers (product own-
ers) who can make decisions on requirements; requirements
that change over weeks or months; variable scope or vari-
able price contracts; and few legal or regulatory constraints
on development processes. Our study uncovered how de-
velopment teams evolve Agile practices to fit other con-
texts — offshore or distributed development; projects with-
out customers to provide requirements; requirements or sys-
tems that change rarely; or the legal necessity of certifica-
tion of product and process. By fitting their practices to their
project’s context, teams can cleave to the principles of Agile
development, even if they depart from one or more particular
practices.

The rest of the paper is organized as follows: we briefly
describe the principles of Agile software development in
section 2, followed by a description of our research method-
ology and limitations in section 3. Section 4 presents our
research findings, and then section 5 discusses the implica-
tions of our findings. Section 6 concludes the paper.

2. Background: Agility in Principle

Agile software development methods emerged in the late
1990s [52]. The term “Agile” was adopted as the umbrella
term for methods such as Scrum [72], XP (eXtreme Pro-
gramming) [9], Crystal [16], FDD (Feature Driven Devel-
opment) [62], DSDM (Dynamic Software Development
Method) [74], and Adaptive Software Development [40].
Agile methods are characterized by iterative and incremen-
tal development and promote frequent delivery of product
features that are prioritized in consultation with the cus-
tomers, aiming to deliver business value in each iteration.
Agile methods address small, co-located, dedicated, and
highly collaborative teams [12, 29, 61]. Scrum and XP are
the most widely adopted Agile methods [63]: XP focuses on
developmental practices, while Scrum mainly covers project
management [29].

Agile methods are well-suited to projects with highly
volatile requirements - they encourage projects to “embrace
change” [9] and “responding to change” [41]. Adolph has
defined Agility as “the ability of an organization to react
to change in its environment faster than the rate of these
changes” [3].

The developers of some of these Agile methods collabo-
ratively wrote the Agile Manifesto:

“Individuals and interactions over processes and
tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan.

That is, while there is value in the items on the right,
we value the items on the left more.”

The principles behind the Agile Manifesto [41] include
fast, frequent, consistent, and continuous delivery of work-
ing software; responding to changing requirements; encour-
aging effective (preferably face-to-face) communication;
and motivated and well-supported self-organizing teams.
The last principle specifically supports regular self-inspection
and adaptation: “At regular intervals, the team reflects on
how to become more effective, then tunes and adjusts its
behavior accordingly” [41].

3. Research Method
3.1 Grounded Theory Study

Grounded Theory (GT) is the systematic generation of the-
ory from data acquired by a rigorous qualitative research
method [35, 36]. GT was developed by sociologists Glaser
and Strauss [38]. GT does not involve hypothesis testing,
rather the research product constitutes a theoretical formu-
lation or integrated set of conceptual hypotheses about the
substantive area under study [34].

We chose to use GT as our research method for several
reasons [44]. Firstly, Agile methods focus on people and in-
teractions, and GT, used as a qualitative research method,

allows us to study social interactions and behaviour. Sec-
ondly, GT is suited to areas of research which have not
been explored in great detail before, and the research litera-
ture on contextualization of Agile methods is scarce. Finally,
GT is being increasingly being used to study Software En-
gineering [8, 13, 14, 50] and in particular, Agile methods
[5, 20, 23, 44, 56, 83]. Using GT, we have applied a rigor-
ous research method to study practical applications of Agile
methods and to analyze and explain the results. We started
out with a general area of interest — Agile project manage-
ment — instead of beginning with a specific research ques-
tion [23, 35].

Data Collection We interviewed 40 Agile practitioners
from 16 different software organizations in 2 countries —
New Zealand and India. We interviewed participants from a
range of different roles within Agile projects, so as to ensure
that we had a rounded perspective of how their Agile teams
worked. In particular, we interviewed and observed Agile
Coaches (Scrum Masters and XP Coaches), Developers, De-
signers, Testers, Business Analysts, Product Owners, and
Senior Management. All the teams we studied have adopted
Agile development methods, primarily Scrum. The teams
used Agile practices such as iterative development, release
and iteration planning, test-driven development, daily stand-
up meetings, frequent delivery of software, and continuous
integration. The first part of table 1 shows participant and
project details for the Grounded Theory Research Study.

The projects’ durations varied from 1 to 48 months
and the team size varied from 4 to 15 people on different
projects. The products and services that the participants’ or-
ganizations offered included web-based applications, front
and back-end functionality, and local and off-shored soft-
ware development services. Half the participants were prac-
tising in India and half in New Zealand. The organizational
sizes varied from 10 to 300,000 employees. To preserve
confidentiality, we refer to our participants by numbers P1
to P40.

We conducted face-to-face, semi-structured interviews
using open-ended questions. The interviews were approxi-
mately an hour long and were scheduled at the practitioners’
workplaces or mutually agreed public locations. The inter-
view questions focused on the participants’ experiences of
working with Agile methods and in particular, we asked
about the challenges they faced in Agile projects and the
strategies they used to overcome them. Although the answers
varied with the individual participants, we later discovered
during analysis that projects’ contexts lead teams to adjust
their practices.

The interview data was strengthened by our observation
of several Agile practices on two projects in New Zealand
and two in India. We attended and observed Agile practices
such as daily stand-up meetings (co-located and distributed),
release planning, iteration planning, and demonstrations of
the teams from which our interview participants were de-

Table 1. Participants and Projects (P#: Participant Number, Agile Position: Agile Coach (AC), Agile Trainer (AT), Developer (Dev), Customer Rep (Cust Rep),
Business Analyst (BA), Senior Management (SM); *Organizational Size: XS < 50, S < 500, M < 5000, L < 50,000, XL > 100,000 employees) *a la carte [25]
Grounded Theory Research Study

P# Positions Method Qrg. Location Domain Team Size Project o
Size* (months) (weeks)

plp7 DVXILBAAC o m M NZ Health 7 9 2

Tester, Cust Rep

P8 Cust Rep Scrum&XP L Nz Social Services 4to 10 31012 2

P9-P15 Dev X 5, AC, SM Scrum& XP S NZ Environment 4t06 12 1

P16 SM Scrum& XP S NZ E-commerce 4 2 4

P17 AC Serum&XP XL NZ Ezlfcom & Transporta- ¢ 5 12 4

P18 Cust Rep Scrum XS NZ Entertainment 6t08 9 4

P19 AC Scrum& XP S NZ Government Education 4to9 4 2

P20 AC Scrum & XP XS NZ Software Development 8 12 1

Dev X 4, AC, . Software Development

P21-P27 Tester, SM Scrum & XP S India & Consultancy 5 6 2

P28-P31 Dev X 4 Scrum & XP XS India Software Development 4 1 1

P32 AT Scrum & XP XS India Agile Training 7 8 3

P33-P36 ACX4 Scrum&XP M India Software Development 7 to 8 3to6 2

P37 AC Scrum& XP M India Financial Services 8to 11 36 2

P38 Designer Scrum & XP S India Web-based services 5 1 2

P39 AC Scrum& XP L India Telecom 8to 15 3 4

P40 Dev Scrum&XP M India Software Development 15 12 1

Corroborating Case Studies

Case o Org. . . . Project Iteration

Studies Positions Method Size* Location Domain Team Size I

FIN SM, Architect Scrum& XP L USA Finance 50 36 1

FACT Management & ala carte* XL Canada Process Control 6to 15 12 variable

other roles
FLY All roles Q{ijzl‘f’ted XL USA Aeronautics 61025 12 4
MATH Project leads XP XS Canada Trade Analysis 3t08 12 1to2

rived. In order to maintain consistency in the application of
Grounded Theory, all data was collected and analyzed per-
sonally by the primary researcher (first author).

Data Analysis We used open coding to analyze the inter-
view transcripts in detail [7, 33]. In order to illustrate GT
analysis, we present an example of working from interview
transcripts to results for one of the categories, Lack of Cus-
tomer Involvement. Other examples of our GT analysis are
described elsewhere [43, 44, 47].

We began by collating key points from each interview
transcript [33]. We then assigned a code to each key point.
A code is a phrase that summaries the key point in 2 or 3
words.

