
1

Program Visualization – The State of the Art

Sharon Ellershaw and Michael Oudshoorn
Department of Computer Science

University of Adelaide
Adelaide S.A. 5005

Abstract
Program visualization focuses on the graphical representation of an executing program and

its data. The information is presented in a form designed to enhance both the understanding
and productivity of the programmer through the efficient use of the human visual system.
The programmer is able to observe patterns of behaviour within the executing code and
rapidly detect a departure from the expected behaviour patterns in an accurate way.
However, depending on the programming paradigm and architectural platform that is
utilized, the variety and manner in which information is best presented varies somewhat.

This paper attempts to analyse the visualization requirements for a variety of programming
paradigms and architectural platforms, detailing the paradigm and platform specific needs, in
addition to general visualization requirements that extend across paradigms and platforms. A
survey of current visualization systems is presented which examines each system in detail
and categorizes it by the programming paradigms/platform that it is designed to visualize. A
comparison of the various visualization systems is also presented and the achievements and
failures of current visualization technology are highlighted and commented upon.

1. Introduction
It is essential that programmers are able to quickly and clearly understand the code that

they are working on, regardless of whether they wrote it or not. Without a clear picture of
how the executing code behaves the task of debugging a program, and assessing its
efficiency, is extremely difficult. Graphical visualization systems have been designed in an
attempt to support programmers in these undertakings, by making effective use of the
efficient human visual system to process information that is presented in a graphical form.
When large volumes of data or text are to be understood, it is often the case that a simple
picture captures the important aspects in a readable and elegant manner, allowing users to
quickly and accurately detect any variations from expected behaviour patterns and values.

 The type of information a programmer requires to enhance understanding of a program
differs greatly depending on the type of programming paradigm employed and the execution
architecture. For example, information concerning process allocation and processor
utilization is relevant in a visualization system targeted at concurrent programming languages
executed on a multiprocessor or distributed architecture, whereas such information is
irrelevant to a visualization system targeted towards sequential languages running on a single
processor machine. However, all programming systems benefit from graphical displays of
program data structures that allow for the ready identification of trends and patterns by the
programmer. As a result of the vast range of needs, program visualization systems tend to
vary a great deal in what visualizations are offered to the user and are, in general, targeted
towards a specific subset of the requirements of the programmer.

2

 In this paper, we examine six different programming paradigms and three different
architectural platforms of execution. The different types of information useful to the
programmer are discussed and the visualization requirements specific to each paradigm and
platform are detailed. Section 2 clarifies some terminology used throughout the paper. The
needs of various programming paradigms are discussed in Section 3, and Section 4 examines
examples of current visualization systems in some detail, noting the paradigms and/or
architectures that each attempts to visualize. The achievements and failures of each system
are also considered. The paper concludes with a summation of the results achieved to date by
the program visualization community and of the work that is yet to be done.

2. Terminology
The semantics of various terms involved in the visual display of programs and their data is

often unclear. Visual programming, programming by example, scientific visualization and
program visualization are terms which are used but often confused. We provide our
definition of each of these terms in this section.

2.1. Program Visualization
Program visualization is the application of graphical transformations to an executing

program to enhance the reader’s understanding of that program. Visual representations of
run-time data and execution sequences can provide users with invaluable information in
many aspects of program development and execution, such as debugging or comparing
different algorithms for efficiency and correctness. Employing modern workstation
technology, system designers are able to use graphical applications that are both computation
and storage intensive with some degree of freedom. Consequently, large volumes of
information can now be presented in forms that can be assimilated quickly, and with ease, by
the human visual system.

Many different aspects of program execution may be captured by a visualization system.
These include the dynamic visualization of code, illustrating the dynamic call chain;
displaying the changing values and structures of program entities within an executing
program; and detailing the hardware utilization (and process overhead, when dealing with
concurrent programs). Simple graphs and bar charts are common graphical representations
used to convey this information, while the use of sound and color is emerging. All
visualization systems are unique, with the information that they provide to the user varying in
both context and presentation. The majority of visualization systems are targeted towards
particular programming languages and the visualizations that are produced reflect this
specialization. Program visualization has rapidly emerged as an important field in computer
science and research is being conducted into this area globally [1-11].