Interview quotation: “Big, big issues are getting enough
collaboration time with the [customers]...there’s no way less
than a full time person would be able to keep up with getting
all the requirements.” — PNum, Agile Coach, NZ

Key Points: “Difficulty in eliciting collaboration time
with customers” and “Customer involvement in Agile de-
mands full time involvement”

Code: Lack of customer collaboration time

The codes arising out of each interview were constantly
compared against the codes of the same interview, and those
from other interviews and observations. This is GT’s con-
stant comparison method [36, 38]. In this example, other
similar codes were “Insufficient time allocated to customer
representatives (PNum, NZ)” and “Playing Agile customer
alonside operational job (PNum, India)”. Using the constant
comparison method we grouped these codes to produce a
higher level of abstraction, called concepts in GT.

Concept: Lack of time commitment

Other concepts that emerged include: Skepticism and
Hype, Distance Factor, Dealing with Large Customers, and
Ineffective Customer Representative [43]. Finally we re-

peated the constant comparison method on concepts to pro-
duce a third level of abstraction called Categories.

Category: Lack of Customer Involvement

The other concepts and categories emerged in a similar
fashion. These concepts and categories form the contexts in
which practitioners find it difficult to follow Agile methods
by-the-book. Other set of concepts formed the adaptation
strategies used to adapt Agile practices to suit these chal-
lenging contexts. For example, the adaptation strategies used
to overcome the problem of Lack of Customer Involvement
include Story Owners and Customer Proxy. Figure 1.a shows
shows the levels of data abstraction using GT and 1.b illus-
trates the emergence of the category Lack of Customer In-
volvement from underlying concepts.

Theory
Skepticism and Hype
Category
Distance Factor A
Concept »
Time Commitment Lack of Customer
y Invovement
. . N
Code Dealing with
Large Customers
Key Point .
Ineffective Customer Rep.
Interview
1.a Transcript 1.b

Figure 1. a: Levels of data abstraction in GT b: Emergence
of category Lack of Customer Involvement from concepts

Other important elements of GT include memoing and
sorting. Memoing is the ongoing process of writing theoreti-
cal memos or notes throughout the GT process [35]. Writing
memos helped us pour-out all the ideas about certain codes,
concepts, and categories and allowed us to capture the con-
ceptual connections between categories [47]. Once we were
nearly finished with data collection and analysis, we began
to conceptually sort the theoretical memos - a process called
sorting. Sorting of the memos forms a theoretical outline
[47].

The final step of GT is generating a theory, also known
as theoretical coding. Theoretical coding involves concep-
tualizing how the categories (and their properties) relate to
each other as hypotheses to be integrated into a theory [35].
Following Glaser’s recommendation, we employed theoret-
ical coding at the later stages of analysis [34], rather than
being enforced as a coding paradigm from the beginning as
advocated by Strauss [76].

Glaser lists several common structures of theories known
as theoretical coding families [35, 37]. By comparing our
data with the theoretical coding families, it emerged that
the coding family best ‘fit’ for our data was the “Strategy”
family [35]. The strategy family includes strategies, tactics,
mechanisms, handling, techniques etc. We have used the
strategy family to describe our theory of adapting Agile
practices to suit their context of use in the following section.

Table 2 shows the different concepts and categories that
form the Contexts and the corresponding concepts that form
the Adaptation Strategies used in those contexts. Since the
codes, concepts, and categories emerge directly from the
data, which in turn is collected directly from the real world,
the resulting theory is grounded within the context of the
data [5].

3.2 Corroborating Case Studies

The second author conducted separate longitudinal case
studies on 4 organizations in North America, over a period
of 7 years:

e FIN: Financial institution, involved in securities trading.
Large legacy system re-engineering.

e FACT: Very large scale manufacturing process control,
for continuous operation. Real-time software embedded
in a network of several hundreds of processors.

e FLY: Information processing for aerospace industry,
some of it safety-critical as it is deployed in the aircraft.

e MATH: Analytical methods for security trading, derived
from physics theories.

All the four organizations were already familiar with Ag-
ile methods, or some Agile practices; they had received
training and guidance, done some pilot projects and thought
they were ready to deploy Agile on more significant en-
deavours. The second part of table 1 shows participant and
project details for the corroborating case studies.

The second author was brought in as a consultant when
the projects hit some difficulties applying Agile methods by-
the-book. These four case studies independently corroborate
the findings of the Grounded Theory study.

Data Collection The second author had a series of consult-
ing and training engagement with 4 companies in diverse
industrial sectors, and at various stages of agile adoption.
Examining their current state, analyzing their current diffi-
culties, and interviewing different teams members — from
CEOs, program mangers and chief architects, to develop-
ers, testers and student interns — provided a great source
of insight both on Agile processes themselves, and on the
the impact of the context on the success of adoption. Further
research is being conducted with one of the companies, to
analyze the root causes of their technical debt [26, 58].

Data Analysis In the case of the four consulting and train-
ing engagements, the analysis of the findings was done
jointly with senior team members, and senior management
to devise a plan for remediation or for going forward, plan
that included some process adaptation.

3.3 Limitations and Threats to Validity

The inherent limitation of a Grounded Theory study is that
the resulting theory can only be said to explain the specific

Table 2. Adaptation Strategies for Different Project Con-
texts

Contexts Adaptation Strategies

Story Owners
Customer Proxy
Simulation

Lack of Customer Involvement

Providing Options

Fixed—bid Contracts Buffering

Information Architecture
Design Pipeline
Walking Skeleton

Design/Architecture Intensive

Project Dictionary

Documentation Intensive . .
Comprehensive Documentation

Slow Rate of Change Working from Requirements

Distributed Teams e-Collaboration

contexts explored in the study. The adaptations that we dis-
covered during the Grounded Theory part of our research
are not an exhaustive list of all existing adaptations, and our
study is specific to the industries of a few countries. As well
as this, and as with any empirical software engineering, the
very high number of variables that affect a real software en-
gineering project may it difficult to conclusively identify the
impact that any one factor has on the success or failure of
the project.

In the following sections, we discuss the findings of our
research studies. We do not claim our findings to be univer-
sal, rather they accurately describe the contexts studied. We
have selected quotations drawn from our interviews that shed
particular light on these categories and that are spread across
participants, geographically and by their organizational title.
The discussion is grounded further by underlying key points,
codes, and concepts from our interviews and observations,
that we cannot describe in detail for space reasons.

4. Results: Agility in Practice

In this section, we present our grounded theory: the strate-
gies used by Agile practitioners to adapt Agile practices to
their context of use. Faced with obstacles that are outside
the participants’ control, they have developed strategies for
adapting Agile practices to their context. In the remainder of
this section we present examples from our studies to illus-
trate when and how teams adapted Agile practices.
These adaptation strategies are summarized in table 2.

4.1 Lack of Customer Involvement

Most of the participants in our Grounded Theory study re-
ported that the customer was not heavily and frequently in-
volved in their projects (P1-P12, P14-P19, P21-P23, P25,
P26, P28-P30). This lack of involvement is in sharp contrast
to the amount advocated by Agile methods such as Scrum
and XP. Lack of customer involvement was seen as “‘the most
difficult part of Agile” and “the biggest problem” because
“Agile [requires] fairly strong customer involvement” (P4,
P17, P30). Agile teams found gathering requirements from

customers as “one of the worst things” and “biggest frustra-
tion” on the projects (P8,P10). Getting customer represen-
tatives to clarify requirements is also a problem because of
their unavailability:

“Things [awaiting clarification] would queue up for
them and then they’d just answer the whole queue at
once...then as soon as they got busy again it would
start to get a bit harder.” — P11, Developer, NZ

If the participants applied Agile methods by-the-book
then insufficient or ineffective customer involvement meant
that development teams were unable to gather requirements
and to get customer representatives to clarify them in time
for development to commence. Inability to gather require-
ments in time for the iterations could result in “the project
get[ting] stalled” (P5) or loss of productivity:

“The team has the capacity... [but] with Agile if
you don’t have the requirement you can’t do any-
thing. .. because you are supposed to be in-line with
business.” P1, Developer, NZ

Without clear requirements and feedback, the teams were
forced to “make more business decisions than [the team]
would like” (P15) and as a result would get “misaligned
from the desired business drivers” (P5) consequently requir-
ing costly rework (P2, P4, P15). Rework is taxing for devel-
opers because they have to revisit stories developed several
iterations ago due to delay in customer feedback:

“Yes [we had to rework] but it’s not the re-work, it’s
re-worked easily as long as it’s near the time you did
it. So having to go back and augment what you did
three weeks ago was [hard].” — P11, Developer, NZ

When the level of customer involvement was not enough
and was outside the participants’ ability to change, several
teams made adaptations to their existing Agile practices in
order to suit their project context. These adapted practices
were: use of Story Owners in place of Product Owners and
Customer Proxy from within the development team acting as
a customer representative [43]. We explain the two adapted
practices below.

Story Owners The practice of assigning Story Owners was
an adaptation to the Scrum practice of allocating a Product
Owner [72]. Story owners were responsible for particular
stories (less than a week long), instead of all the stories in
the product backlog: “every story had to have an owner to
get into prioritisation.” (P14) Assigning story owners served
a three-fold purpose. Firstly, having multiple story owners
instead of a single customer representative for entire project
meant no one person from the customer’s organization was
expected to be continuously available.

“We didn’t need that story owner for the duration of
the project, we normally only need them for part of an
iteration.” — P19, Senior Agile Coach, NZ

Secondly, it allowed the team to plan out stories for de-
velopment in synchronization with the corresponding story-
owner’s availability. Thirdly, it encouraged a sense of own-
ership among customer representatives as they were encour-
aged to present their own stories to peers at end of iteration
reviews.

“We get the [story owners] to demonstrate those sto-
ries to their peers at the end of the iteration review,
this concept is something we’ve evolved over the
project.”” — P19, Senior Agile Coach, NZ

The adapted practice of story owners proved successful
for the practitioners as it helped gain the much needed cus-
tomer collaboration, albeit in smaller chunks and across mul-
tiple customer representatives rather than the prescribed sin-
gle Product Owner. After one such presentation a particu-
larly skeptical customer representative was “quite chuffed
[pleased], and at the [next] iteration planning meeting, that
person was all go! Instead of sitting back with their arms
folded, they had their elbows on the table, leaning forward,
and were driving the story detailing conversations we were
having.” (P19)

Customer Proxy Some Agile teams used a customer proxy
— amember of the development team co-ordinating with the
customers — to secure requirements and feedback. The use
of proxy was visible in Indian teams where the customers
were physically distant.

“Some customers say ‘okay we know you do some-
thing called Agile and we are interested in every 6
months [involvement] but we can help you prioritize
the backlog but we really don’t know the terms like
user stories and all’. Then we have someone called
proxy customer, who really understands the customers
whose there near to him, then he is able to place the
view point. . . as long as he is able to answer questions
and come back. He may not be able to answer every-
thing off the shelf, but get the answers and get back.”
— P23, Developer, India

“Using Client proxy, so we assign a customer repre-
sentative who interacts with the team much often but
then passes on the feedback from the customer to the
team and vice versa.” — P37, Agile Coach, India

The use of a proxy to co-ordinate between the customers
and the team was also observed in New Zealand, where a
business analyst and couple of developers on different teams
served as the proxies because of their communication skills
(P2, P4, PS).

“We've got two people [playing proxy]...[due to]
their ability to communicate ideas; they’re well-
spoken and able to get those ideas across...which
is great for developers!” — P13, Developer, NZ

Simulation The FACT and FLY corroborating case studies
had a low level of end-user involvement due to their min-
imal user interfaces. In comparison, the MATH case study
involved physicists and mathematicians trying to apply new
models and algorithms to support securities trading. The de-
velopment was not driven by customers needs, but innova-
tive work trying to find potential use. In their business model,
there was no customer out there to able to express a need,
rather they created new innovative tools and tried to see if
they would work, by simulation, then find potential users.
So while there was end-user involvement, this was not in the
traditional Agile model of the end-user having a specific task
to accomplish, describing it in the form of user stories to the
development organization.

4.2 Fixed-Bid Contracts

The Agile Manifesto values “customer collaboration over
contract negotiation” [41]. However in our Grounded Theory
study we found that many of our Indian participants strug-
gled with their customers’ demand to fix time, cost and scope
in a fixed-bid contract. The practitioners explained that the
customers perceived the fixed-bid contract to give them pre-
dictability and control over the project schedule, cost, and
deliverables. Since software development teams and their
customers need legal contracts, and the market was such
that customers could move to different software develop-
ment companies if they wanted, this left our practitioners
to handle the apparent contradiction between the customers’
desire for certainty with their own commitment to Agile val-
ues such as responding to change [42].

Our participants mentioned contract negotiation as an-
other main challenge they face in managing Agile projects.

“sometimes limitations are imposed by customers,
like. . . contracts. . . they just want to give you scope,
requirements and expect you to deliver it or they are
looking for a fixed price contract....if you ask me
biggest problems. . . one is contracts. . . they want three
things: fixed deadline, fixed price, and fixed scope.” -
P27, Senior Management, India

A fixed-bid contract puts the development team under
pressure to deliver to the fixed constraints in the contract.
The negative consequences of a fixed-bid contract in an
Agile project is captured in the following comment by an
Agile trainer and coach who worked mostly with Indian
organizations.

“The whole premise of the fixed-bid contract is that
requirements will be fixed. The nature of software de-
velopment is that requirements are inherently unstable
and so when you are entering into contract negotia-
tion, you are dealing with the recognition that the re-
quirements will be unstable. .. Biggest source of dys-
function is not actually from customer - the greater
source of dysfunction comes from within the organi-

zation where the contract - fixed bid contract - is ne-
gotiated by sales team, it is negotiated for the small-
est amount of money possible. And so the team from
day one is under pressure to over-commit and under-
deliver and that I see again and again and again.” —
P32, Agile Trainer, India

Agile practitioners see fixed-bid contracts as a major limi-
tation that the customers impose on them. Other practitioners
shared their frustration over the issue of dealing with fixed
time/scope/cost contracts.

“Fixed price doesn’t work well with Agile.” - P39,
Agile Coach, India

“With Agile it’s difficult to do fixed price projects.
Agile talks about embracing change, can’t do fixed
price projects with changes coming in.” - Practitioner
P24, Developer, India

Providing Options Our participants shared with us some
of the strategies they used to deal with the customers’ expec-
tation of fixed-bid contracts [42]. Agile practitioners offer
different contract options to customers in order to encour-
age them to try Agile. Practitioners P3 and P8 encouraged
customers to buy a few iterations to begin with instead of
signing a contract for a large project up front:

“Most of the time...[we] sell a certain number of
iterations.” - Practitioner P27, Senior Management,
India

By allowing the customers to use Agile on a trial basis,
Agile practitioners are able to build confidence among cus-
tomers and provide them with risk coverage. Once the cus-
tomers have tried a few iterations, then they are offered the
option to buy more iterations or features as needed:

“One thing we [development firm] used to do and
worked very well - we used to tell the customers you
don’t have any risks. . . in case of Agile we enter into a
contract with the client - OK we’ll show you work-
ing software every fifteen days, you’ll have the op-
tion of ending the project within one sprint’s notice.
Maximum they can lose is one sprint. Advantage we
show to client they don’t have to make up their entire
mind. . . [they] can include changes in sprints -they see
it as a huge benefit to them.” — P24, Developer, India

“Try for a month - then buy more sprints.” - P37, Agile
Coach, India

Some Agile practitioners allow the customers to swap
features. The project is delivered at the same time and price
as initially specified in the contract, but the customer can
remove product features that they no longer require and
replace them with new ones that are of more value to them.

“...customer after seeing demo after 4th iteration
realizes the features built, say the 13th feature, is not

required and he needs something else. .. he can swap
the two.” — P24, Developer, India

The practitioners also provide the customers with a ter-
mination clause in the contract such that customers have the
option to quit on a few iterations’ notice.