2.2. Visual Programming
Visual programming differs from conventional programming in that a program is entered

through a two-dimensional graphical interface rather than the common one-dimensional
textual interface [12]. These graphical pictures are parsed by recognizing basic graphical
elements such as circles and lines from the input set and combining these simple elements
into higher-level structures, eventually building up a suitable data structure to represent the
entire program. The concept of a visual language includes input through languages such as
conventional flow charts, PERT-charts, entity-relationship diagrams, state charts, electric
circuit diagrams, musical notation, structural-chemical formulae, and mathematical equations
[13]. Visual languages aspire to allow non-programmers to create complex programs with
little training in the science of programming. Early visual language systems were aimed at a
specific application area such as music or chemistry, rather than general programming.

3

Visual languages are becoming more realizable as technology improves and, hence, work
in the field is becoming increasingly widespread. This has resulted in workshops such as the
IEEE Workshop on Visual Languages, which have been conducted annually since 1985. A
visual version of the Prolog programming language, called visual Prolog[13], has been
developed, as has Pictorial Janus [14], a visual version of the concurrent logic programming
language Janus.

The field of visual programming overlaps with that of program visualization in that a
graphical representation of a program will, in all likelihood, improve the programmers
understanding of the program [9]. Importantly, visual programming also provides a graphical
basis from which visualizations of the programs execution may be derived. This requires a
cross visualization system incorporating both program visualization and visual programming.
Pictorial Janus is an attempt at such a system.

2.3. Scientific Visualization
Scientific visualization is distinct from program visualization in that it deals solely with the

graphical representation of scientific data. Due to the large volumes of data typically
generated by scientific computing (e.g. satellite data), users are only able to view and
understand a small fraction of the data at any one time. Scientific visualization attempts to
convert this deluge of data into color images, in order to convey the information produced to
the user in a manner that can be easily assimilated. Research into scientific visualization is
being conducted globally and a summation of research work currently being undertaken in
some of the major supercomputing centers in the United States is presented in a special issue
of IEEE Computer [14-19]. Examples of the type of information visualized within these
projects are:

• visualizations of numerical simulations of a gas jet penetrating a quiescent medium
[15];

• 3D rendering of wind tunnel calculations, and semitransparent volume rendering of the
nucleus of a human cell [16];

• visualization of global climatic effects of increased greenhouse gasses [17]; and
• visualization of ocean currents [19].
A summary of the long and short-term needs of both designers and users of scientific

visualization systems is presented by Defanti et al [20]. Scientific areas of research requiring
visualization are presented and the software and hardware tools needed to construct
appropriate visualization systems are detailed. It is important that scientific visualization
systems progress, if we are to continue to make significant progress in many scientific fields.
As stated by Nielson et al [21], future visualization systems need to be modular in design and
facilitate user interaction in the modelling and viewing of the data set visualized. It is also
very important for the systems to be both extensible and user configurable. Only in this way
can scientific visualization systems attempt to satisfy the wide range of needs of
computational scientists and engineers.

3. Program Visualization Paradigms
Program visualization is the focus of this paper. In this section we consider the type of

information required by the programmer based on the programming paradigm and the
architectural structure used.

When considering visualization at a language level, we abstract over the execution
architecture, and concentrate on visualizing the conceptual model of the language. The
paradigms considered at a language level are:

• imperative programming,
• parallel programming,

4

• functional programming,
• object-oriented programming,
• persistent/database programming, and
• logic programming.
At an architectural level we consider the requirements for efficient and bug free

programming on different architectures, examining processor usage, congestion in message
queues, and the like. The architectures we consider are:

• a single processor architecture,
• a multiple processor architecture, and
• a distributed heterogeneous network of computers.
Program visualization can also be considered at a system level. Here we refer to

visualizations that show the execution of programs from both the conceptual language level
and from the perceptive of the concrete architecture of execution. These contrasting views
should be shown in conjunction with each other, providing the programmer with displays
showing the exact processors on which specific sections of code are executing. This
information can then be used by programmers to debug faulty language implementations, to
discover processor failures on parallel architectures, or to examine issues pertinent to fault
tolerant systems. At the current point in time we know of no visualization systems that
attempt to address this issue.

3.1. Program Visualization for Imperative Programming Languages
The imperative programming paradigm forms the basis for a majority of languages

available globally, encompassing sequential, parallel, and object-oriented programming. In
this section we present the general requirements for a visualization system targeted at
languages with an imperative foundation. Details of the additional information that needs to
be conveyed in order to visualize the parallel or object-oriented nature of languages are
discussed in Sections 3.2 and 3.4 respectively.

Within the imperative programming framework, program visualization systems have the
scope to provide the user with information regarding both debugging and performance
analysis.

3.1.1. Debugging

In order to debug an imperative program it is necessary to understand the programs
fundamental operations and to be able to analyze its behaviour as it is executing. To
facilitate this understanding, a visualization system targeted at an imperative programming
language would ideally provides both code visualization and data visualization.

Code visualization refers to the presentation of static and dynamic views of program code
that show the user the basic structure of the program and its execution sequence. Different
techniques, such as pretty-printing and structured code diagrams, can be used to provide the
programmer with varying views of the source code. For example, structured code diagrams
can be used to show the interactions and dependencies between different sections of the code
and display the type of information that is passed through these interactions. The
visualizations should be able to abstract over the concrete code, while still providing the user
with the freedom of examining the lower level details of computation if desired. The forms
of abstraction will vary depending on the program abstractions provided by the language
being visualized. For example, instead of displaying each statement in the source code, the
visualizations may only display the procedure and function calls. Another level of
abstraction may be to only display the various compilation unit headings and the calls that
occur between the different compilation units. This visual display of the information

5

provides the user with a useful insight into the basic structure of the program by presenting
the source code in forms that are both readable and understandable.

Dynamic traces of program execution should also be incorporated into these code
visualizations. As execution passes through different sections of the code, the current
statement, block, or compilation unit, should be indicated and the call path highlighted to the
user. With this dynamic trace, the programmer is provided with an insight into details of
program execution that may be difficult to capture with just a static display.

Data visualization refers to the presentation of detailed and dynamic views of specified
variables, and their structure, within executing code. This allows users to observe the
behaviour of the data within the visualized code as the execution sequence progresses,
providing invaluable debugging information. As imperative languages generally allow user-
defined types and structures, it is important that visualization systems provide some basis for
displaying these structures. This may be achieved through default visualizations, produced
automatically by an examination of the data structures, or through user-defined
visualizations, achieved with a user interface. In addition to visualizing variables within a
section of code, it is also important that information regarding the values, passed between
these separate code sections, through the parameter passing mechanism be displayed. Due to
the multitude of variables typically created within a program, it is important that visualization
systems allow the user to specify which data structures are of interest and should be
visualized.

In order to produce these views, showing the changing data structures of an executing
program, information regarding the values of these data structures must be collected during
program execution and processed into a graphical display. These graphical displays can be
produced during program execution, by processing the collected information as it is gathered
and dynamically changing the displays as processing is achieved. When the data is processed
in this manner it is possible for live interaction to occur between the programmer and the
instance of the program being executed. Processing of the data into visual displays may also
be conducted after the execution of the program is complete. This involves the collection of
trace information as the program is executing, and then the post-processing of this
information to provide the user with a replay of program execution. This results in views that
can be replayed and examined repeatedly at any desired speed, but removes the possibility for
the programmer to interact with the execution of the program. Post-processing may also pose
a problem when bugs in the source code prevent the program from terminating. Trace data is
typically buffered and then dumped to a trace file so when a program fails to terminate it may
prove very difficult to capture the trace information relevant to the program failure.

Regardless of the manner in which the information is processed it is important for
visualization systems to be able to display the history of values bound to an identifier
throughout the program execution. Visualization systems that capture the history of data
structures allow programmers to inspect the changes that were made to the data structures at
leisure.

In this section we have discussed both code and data visualization and the manner in which
they form the basis for efficient debugging and understanding of source code. An important
feature that has yet to be mentioned is the ability to correlate the two visualization
techniques. A vivid connection needs to be drawn between the views that display the
changing data structures and those which highlight the code execution sequence, so that a
mapping between data and program constructs is achieved. In this way, programmers are
able to clearly see the computational constructs responsible for interesting transformations of
specified data structures, and the speed and accuracy with which debugging can be performed
are greatly enhanced.