“...[customers are] open to suggestions to retreat
after few sprints.” — P33, Agile Coach, India

“[Developers] start working on functionality from day
one and you can add a sprint - not enter into con-
tract for entire project - end in one sprint’s notice and
they [customers] can introduce change” — P24, De-
veloper, India

By providing the customers with the option to quit the
project in the worst case scenario, some of their financial
risks were covered. So if the customers were unhappy with
the results, they could always quit the project.

Buffering Another practice used to adapt to the context of
fixed-bid contracts was Buffering, which involved adding a
buffer to the estimated time taken to complete a project or
feature. Based on the rate of development per iteration - team
velocity - as a guideline, estimates can be made about how
long a particular set of requirements in a given domain will
take to be developed. Then some amount of extra time was
added to the estimated time as buffer. The contract is then
drawn on this estimated time (including buffer) for a fixed
price and scope.

“Agile will not ask you in how much time will you
complete the project. .. .but [the customer will]. Some-
times you’ve got to map internal Agile practices to
customer practices. .. Actually it comes from a lot of
experience on Agile. When you know that okay this is
generally the velocity of the team that the team is able
to do within the given domain, the given complexity
and then you make some rough estimates, including
some buffer. [Customer says] ‘okay I want these fea-
tures, tell me the time’. so then we’ll make prediction
based on Agile data that this is the team size, this is
the velocity, we assume the team won’t change then
the Agile burndown chart will say let’s say 2 weeks
so we’ll say okay another 2 days of buffer, so 2 weeks
ands 2 days, something like that.” — P23, Developer,
India

The small amount of buffer time was important to allow
the customer to the possibility of introducing changes in
requirements along the way while giving the development
team time to respond to those changes. Buffering was a
practical strategy of working with a fixed-bid contract while
using Agile methods.

4.3 Design/Architecture Intensive

One of our participants, a customer representative, shared
their concern over using Agile methods on a design intensive
project. Their project involved building an entertainment
website and was driven by the front-end design. Drawing
on their experiences, the customer representative noted that
Agile methods are better suited to projects which are light
on design and need to be adapted to suit projects which are
design intensive:

“I was aware at the beginning that Agile is much
better suited to pure development, and it needs to be
twisted a bit to fit with design and IA (Information
Architecture) and to run a whole end team project.”
— P18, Customer Representative, NZ

This team adapted regular Agile practices to make them
fit the context of the front-end design-intensive project.
These adaptations included the use of an Information Archi-
tecture (IA) document and Design Pipeline — the practice
of running design activities ahead of development by one
iteration.

Information Architecture Our participant used an In-
formation Architecture (IA) document in response to a
web project context that was inherently front-end design-
intensive. The TA document provided the intended layout of
the website and also defined the set of rules associated with
each of the elements on the document. The IA was able to
capture the essence of functional specifications and require-
ment documents in one place without being overly formal or
dictative. The designers and developers were able to use the
IA to explicitly guide their front-end design and back-end
functionality respectively.

“And so the IA will say here’s your page...the top
navigation here and it’s going to have these tabs on
it... here are some images. Now, a designer will take
that and say actually I think these should be in differ-
ent places on the page, and they may rearrange it vi-
sually, but from a here’s-what’s-on-the-page perspec-
tive, the IA defines all that and then says. . . here’s rule
number one and when it’s clicked it gets the [audio]
playing. So it’s a little more towards the functional
spec, it’s a little towards a requirement document, and
I don’t really need a requirements document or a func-
tional spec, I like it here in one place. So it’s really
here’s a series of pieces and then there are the rules
that parallel it. And a designer can look it and say
here are the elements I need to create and where they
go, and a developer can look at this and say ok this
needs to happen with that.” — P18, Customer Repre-
sentative, NZ

Design Pipeline One of our participants identified an
adaption aimed at ensuring that developers did not waste
substantial effort on technical matters prior to getting the

front-end design right in a project whose context was skewed
towards being front-end design-intensive. Their concern
with following by-the-book Agile methods is encompassed
in the following quote:

“My personal experience is that, developers get too
hung up on the “how to do it”, rather than “what
exactly to do”. So if the problem is not well defined
before the developer gets it, he might do plenty of
cool optimizations, make it very efficient, but in the
end, it might not be what the people want...Agile
doesn’t depend much on initial specs — it can backfire
sometimes.” — P38, Designer, India

Their adaption was to support the design in driving the
back-end functionality. For every iteration, the designs had
to be ready before the development work could commence.
The team addressed this by scheduling design activities
a whole iteration ahead of development, a practice adap-
tion we call Design Pipeline. The Design Pipeline involved
starting up with front-end design activities dominating the
zero’th iteration, with the consequence that the other de-
velopmental activities proceeded to continually follow the
front-end design by one iteration.

“You have to run IA half or a whole sprint ahead of
development. If you run them together you just waste
you much time. I think you really need a sprint zero
which is much more design and IA focused.” — P18,
Customer Representative, NZ

The adaptation made in response to a software architec-
ture intensive project was Walking Skeleton (a term derived
from Cockburn [16]).

Walking Skeleton In the corroborating case studies, project
FIN had made some very good initial progress with an
XP+Scrum approach and a two-week iteration pace. How-
ever the project hit a wall after 6 months for lack of a suffi-
cient focus on developing a software architecture that would
scale and that would shield the various teams. Software ar-
chitecture was initially perceived as Big Up Front Design
(meaning: not a good thing), and proposals to make some
major architectural investment were dismissed with cries of
YAGNI — “you ain’t gonna need it” [12] — or suggestions
to defer to the “last responsible moment” [65]. The focus
was initially to demo to the users and the management good
progress at each iteration with user recognizable features.
There was no stable architecture and there was compliance
pressure from external standards such as the Sarbanes-Oxley
act [81]. There was a naive expectation that the right archi-
tecture will gradually emerge out of weekly refactorings.
The scope of such refactorings became larger and larger,
expanding beyond the boundary of a two week iteration,
and this brought the project to a complete stop. Tensions
arose in the project triggering the departure of several key
players, then the dismissal of a few key Agile proponents.

The project was restarted, and a robust architecture was de-
signed, prototyped as a Walking Skeleton [16], and then had
new code gradually ported onto it. This project was finally
deployed operationally, though two years later than origi-
nally expected.

4.4 Documentation Intensive

While the Agile Manifesto sees value in documentation, it
favours working software more [41]. Over the past decade
this has led to the practice of Agile projects focusing more
on the task of coding than the task of documentation, and
the perception of light documentation being just enough
documentation [75].

Several of our participants worked on projects in domains
where light documentation was not just enough documenta-
tion. This stemmed either from regulatory need, or a com-
munication need between our participants’ teams and their
customers. As well as this, in at least one case, existing pro-
cess documentation was used as a tool to aid initial Agile
adoption in a heavily bureaucratic government context, and
to encourage stakeholders to take up other Agile practices.

“We’ve written a large amounts of documentation.
One of the key misconceptions is that it is chaotic
and that anything will happen and so the first thing
you do is we present a very solid, very structured
methodology to people with documentation backing
up all aspects of it. That way they feel secure that this
is not gonna be a random process, they are not gonna
be thrown into a black-box and hopefully come out the
other end.” — P8, Agile Coach, NZ

In this section, we explore adaptions to regular Agile
practices that usefully shifted some part of the focus back
to documentation again.

Project Dictionary Some of our participants encountered
difficulties in collaborating with customers that was not
solely related to their lack of involvement.

There is often a language gap between the development
teams and the customers, since the development teams use
technical language while customers are more used to busi-
ness language [46]. The language gap between develop-
ment teams and their customers poses a threat to effective
team-customer collaboration by limiting their understanding
of each other’s perspectives. Customer representatives often
have limited time to offer to the team for clarification and ex-
planation of requirements and ineffective translation of busi-
ness requirements into technical tasks can result in develop-
ment of software that is misaligned from desired business
drivers.

We found that one of the Indian teams extended their use
of documentation by using a ‘dictionary’ to assist everyone
on the team better understand business requirements [46].
This dictionary was an online editable document (wiki) pop-
ulated by the customers with business terms, their meaning,

and their context of use. These business terms were trans-
lated directly into code by the team using the same vari-
able names, providing one-to-one mapping between the cus-
tomers’ business terms and their technical implementation
for a given project. The customers were able to view and
edit the contents of the evolving dictionary.