6

3.1.2. Performance Evaluation

A significant amount of algorithm performance analysis can be achieved by observing the
changing data structures of an executing program, and comparing them with the execution of
another algorithm designed to achieve the same result. To facilitate this, a program
visualization system needs to provide a facility for the comparison of the execution speeds of
multiple programs. This can be achieved through the simultaneous execution and
visualization of multiple algorithms or through special visualizations that are designed to
capture clock information and display the comparisons between the execution speeds of
multiple algorithms. Another way in which a programmer could be assisted in analyzing an
imperative program for speed and efficiency is through a program visualization system that
provides simple complexity analysis information. A static visualization showing a
complexity analysis of the source code would enable the programmer to immediately
recognize bottlenecks before execution of the code is even attempted. We are currently
unaware of any visualization systems that provide this form of program analysis.

3.2. Program Visualization for Parallel Programming Languages
The requirements for visualizing parallel programming languages are basically the same as

for their sequential counterparts. However, a few additional requirements do exist. In the
field of parallel programming, bugs which result from misinterpretations of concurrency
control are common. Thus, visualization systems need to provide the programmer with
information that will overcome these misunderstandings. For example, when visualizing
parallel segments of code, it is important that the code visualizations produced reflect the
parallelism exhibited by the language. As execution progresses, all active parallel sections of
the code should be highlighted, regardless of the number of processors actually used for the
execution. In this way, it is the parallelism of the language that is visualized and not the
parallelism of the architecture. Users are able to see the maximum parallelism possible in the
source code from a language point of view, and to follow the parallel execution of their
program.

 If the relative order of execution between parallel segments of code in a parallel program
has an effect on the outcome of the execution, intermittent program bugs may appear and
programmers will encounter results that differ between program executions. It is important
that when operations in one process can have an effect on an operation in another process,
through a chain of interprocess communications and dependencies, that this information is
highlighted and displayed to the user [11]. A visualization system that is able to highlight the
code sequences within the processes which result in these potential side-effects, and specify
the nature of these side-effects, provides the programmer with more, extremely valuable,
debugging information.

3.3. Program Visualization for Functional Programming Languages
The requirements for visualizing functional languages are very similar to those of

imperative languages. Code and data visualizations, which reflect the structure of the
program, and, display the data values applied to the functions during program execution, are
required. It is characteristic of functional languages to provide only a very limited set of data
objects with simple and regular structures, for example, lists in Miranda or LISP, and arrays
in APL. With these simple and regular structures, the task of visualizing the data values
themselves is comparatively simple. To show the functional nature of program execution
effectively, the visualization system needs to display these data structures in the context of a
data flow graph. For each function application that occurs during the execution of a program,
the visualization system should display the data values that form the arguments to the
function and the data values produced as its result. In this way, the flow of data values from

7

one function application to another can be viewed by the programmer, and the behaviour of
the program can be easily observed. Any parallelism possible during program execution
should be reflected in the data flow graphs produced, with function nodes fanning out to
indicate the multiple function applications that can be executed in parallel.

3.4. Program Visualization for Object-Orientated Programming Languages
Code reuse is of major importance within the object-oriented programming paradigm and,

subsequently, the scope for visualization tools extends beyond debugging, to providing a
conceptual understanding of the class libraries that are available to the programmer. In
general, these libraries embody a particular model for applications and are composed of many
concrete and partially implemented abstract classes that express that model [3]. In order for a
programmer to make efficient use of these reusable components, it is necessary to understand
their nature, both individually and in combination with other components. Thus,
visualization systems targeted at the object-oriented paradigm need to provide visualizations
of these class libraries and the class structures defined by the programmer. Visualization of
the class structure must provide information regarding the existing class hierarchy and
detailed descriptions of each of the individual classes.

In addition to the static information regarding the classes used within a program, it is also
necessary to provide the programmer with dynamic information regarding the objects created
by the executing program, with a clear indication of the class to which each object belongs.
For each active object, the visualization system must show the current method invoked and
highlight the ancestor class in which that method is defined. In this way, any ambiguities
about the exact method invoked, resulting either from naming clashes due to multiple
inheritance, or simple user misinterpretation of the class hierarchy, can be clarified. As
methods themselves may simply be a sequence of message calls to other class or instance
methods, the execution of a method instance may involve the invocation of a series of other
methods. As each method is invoked, it subsequently becomes the active method and must
be displayed. Thus, in order to visualize the execution of an instance of a method, a
visualization system must display the active message call and link that to the display of the
class or object method invoked. In this manner, the execution call chain within the active
program is displayed.

As with the visualizations required by imperative programs, it is important that object-
oriented visualizations show the objects and their encapsulated state (data structures), and
that these values are updated during the execution of the program.

3.5. Program Visualization for Persistent & Database Programming Languages
In a persistent programming language, data objects have the ability to outlive the execution

of the program in which they are created, and thus, be persistent [22]. Orthogonal persistence
specifies that all data objects may be persistent and that a program manipulates transient and
persistent data in the same manner. A representative persistent programming environment is
the Napeir88 system [23] which consists of the language Napier88 and a persistent store. In
the Napier88 system, long term data objects are stored in the persistent store and are obtained
by traversing the store from the root of persistence. All data objects are considered first-class
objects, and thus, in addition to traditional data structures, code segments may also reside in
the store. When writing persistent programs the programmer must deal with variables,
procedures, functions, programs, and types that may be created within the local program, or
found in the persistent store. It is extremely important then, that a visualization system
targeted at the persistent programming paradigm is able to visually display both long term
and transient data. Both forms of data should be displayed dynamically in a manner
appropriate to the language, using the code and data visualizations as discussed in Section
3.1. In addition, a dynamic view of the store is also required, showing all objects that reside

8

in the store and allowing a detailed examination of these objects. The view will need to
change dynamically as a program is executed, reflecting any changes to the state of the store,
(possibly altered by another program in a multi-user environment) and establishing a link
between the dynamic visualizations of the objects and their position within the persistent
store. In this way, the long term data used within a program is viewed in the context of the
store. When viewing code segments that reside in the store the visualization system needs to
be able to present them as dynamic data objects, in addition to being able to view them as
code segments that may form part of the program under execution.

In a database programming environment, long term data is kept in the database and the
visualization requirements are very similar to those of persistent programming. Views of the
database need to be presented, showing the conceptual schema and providing the ability to
view the instances of data contained within. During the execution of a query, views showing
the tables resulting from each join and subquery made need to be displayed, showing the
build up to the final table that results from the query as a whole.

3.6. Program Visualization for Logic Programming Languages
To visualize a logic program effectively, a visualization system needs to present graphical

views of the structure of the program and its execution sequence. In depicting the structure
of a logic program, a visualization system needs to construct a graph showing all of the
individual clauses and relationships defined by the program source code. Alternative clauses
that refer to the same relationship must be grouped together in the graph, showing the
relationship name and the different clauses available. These alternatives should be presented
so that the linear order of clause selection, during unification, is visible from the
representation. The representation of individual clauses will differ, depending on whether the
clause is a rule or a fact. If the clause is a fact, to unify with that clause simply requires the
unification of its parameters with those of the goal parameters. Hence, all that is required is
the visualization of its parameters. However, if the clause is a rule, unification of the clause
as a whole implies unification with every relationship on its right hand side. Thus, in
addition to the display of its parameters, the relationships that form the right hand side of the
rule must also be displayed. As the order of unification of relationships, on the right hand
side of a clause, affects the unification of the clause as a whole, the sequential ordering of
relationships within a clause must be reflected in the graphical display. Recursive calls to
relationships in the right hand sides of rules are very common in logic programming and
must also be represented in this graphical structure. Research into effective methods to
display this information has been conducted by Senay and Lazzeri [10]; details of their
visualization system are presented in Section 4.

During execution, the graph depicting the program structure should be dynamically
annotated with information showing the successive goal reductions performed to solve a
given goal. As clauses are tried they should be highlighted in the graph, showing the user the
unsuccessful attempts to solve the goal in addition to a possible successful solution. Due to
the recursive nature of logic programs, it is important that the environments of recursive calls
are kept clear. Users need to be able to see the multiple goal reductions performed on the
each relationship in a clear and unambiguous manner.

3.7. Program Visualization on a Single Processor Architecture
Program visualization systems, that target the visualization of execution sequences on a

single processor architecture, have limited uses. The major benefit of such a visualization is
to provide the programmer with information on the relative order of execution of parallel
programs. In programs where the relative order of execution of parallel sections of code can
effect the outcome of the execution, intermittent bugs, and results that differ between
program executions often occur. If the system is able to track the non-deterministic choices

9

made during program execution and hence, have the ability to reproduce any desired
execution sequence, an execution run exhibiting a bug can be reproduced. This allows the
user to repeatedly modify the source code until the program bug is identified and corrected.
Work in this area is applicable to both single and multiple processor architectures and is
currently being conducted at the Georgia Institute of Technology [24]. A drawback of this
technique is that there is no way to prove that other intermittent bugs, of the same nature, do
not exist within the program, or, that in resolving one bug the programmer does not
inadvertently introduce a new critical dependency between other parallel sections of the code,
resulting in more bugs.