“We have extensive documentation. ..a wiki [where
the customers] have explained their whole infrastruc-
ture...as and when they build up the requirements
they come and edit the document. . . its kind of like a
glossary and also the rules that figure in that world of
theirs. .. we capture all that and ensure our domain is
represented exactly like that in code.. ..so when they
say ’a port has to be in a cabinet which has to sit in
a rack’ it directly translates to code!” — P40, Devel-
oper, India

Comprehensive Documentation In some rare circum-
stances, very detailed documentation is a major deliverable
of the project, and not just an accessory. For example, Project
FLY involved developing software which in part was used in
airlines’ cockpits and was therefore subject to certification
by aeronautical authorities under DO178-B [70]. The soft-
ware had an extensive test harness and a very large number
of tests, many of them generated by a tool, but nonetheless
allowing regression testing very early in the development
cycle. For Project FLY, delivering extensive documentation
to external certification agencies was an integral part of the
task. Newcomers to the team, familiar with Agile methods
and XP in particular, did not readily understand the value
of that standard, a key element in this business, and initially
dismissed it. Documentation was deemed anti-Agile, and
contrary to the spirit of the Agile Manifesto [41] by some
new team members, and led to some internal clash inside
the team, pushing back on what they perceived as the ulti-
mate waterfall “evil”. The way forward was a kind of “Ag-
ile undercover” [43] approach, where the team proceeded
internally in an Agile fashion, but externally presented all
required artifacts in a waterfall-like sequence. While still
perceived by some as a “totally brained damaged” process,
the project was able to progress, though it had experienced
some turn-over with some Agile developers leaving in dis-
gust.

4.5 Slow Rate of Change

Part of the motivation in the design and uptake of Agile
practices was the need to react to constant change in soft-
ware engineering projects. Agile is setup to strongly sup-
port garnering feedback and guiding the customer towards
better understanding what they want and need [10], through
close collaboration and frequently releasing working proto-
types. The expectation is that the customer’s informed and
changing requirements continually support subtle changes
in the project’s direction, and many XP practices such as
small releases and the planning game are specifically set up

to facilitate this. However, not all of our participants worked
on projects where constantly changing requirements was a
risk that needed mitigating. In fact in some projects the cus-
tomers already had a clear idea of what they needed due to
the nature of the problem and the structure of the industry
the customer worked in.

As an example, an Agile team in NZ was catering to a
customer from the Airlines industry. The customer require-
ments for the project were pretty stable from the start and
there were no frequent changes in the requirements from the
customer’s end. The senior management had doubts about
the suitability of Agile methods in such a context:

“To be honest I was doubtful that it was an appro-
priate type of project to use Agile for because in my
mind it’s most useful where there’s a lot of user inter-
action. Where there’s batch systems processing data
and spitting out, there’s relatively less opportunity
for interaction to demonstrate the outputs. .. I still am
to some degree. .. [because] the next [project is] all
about batch processing systems, so it’ll mean paying a
bit more attention to how [the team] gets [their] feed-
back [from the customers]” — P15, Senior Manage-
ment, NZ

Despite this, those participants who found themselves
working in requirements-stable projects still valued many
other Agile practices. Rather than choosing a non-Agile
method, they instead found adaptations to those practices
that assumed and were structured to deal with constant
changes in requirements.

Working from Requirements One example is a develop-
ment team who, through a combination of Scrum and XP,
were following an iterative and incremental development cy-
cle. Because of the stable nature of the requirements, the
team was able to collect most of the requirements from the
customers in initial planning sessions. The team then had
their own planning sessions where they translated those re-
quirements into user stories. Where the customer had indi-
cated a high priority, the user story was put into the earlier
iterations and where the customers had low priority or no
preference of priority, those stories were placed in later iter-
ations. They would demonstrate incremental features of the
product to the customer every month or so to collect feed-
back. Thus by working from requirements, the team was able
to use iterative and incremental process of development de-
spite the slow rate of change of requirements. The team also
practiced the other Agile practices such as iteration and re-
lease planning, story boards, and retrospectives.

“I’m not aware of a lot of changes that have been re-
quested. . . but like we’ve sort of come across this sit-
uation where we’ve gone ‘hey, this would work much
better if we do it this way’. And we’ve taken it back
and maybe demoed what the screens would look like

instead and got approval.” — P13, Senior Developer,
NZ

As the senior management later noted, the project “had
been highly successful” (P15) and the team was able to de-
liver the project requirements while maintaining the itera-
tive and incremental process of development and other Agile
principles and practices.

In the corroborating case studies, the issues of safety and
high availability consideration were predominate in project
FACT. The factory product chain could practically only be
stopped a couple of times a year and as such there the rate of
change from a delivery perspective was very slow. Also most
of the complicated software development centered around
the implementation, test and optimization in code of compli-
cated physics model, embedded in small processors, which
did not lent themselves to be broken down in small, incre-
mental ‘user stories’. While a dialogue with plant operator
and with physicists was useful, the teams on this projects
found little use for the Agile practice of having an on-site
customer representative to help with the project require-
ments. In absence of any ‘user stories’ per se, the team found
it more useful to work from the specified requirement doc-
umentation. The team continued with iterative development
and other Agile practices to implement the requirement doc-
umentation.

Project FLY similarly had only a few delivery windows,
and the safety-critical aspect: compliance with DO178B
standards [70], high stability of the requirements made it-
eration a help only internally, to give developers short term
milestones and points for reflection, not as a way to get ex-
ternal input or feedback. This created a tension between the
old timers and the proponents of Agile techniques: “why
should we iterate furiously like this? This is exhausting.”

4.6 Distributed Teams

Several Agile practices — such as XP’s pair programming
— are best supported in a co-located team environment. Co-
location supports team collaboration, that in turn can help
expose technical constraints and dependencies upfront so
that these issues can be promptly resolved.

“when an [Information Architect] is sitting next to all
of us together, she may go okay, this here would be
quite cool, and if you click on this a flash thing comes
up and the developer hears her saying this and goes
‘Oh no! we’re not using that technology, we can’t do
it!’ But if they’re in another room, the [Information
Architect] will be quite far down the track from work-
ing that out, and when they sit sown with the devel-
oper and says okay this is what I thought, then the de-
veloper goes ‘Ah, I can’t do it’. [It could] have been
picked up earlier on.” — P18, Customer Representa-
tive, NZ

In the absence of team collaboration, individuals may
make assumptions about the other parts of the system and
may waste time and effort before realizing the technical
constraints and dependencies.

However, several of our participants faced a reality where
standard practices targeting team collaboration were either
not an option, or not a practical option due to resource
pressure.

Some teams were physically distributed across different
cities or countries making co-location an impracticality. In
these scenarios, they developed adaptations, and we now
discuss these in more detail.

e-Collaboration Agile teams are highly collaborative [41].
As one of the participants mentioned, the need for regular
collaboration is limited in plan-based methods and can be
done all at once by travelling to the other site. However, if
our participants were to follow by-the-book Agile methods
and insist on face-to-face collaborative sessions, then the
need for regular collaboration through out the project would
require a lot of travelling and more financial and resource
investment that is typically available.

“Agile talks about collaboration - when outsourcing
- collaboration between on-shore and off-shore teams
- same is not true for waterfall projects because [in
waterfall]...2 or 3 people stay [on other site] for 2
months - do requirements analysis for 2 months -
[and] come back...[later] you’d be talking to same
person over 9 months without seeing him...[or] talk
for clarification...once in 3 days...[that] doesn’t work
with Agile. In case of Agile project - you need collab-
orations each iteration - [throughout] requirements,
design, development...lots of travel in case of dis-
tributed Agile!” — P24, Developer, India

In order to maintain regular collaboration across geo-
graphic distances, our Agile practitioners resorted to elec-
tronic collaboration (e-collaboration):

“Video conferencing becomes very important all about
collaboration you should be sitting in same room as
[much as] possible.” — P24, Developer, India

E-collaboration was a popular means of regularly com-
municating across geographic boundaries using video/voice
conferencing, phone, email and chat. For distributed Agile
teams, e-collaboration was a practical adaption to the pre-
scribed practices:

“Well on our project we are working like distributed
Agile so the client - they also develop with us, we are
like a team - separate teams so they’re developing in
USA and we’re developing in India. We follow scrum
practices and daily meetings on chat or via telephone.
And wiki pages are most important in distributed Ag-
ile.” — P31, Developer, India

Some teams were using an electronic Scrum board where
the user stories and tasks could be easily tracked between the
distributed teams.