Visualization at an architectural level is also able to provide performance information for
programs running on a single processor machine. For example, visualizations that show the
CPU utilization as the program progresses, enable the programmer to identify those areas of
the source code that are CPU intensive. A measure of the number of I/O accesses against the
execution of the source code is also useful, in that it enables the programmer to identify those
areas of the code that are I/O intensive and potentially result in an execution bottleneck.
With these performance measures, a programmer can determine where, and why, bottlenecks
occur in the source code and can make knowledgeable attempts to improve the speed and
efficiency of the code.

It should also be noted that visualization systems attempting to measure performance
statistics must be extremely careful to compensate for any CPU time and I/O activity
undertaken by the visualization system when monitoring the program execution. As has been
shown, visualization at an architectural level on a single processor architecture can produce
relevant information to programmers for both debugging and performance analysis.
However, as the scope of this information is very limited, few visualization systems attempt
to visualize execution at this level.

3.8. Program Visualization on a Multiple Processor Architecture
With the rapid development of computer hardware, machines that provide for parallel

processing are becoming increasingly common in the world of computer science. The
computers vary from those with a few processors running concurrently to massively parallel
machines with thousands of processors. Program visualization on systems such as these must
deal with this new aspect of program execution providing information about processor
utilization and process interaction that can be used for performance analysis purposes.

Significant work has been done in this area and it is the focus of a large number of program
visualization systems [4, 6, 7, 25]. Issues such as synchronization and multiple task
coordination make it intrinsically more difficult to write and understand correct and efficient
parallel programs than it is to write and understand their sequential counterparts. With the
help of program visualization systems targeted at visualizing execution from an architectural
perspective, large gains can be achieved in producing efficient parallel code.

It is important to emphasize that any visualizations produced by these visualization
systems should not rely on a fixed number of processors being used within the execution
process. If a program visualization system is to be portable it must take into consideration
that many parallel systems now run thousands of processors. Visualizations produced by the
systems should be able to scale to encompass this possibility.

When analyzing the performance of parallel programs, the programmer needs information
regarding processor utilization and communication. The visualizations need to show the
effective use of the processors over program execution and the distribution of work to each of
the processors, indicating process migration over the processors. Displays that visualize
communication information are helpful in determining the communication frequency, the
volume of communication that actually occurs, the overall pattern of communication, and
whether or not there is congestion in any of the message queues.

10

As pointed out by Lehr et al [6], statistics such as these plotted against time, provide
insufficient information for a programmer to debug the program quickly and easily. In order
for a programmer to locate the source of performance degradation there must also be a visual
mapping between the performance data displayed and the computational constructs in the
source code that are responsible for them. If this connection is not made programmers will
be aware of the performance degradation but have no hint as to its cause.

As has been previously noted, visualization systems measuring performance must be
extremely careful not to affect the performance of the program being visualized. On a
parallel architecture the execution of the visualization system may result in different loads on
the available processors and change the pattern of execution over those processors. Due to
this constraint, the majority of available visualization systems choose to only collect trace
data during the execution of the program and delay the processing and displaying of this
information until execution is complete. In this way, they intrude as little as possible on the
program execution pattern. Visualization systems utilizing computation resources which
would otherwise be used by the monitored program must at least compensate for this by
measuring the time taken by the visualization system and thus, produce estimates of how the
computations would perform without these perturbations to performance [6].

3.9. Program Visualization over a Distributed Heterogeneous Network of
Computers

Distributed programming involves programming on a collection of computers, linked by a
network, to function as a single large parallel computer. PVM (Parallel Virtual Machine) is a
software package that supports programming over a heterogeneous network of computers.
This is a relatively new form of parallel programming, and it is being jointly developed by
Oak Ridge National Laboratory, the University of Tennessee, and Emory University [1].
Users view PVM as a loosely coupled, distributed memory computer programmed in C or
Fortran, with message-passing extensions.

Within PVM, the user can access the networks computational resources at three different
levels:

• the transparent mode: in this mode sub-tasks are automatically located at the most
appropriate sites;

• the architecture-dependent mode: in this mode the user can indicate the specific
architecture on which particular subtasks are to execute; and

• the machine-specific mode: in this final mode the user can specify a particular machine
for each subtask.

With any network of computers, viewed as a loosely coupled, distributed memory
computer, issues such as coarse-grained subtask partitioning and processor allocation are
critical, as part of the design of correct and efficient parallel programs. In order to provide
assistance to programmers in debugging over such a network, a visualization system must
provide views showing the distribution of code across the network and the dependencies that
exist between these parallel sections of code, as described in Section 3.8. Displays showing
the changes to data structures that occur during the parallel execution in conjunction with
these distribution visualizations enable programmers to easily trace bugs to specific segments
of code as executed on a specific machine.

To effectively fine tune performance when programming over a heterogeneous network of
computers, it is important that the user be able to specify on what machine the various
sections of code are to be executed. In support of this, a visualization system would need to
provide the user with detailed performance visualizations that show the execution of each
section of code, on each of the different machines. In this way, programmers can make
knowledgeable choices about the distribution of work over the system and take advantage of
the performance abilities of each different kind of architecture. In accordance with the

11

distributed nature of the programming, it is also important that information regarding
network latency and node failures are conveyed to the programmer to enable them to track
down communication bottlenecks and execution failures.

4. Example Program Visualization Systems
This section of the paper examines some example program visualization systems in detail.

Each system is categorized by the programming paradigms it is designed to visualize. For
each of the systems, the provided facilities are detailed and compared with the requirements
detailed in Section 3.

4.1. ZEUS
Zeus [2], is a system for algorithm animations and multi-view editing. Development of

Zeus commenced in 1988 and it has been stable and in regular use since 1990. Algorithms
from the domains of computational geometry, operating systems, hardware design,
distributed spanning trees and communication protocols can be animated after being
annotated with interesting events.

Zeus is operated through a control panel. The control panel supplies configuration
facilities that permit the user to choose the desired algorithm, the views that they wish to
open and the data to be provided to the selected algorithm. Other configuration facilities
within the control panel allow a snapshot of the state of the system to be written to file, and
the restoration of the system from a previously created snapshot. Interpretive facilities,
allowing the user to start, stop, and step through an algorithm are also available through the
control panel, along with the facility to control the speed of animation. The Zeus interpreter
functions in terms of interesting events. Single-stepping through an algorithm will advance
execution from one interesting event to the next.

When an annotated algorithm is executed two views are automatically created based on the
set of interesting events. The first view displays each event as a symbolic-expression as it is
generated and the second view provides a button corresponding to each event, with
appropriate

Sticks

Figure 1. User defined animation of selection sort with Zeus.

graphical widgets for specifying parameters to the events. These parameters identify the
program data that will be visualized by the views.

Other views can be designed by users to display multiple animated pictures of the
algorithms. For example, Figure 1 shows an animation defined by a user which illustrates an

12

array being sorted with selection sort. In this diagram the X axis shows the range of array
elements and the Y axis shows the value stored in each array location. As the algorithm is
executed the view is updated to reflect the changing values in the array elements. Views such
as this are constructed by graphically demonstrating how an instance of an object used in the
view should look and then applying rudimentary library procedures to interpolate changes to
object parameters (and hence program data structures) over time.

Zeus works by running a preprocessor over a file of events – specified as procedure
signatures – and generating definitions of annotated algorithms and view classes. Procedures
are also created for dispatching information between algorithms and views. When an
executing algorithm encounters an event, the event procedure forks a thread for each view
animating the event. Each such thread then invokes the appropriate method to update that
view using the parameter values of the event. When the event procedure terminates, control
is returned to the executing algorithm.

In addition to updating views during the execution of an algorithm, Zeus allows the user to
change data values used by the algorithms. The views themselves may be annotated with
feedback methods that can be invoked by the user. When this occurs the old data values of
the algorithm are updated with the updated user supplied values and this change is then
broadcast to all views. In this way, all views are updated with the new values.

In summary, Zeus provides a very good foundation for animating algorithms at a language
visualization level. Programmers can construct views that show the progress of algorithm
execution, and there is scope for user interaction with the algorithm by modifying data values
during its execution. The main drawback to Zeus is that a novice programmer does not have
the experience necessary to design appropriate data and code structure views, and hence, its
use may be somewhat limited.