“It’s pretty good. Everyday we discuss three things:
what we plan to do today, what we did yesterday, what
the impediments are. If the impediments are big we
take it after the standup and discuss it through Skype
chat - the member who is facing the impediment. . . the
time difference is good so you get an overlap time of
about 4-5 hours.The product owner come up with
the product backlog and we put it on JIRA [which]
is hosted on the web so we have access to it. .. So we
have the electronic scrum board.” — P22, Developer,
India

“[We collaborate] through the wiki. First part is we
have a user story where we decide how we have to
do it and make individual tickets or tasks according
to that. We just take it up and start working.” — P30,
Developer, India

Using the electronic means of collaboration enabled dis-
tributed Agile teams to continue collaborative Agile prac-
tices such as release and iteration planning, working from
the scrum board, and daily stand-ups.

5. Discussion: Agility in Context

In this section, we discuss the implications of our observa-
tions and generated theory, and how they relate to other re-
search and opinion in Agile software development.

5.1 The Sweet Spot

Both Scrum and XP suit similar kinds of projects: a small,
co-located team; an on-site or available customer represen-
tative; an emphasis on coding and testing early; and fre-
quent feedback into updated requirements. Reifer et al., and
Kruchten call this context the Agile “sweet spot” [51, 68].
The sweet spot mirrors the kinds of projects that the method
designers had in mind when they constructed the first Agile
methods. It is unsurprising that other projects in the sweet
spot benefit from the application of methods such as Scrum
and XP.

We found that our participants follow many Scrum and
XP practices without adapting them. Where participants did
adapt practices, we found the modification stems from the
fact that the projects do not sit within this sweet spot. Other
researchers have explored Agile projects outside the sweet
spot, such as scaling up to larger projects [30, 53]. While
we did not observe scalability-based problems, we did find
several other aspects of project contexts that were signifi-
cantly outside the sweet spot. This motivates the question
we answer in this paper: what can projects do (indeed, what
should projects do) when their contexts do not fall within
Agile’s sweet spot?

5.2 Abandon Agile Methods

If an Agile method’s practices must be followed strictly, then
Agile methods will only be applicable to projects within the
sweet spot. Projects in contexts outside the sweet spot must
presumably choose different development methods. More
pragmatically, we can consider a cost-benefit analysis. Are
Agile practices so interdependent and mutually reinforc-
ing that any adaption completely undermines the Agile ap-
proach? Can projects benefit from one or more individual
Agile practices, applied in isolation, perhaps within another
kind of development method? Would another, perhaps more
structured or more document-centric development method
lead to greater benefits — or post less risk — than adapting
an Agile method?

Our research participants did not abandon Agile methods
and principles to address problems outside the Agile context.
Clearly there is selection bias here: both the grounded theory
study and the corroborating case studies were restricted to
projects that at least claimed to be undertaking Agile devel-
opment projects. Nevertheless, the projects we studied were
able to function effectively, despite adapting some practices,
and without any overall collapse of their development pro-
cesses. Teams clearly derived benefits in terms of morale and
productivity from adopting some Agile practices, and fur-
ther benefits from the interactions between those practices
they were able to apply. As most of our participants had
prior experience in non-Agile projects they were in a po-
sition to judge the relative merits of different development
approaches, and they preferred Agile methods to their pre-
vious methods of working. Abandoning Agile development
was seen as neither a suitable nor desirable option by our
participants.

While many projects fit within the Agile sweet spot, many
other projects do not. In choosing to ignore Agile methods,
rather than adapting methods to suit their contexts, projects
outside the sweet spot will lose the benefits Agile develop-
ment techniques could bring.

5.3 Context-Independent Practices

Although our participants adapted some of their method’s
practices, many other practices would be performed more-
or-less by-the-book. We found most teams adhered to Scrum
and XP practices such as iterative development (with it-
erations of various lengths across projects), iteration plan-
ning, testing, regular demonstrations of working software,
and continuous improvement via retrospectives or reviews.

These unmodified practices tended to be inwards look-
ing, focusing on the development team itself, rather that
the team’s interactions with customers and clients, e.g.
their contract negotiations. We call these practices “context-
independent”, precisely because they do not depend on
the project’s external context. Because context-independent
practices mostly involve just the team, they can be adopted
with little effect upon other project stakeholders.

XP’s test-first programming practice is the prime example
of a context-independent practice. Indeed, test-first program-
ming has evolved into an entire Agile (sub)method — Be-
haviour Driven Development — that can be applied across a
wide range of projects, programming languages, and devel-
opment methods, almost irrespective of the projects’ con-
texts [32]. BDD provides significant benefit, even applied in
isolation, without the surrounding infrastructure of other XP
or Agile practices.

Context-independent practices show that choosing to
adopt (or adapt) an Agile method is not an binary choice
— just as the decision to adopt an Agile method (versus a
non-Agile method) is not a binary choice. Our participants’
projects aimed to perform context-independent practices by-
the-book, while adapting other practices to fit the projects’
contexts.

5.4 Context-Dependent Practices

In contrast to context-independent practices, we found some
other practices are far more context-dependent. For example,
release planning (including writing user stories and prioriti-
zation) becomes difficult in contexts where the customer is
unwilling or unable to be highly involved with the project.
Accepting changes in requirements throughout the project
becomes difficult in contexts where the project is governed
by a fixed-bid contract. Face-to-face collaboration is a chal-
lenge when teams are distributed.

In such situations, teams must resolve the conflict be-
tween their context and their practices. Teams have two ba-
sic tactics for achieving this: changing the context to fit the
practices; or changing the practices to fit the context.

5.4.1 Changing the Context

One of the great strengths of Agile methods is the way their
practices reinforce each other. Test first programming sup-
ports refactoring by helping to ensure refactorings preserve
correctness; refactoring supports incremental development
because old components can be updated to meet new re-
quirements; incremental development encourages a stable
pace of working, which in turn allows time for test first pro-
gramming. Projects that do not take on whole methodologies
lock, stock, and barrel cannot get the benefits if this mutual
reinforcement. This may be one reason why methodologists,
coaches, and Scrum masters, criticize projects that adapt Ag-
ile methodologies, or do not adopt them in foto.
Context-independent practices, however, need to be adop-
ted by more than just the core development team: release
planning, or user stories as “a promise of a conversation”
[22], require customers or their representative to participate
along with the team — to play (as Cockburn would put
it) the cooperative game [19]. Changing from fixed-bid to
more Agile contracts requires legal and financial support,
and goodwill, from two or more separate contracting compa-
nies. Co-locating a development team can impose significant
relocation and travel expenses. Co-locating a team with their

customers could even require choosing highly-expensive in-
house or on-shore development teams, rather than outsourc-
ing to much cheaper offshore contractors. Another reason
methdologists criticize adaption is to encourage projects to
work with their stakeholders to pay these costs and so reap
the benefits [18, 77, 79].

Unfortunately, in our study we found that projects often
face contexts — business practices, geography, laws, or even
fundamental mathematics — over which the participants’
organizations have no authority or control. Such contexts
were generally neither avoidable nor adaptable. There is a
difference between encouraging teams to change contexts
where that may be possible (albeit difficult); and insisting
on changing contexts where that is impossible.

5.4.2 Changing the Practices

In our study, we found participants tackling their own
projects as best they could, devising strategies to adapt
context-dependent practices to their projects’ contexts. In
doing so, they were deriving as much benefit from Agile
practices as they could, given the control they were able to
assert over their projects.

As one of our more reflective participants noted, a project’s
context must be understood before methods can be chosen
or practices enforced:

“...how distributed the situation is, what’s the type of
technology mix that you have, how many people are
involved...lots and lots of things like that...it’s more a
matter of adapting to the context of the client.

You don’t say ‘oh no, Agile says...” No, there’s no such
thing as ‘Agile says’. We need to find out together
what works best, what gives us the best outcome in
your context.”” — P17, Agile Coach, NZ

Another participant (P19) had gone so far as to design
an Agile risk assessment questionnaire which listed a set of
questions to identify potential risks inherent in a project con-
text. The questions are based around the values and princi-
ples of the Agile Manifesto, and were used to discuss how
well Agile values and principles fit the project context. The
questionnaire results were then used to devise strategies to
overcome those factors where the project context did not
support Agile principles and values.

Such adaptations were not surprising because the funda-
mental principles and values of Agile development include
to favour people and interaction (that make up a project con-
text) over processes and tools (including, presumably, Ag-
ile development methods and practices). Again, the last Ag-
ile principle encourages adaption: “At regular intervals, the
team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.” Scrum explicitly sup-
ports the ‘inspect and adapt’ principle [71] where teams
are meant to inspect impediments in retrospective meetings
and collaboratively devise innovative strategies to adapt to

changing contexts. XP, too, fundamentally acknowledges
problems in its implementation and promotes contextual-
ization by recommending practitioners to “fix XP when it
breaks” [82]

Values and principles are abstract: practices are concrete.
Explicit instructions — i.e. practices — are much easier to
apply than abstract principles. Advice to “write tests first” is
much more straightforward, and much easier to check, than
advice to “fix your methodology”. We agree with Conboy
and Fitzgerald [25] who argue that the inability of Agile
methods to provide clear adaptation guidelines is “similar
to that of their traditional counterparts where the need for
flexibility is acknowledged but not addressed.” and that pre-
cisely this kind of adaptability “underpins the very meaning
of what it is to be Agile.”

6. Conclusion

Being Agile is all about having the courage to change [9].

In this paper, we have presented the results of a large-
scale, international study of multiple projects using Agile
practices. Our grounded theory, corroborated by four inde-
pendent case studies, is that Agile teams need to change
their practices to fit their projects contexts. Some practices
are context-independent, primarily affecting the team itself:
iterative development, testing, and retrospectives or reviews
were employed unchanged by essentially all the projects we
studied.

Other practices are much more context-dependent: our
participants tended to adapt them as necessary to fit their
projects’ contexts. Where customer representatives are un-
available, teams find story owners or customer proxies.
Where fixed price contracts are mandatory, teams negoti-
ate contracts that explicitly specify development options,
or allocate contingency funds to cover unforeseen changes.
Where teams need to make architectural decisions that will
be very hard to change, they dedicate sufficient time and
resources to make those decisions “up front”. Where teams
need to produce documentation to gain product or process
certification, or to work in multiple locations, they customise
their processes to satisfy those contextual imperatives: pro-
ducing documentation to satisfy regulators, or using elec-
tronic communications in conjunction with travelling for
face-to-face meetings.

Returning once again to the final principle of the Agile
manifesto:

At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its be-
havior accordingly.

Agility, in this sense of Agility in context, cannot be eval-
uated simply by a tick-list of practices, or by weighing up
“individuals” versus “processes”, “software” versus “docu-
mentation”, or even “responding to change” versus “follow-

ing a plan” — even (or especially) where that plan is called

an “Agile Method”. Rather, our study shows that Agile teams
indeed evolve their methods and practices to be as effective
as possible within their projects’ contexts. We conclude with
a question: to what extent should a team that does not adapt
its practices appropriately — even if it is performing every
practice from Scrum, XP, Lean, and DSDM “by-the-book”
— really be regarded as an Agile team?

Acknowledgments

We thank all the participants. This research is generously
supported by research grants from the Agile Alliance, Scrum
Alliance, and NZ BuildIT PhD scholarship.

References

[1] N. Abbas et al. Historical roots of agile methods: Where did
“agile thinking” come from? In XP, 94-103, Springer, Limerick,
2008.

[2] P. Abrahamsson et al. New directions on agile methods: a
comparative analysis. In Proceedings of the 25th International
Conference on Software Engineering Portland, Oregon, 2003.

[3] S. Adolph. What lessons can the agile community learn from
a maverick fighter pilot? In Agile 2006 94-99, IEEE CS.,
Minneapolis, 2006.

[4] S. Adolph, P. Kruchten. Summary for scrutinizing Agile
practices or shoot-out at process corral! In ICSE Companion
’08: 1031-1032, ACM, New York, 2008.

[5] S. Adolph, W. Hall, and P. Kruchten. A methodological leg
to stand on: lessons learned using grounded theory to study
software development. In CASCON ’08: 166-178, ACM, New
York, 2008.

[6] S. Adolph, W. Hall, and P. Kruchten. Using Grounded Theory
to Study the Experience of Software Development. Under
review In Journal of Empirical Software Engineering, 2010.

[7] G. Allan. The Use of Grounded Theory as a Research Method:
warts & all. European Conf. on Research Methodology for
Business and Management Studies, 9-19, 2005.

[8] Barthélémy Dagenais et al. Moving into a new software project
landscape In International Conference on Software Engineering
ICSE, 275-284, 2010

[9] K. Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000.

[10] K. Beck, I. Alexander. Point/Counterpoint [EEE Software,
March/April 2007 1EEE, 2007

[11] A. Begel and N. Nagappan. Usage and perceptions of agile
software development in an industrial context: An exploratory
study. In ESEM ‘07: , 255-264, Washington, IEEE CS, 2007.

[12] B. Boehm. Get Ready for Agile Methods, With Care /EEE
Computer, January 2002 1IEEE, 2002

[13] J. Carver. The Impact of Background and Experience on
Software Inspections Empirical Software Engineering, 9, 259—
262,2004.

[14] C.A. Crabtree, A.F. Norcio. Exploring Language in Software
Process Elicitation: A Grounded Theory Approach In Empirical

Software Engineering and Measurement (ESEM), 324-335,
2009.

[15] T. Chow, D. Cao. A survey study of critical success factors in
agile software projects. J. Syst. Softw., 961-971, 2008.

[16] A. Cockburn. Crystal clear: a human-powered methodology
for small teams. Addison-Wesley Professional, 2004.

[17] A. Cockburn. /Agile Development as the Middle Way
With a Cliff On Either Side http://alistair.cockburn.
us/Agile+development+as+the+middle+way+with+a+
cliff+onteither+side, accessed on 21 March 2010

[18] A. Cockburn. Top ten ways to know you are not doing
agile http://alistair.cockburn.us/Top+tentways+to+
know+you+are+not+doing+agile, accessed on 23 March
2010.

[19] A. Cockburn. Agile Software Development: The Cooperative
Game. 2ed. Addison-Wesley Professional, 2006.

[20] A Cockburn. People and Methodologies in Software
Development. PhD thesis, University of Oslo, Norway, 2003.

[21] M. Cohn. Succeeding with Agile: Software Development
Using Scrum. Addison-Wesley Professional, 2009.

[22] M. Cohn. User Stories Applied: For Agile Software Develop-
ment Addison-Wesley Professional, 2004.

[23] G. Coleman and R. O’Connor. Using grounded theory to
understand software process improvement: A study of Irish
software product companies. Inf. Softw. Technol., 49(6):654—
667, 2007.

[24] K. Conboy. Agility from First Principles: Reconstructing
the Concept of Agility in Information Systems Development
Information Systems Research, 20(3): 329-354, 2009

[25] K. Conboy and B. Fitzgerald. The Views of Experts on the
Current State of Agile Method Tailoring IFIP, 235: 217-234,
2007

[26] W. Cunningham. The WyCash portfolio management system.
In OOPSLA ’92: 29-30, ACM, Vancouver, 1992.

[27] Ward Cunningham. Almost Extreme Programming http:
//www.c2.com/cgi/wiki?AlmostExtremeProgramming,
accessed 25th March 2010.

[28] DSDM. DSDM Consortium http://www.dsdm.org/
version4/2/public/, accessed 25th March 2010.

[29] T. Dyba and T. Dingsoyr. Empirical studies of Agile software
development: A systematic review. Inf. Softw. Technol., 50(9-
10):833-859, 2008.

[30] J. Eckstein. Scaling Agile Processes: Agile Software
Development in Large Projects In XP/Agile Universe 2002,
Springer, Berlin, 2002.

[31] Fraser, S. et al.: The Role of the Customer in Software
Development: the XP Customer - Fad or Fashion? In OOPSLA,
148-150, ACM, USA, 2004.

[32] S. Freeman and N. Pryce. Growing Object-Oriented Software,
Guided by Tests Addison Wesley, 2009.

[33] S. Georgieva and G. Allan. Best Practices in Project
Management Through a Grounded Theory Lens. Electronic
Journal of Business Research Methods, 6(1), 43-52, 2008.

[34] B. Glaser. Basics of Grounded Theory Analysis: Emergence
vs. Forcing. Sociology Press, Mill Valley, CA, 1992.

[35] B. Glaser. Theoretical Sensitivity. Sociology Press, Mill
Valley, CA, 1978.

[36] B. Glaser. Doing Grounded Theory: Issues and Discussions.
Sociology Press, CA, 1998.

[37] B. Glaser. The Grounded Theory Perspective III: Theoretical
Coding. Sociology Press, Mill Valley, CA, 2005.

[38] B. Glaser and A. L. Strauss. The Discovery of Grounded
Theory. Aldine, Chicago, 1967.

[39] Grisham, P. S., Perry, D. E. Customer relationships and
Extreme Programming. In HSSE '05, ACM, USA, 2005.

[40] J. A. Highsmith, IIl. Adaptive software development: a
collaborative approach to managing complex systems. Dorset
House Publishing, New York, 2000.

[41] J. Highsmith and M. Fowler. The Agile Manifesto. Software
Development Magazine, 9(8):29-30, 2001.

[42] R. Hoda, J. Noble, S. Marshall. Negotiating Contracts for
Agile Projects: A Practical Perspective In XP2009, Springer,
Italy, 2009.

[43] R. Hoda, J. Noble, S. Marshall. Agile Undercover: When
Customers Don’t Collaborate In XP2010, Trondheim, 2010.

[44] R. Hoda, J. Noble, S. Marshall. Organizing Self-Organizing
Teams In International Conference on Software Engineering
(ICSE), 285-294, 2010.

[45] R. Hoda, J. Noble, S. Marshall. Balancing Acts: Walking the
Agile Tightrope In Cooperative and Human Aspects of Software
Engineering at ICSE, South Africa, 2010.

[46] R. Hoda, J. Noble, S. Marshall. How Much is Just Enough:
Documentation Patterns on Agile Projects To appear In
EuroPLoP, Germany, 2010.

[47] R. Hoda, J. Noble, S. Marshall. Balancing Self-Organizing
Agile Teams: A Grounded Theory Under review In Journal of
Empirical Software Engineering, 2010.

[48] M. Isham. Agile Architecture IS Possible You First Have to
Believe! Proceedings of Agile 2008, IEEE, Toronto, 2008.

[49] A. Jackson et al. Behind the Rules: XP Experiences
Proceedings of the Agile Development Conference 2004 1EEE,
2004.

[50] Sami Jantunen Exploring Software Engineering Practices
in Small and Medium-Sized Organizations Co-operative and
Human Aspects of Software Engineering workshop at ICSE,
2010.

[51] P. Kruchten. Scaling down large projects to meet the
agile sweet spot IBM developerWorks, 13 Aug 2004 http:
//www.ibm.com/developerworks/rational/library/
content/RationalEdge/aug04/5558.html, accessed 25
March 2010.

[52] C. Larman and V.R. Basili. Iterative and Incremental
Development: A brief history IEEE IEEE CS, 2003.

[53] D. Leffingwell. Scaling Software Agility: Best Practices for
Large Enterprises Addison-Wesley Professional, 2007.

[54] L. Levine. Reflections on Software Agility and Agile Meth-
ods: Challenges, Dilemmas, and the Way ahead Engineering
Institute Carnegie Mellon, 2005.

[55] G. Luck. Subclassing XP: Breaking its Rules the Right Way
Proceedings of the Agile Development Conference 2004 1EEE,
2004.

[56] A. Martin, R. Biddle, and J. Noble. The xp customer role:
A grounded theory. In AGILE2009, Chicago, 2009. IEEE
Computer Society.

[57] R. Martin. Agile Software Development: principles, patterns,
and practices. Pearson Education, NJ, 2002

[58] S. McConnell. Technical Debt. Software Best Practices,
Construx Forum http://forums.construx.com/blogs/
stevemcc/archive/2007/11/01/technical-debt-2.
aspx, accessed 25th March 2010.

[59] S. C. Misra, et al. Identifying some important success factors
in adopting agile software development practices. J. Syst. Softw.
82, 11, 1869-1890, 2009.

[60] N. B. Moe, T. Dingsoyr, and T. Dyba. Understanding self-
organizing teams in agile software development. In ASWEC
"08:, 76-85, IEEE CS, Washington, 2008.

[61] S. Nerur, et al.: Challenges of migrating to agile methodolo-
gies. Com. ACM, 72-78, 2005.

[62] S. R. Palmer and M. Felsing. A Practical Guide to Feature-
Driven Development. Pearson Education, 2001.

[63] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and
J. Still. The impact of agile practices on communication in
software development. Empirical Softw. Engg, 303-337, 2008.

[64] M. Poppendieck, and T. Poppendieck. Implementing Lean
Software Development—From Concept to Cash. Addison Wesley,
2009.

[65] M. Poppendieck, and T. Poppendieck. Lean Software
Development: An Agile Toolkit. AddisonWesley Professional,
2003.

[66] M. Poppendieck, and T. Poppendieck. Leading Lean Software
Development: Results Are not the Point. Addison-Wesley
Professional, 2009.

[67] R. Rasmussen et al. Adopting Agile in an FDA Regulated
Environment Proceedings of AGILE2009 IEEE, 2009.

[68] D. Reifer et al. Scaling Agile Methods IEEE Software,
July/August 2003 [EEE, 2003.

[69] D. Robey, R. Welke, D. Turk. Traditional, iterative, and
component-based development: A social analysis of software
development paradigms. Inf. Technol. and Management, 2:
53-70, 1, 2001.

[70] RTCA. RTCA/DO-178B Software Considerations in Air-
borne Systems and Equipment Certification, Radio Technical
Commission for Aeronautics, Washington, DC, 1992.

[71] K. Schwaber. The Enterprise and Scrum. Microsoft Press,
2009.

[72] K. Schwaber, and M. Beedle. Agile Software Development
with SCRUM. Prentice-Hall, 2002.

[73] M. Slinger, and S. Broderick. The Software Project Manager’s
Bridge to Agility. AddisonWesley Professional, 2008.

[74] J. Stapleton. Dynamic Systems Development Method.
Addison Wesley, 1997.

[75] M. Stephens, D. Rosenber. Extreme Programming Refac-
tored: The Case Against XP. Apress L.P, 2003.

[76] A. Strauss and J. Corbin. Basics of Qualitative Research.
Sage, Newbury Park, CA, 1990.

[77] J. Sutherland. Nokia Test jeffsutherland.com/
nokiatest.pdf, accessed 25th March 2010.

[78] J. Sutherland. Retrospective on SCRUM and Its Implementa-
tion in Five Companies. PatientKeeper, Inc., 2001.

[79] J. Sutherland, S. Downey and B. Granvik. Shock Therapy:
A Bootstrap for Hyper-Productive Scrum Proceedings of
Agile2009, ACM, 2009.

[80] J. Vlissides and K. Beck. XP Patterns Hatching Column,
Interview http://c2.com/cgi/wiki?V1issidesOnBeck,
accessed on 23 March 2010

[81] US Government. US Public Law 107 - 204 - Sarbanes-Oxley
Act of 2002. US Governement Printing Office, 2002.

[82] D. Wells. Extreme Programming: A gentle introduction
http://wuw.extremeprogramming.org/rules/fixit.
html, accessed 25th March 2010.

[83] E. Whitworth and R. Biddle. The social nature of agile teams.
In Agile2007, USA, 2007. IEEE Computer Society.