4.2. KAESTLE and FooScape
KAESTLE [26], is a program visualization system that supports the visualization of

programs written in Lisp. It supplies the user with both code and data visualizations, giving
static and dynamic views of each. The main data structure within Lisp programs is the list,
and thus, KAESTLE provides an automatic graphical representation of the list structure, see
Figure 2. In this way, all data objects created by an executing program may be visualized.
The displays can then be edited, allowing the user to change not only the graphical layout of
the display, but also to manipulate the structure of the objects themselves. Executing
programs may be monitored by updating the displays whenever an “interesting” function is
entered (traceenter) or left (traceexit). Instead of updating one display repeatedly and thus
losing the history information of the data structure, a series of snapshots may be generated,
each appearing in a separate window, as shown in Figure 2.

13

Code visualization occurs within KAESTLE through the FooScape tool. FooScape is
primarily designed to give a first, rough overview of some code fragment and displays
functions as ellipses that are connected by arrows, representing the call between one function
and another. In this way, FooScape represents a program or code fragment, as a network of
functions that mutually invoke each other, see Figure 3.

The dynamic behaviour of the code is also visualized through FooScape with the use of the
standard Franz Lisp trace package. A function ellipse is highlighted whenever a function is
active, and a programmer can tell from the pattern of highlighted function ellipses what the
system is doing. Sound has now been added to FooScape and each function is assigned two
specific tones that are played when the function is entered and exited, respectively. In this
way, recursive calls to functions can now be heard. FooScape does not provide any data
visualization and must be used in conjunction with KAESTLE when such visualization is
required. However, even with the integration of the two separate tools, there does not appear
to be any way in which the information regarding the flow of code execution, and the
changing data structures, can be visualized in a harmonious fashion. To obtain a clear
indication of what section of code is resulting in the changing data visualizations the user
must track the traceenters and traceexits as they are encountered during program execution.

Bocker et al [26] claim that KAESTLE has proved to be very effective in debugging LISP
programs. Although the code visualization provided by FooScape are very limited, they still
provide an overall knowledge of the run-time execution of the program code, imparting
important information to the user. This, combined with the ability to see data structures
before and after any user-defined interesting events, e.g. function invocations, provides the
programmer with enough knowledge to easily locate bugs in the source code.

"l"

1 2 3 4

l/Snapshot - 1

"l"

1 2 3 4

l/Snapshot - 2

Figure 2. Generating a sequence of snapshots of a data structure with KAESTLE.

match-restriction
test-eval

match

match->

match-rule

make-alist

match-*
toplcopy

init-binds

try-rules

match-rules

s-e
circle replace-variables

markedp
mark-expression

simplify
pget

phash

passociation
pputclassify-expression

cons-cell-generating-expr side-effect-free

predicate-expr

FooScape

Figure 3. FooScape: a view of connected function ellipses, showing the dynamic
behaviour of a program through the inversion of active functions.

14

4.3. ABERDEEN
Within the Napier88 [23] programming environment a tool, ABERDEEN [27], for

browsing the persistent store and allowing interactive declarations and expressions to be
applied to the store has been developed. ABERDEEN is an extension of Kirby’s object
browser for Napier88 [28]. ABERDEEN is not intended to be a true visualization system,
but is the closest tool that exists in a persistent environment.

ABERDEEN allows the user to traverse through the persistent store and examine objects
that reside within it. Upon traversal, objects are displayed in one of three ways. The value of
the object and its type are written to the screen if it is a simple base type object of the
language; a graphical picture is displayed for graphical objects; and a menu showing the
structure of the object is displayed for structured objects. Each field of the structure may
then be subsequently traversed, see Figure 4. When executing code within ABERDEEN, a
programmer may execute an entire program or a selected subsection of a program. Any
objects that are created by the execution sequence can be automatically displayed if the user
chooses and any changes to the persistent store made by the execution sequence can be
displayed by re-traversing the objects within the store.

 ABERDEEN does not provide any further visual information to the programmer, and as
stated previously, is basically an extended browser rather than a true visualization system. Its
failures as a visualization system are:

• There is no way to automatically view objects within the store which are used by a
program, the programmer must manually traverse the store to examine the required
objects.

• Any changes made to the store as an effect of program execution are only displayed
when the objects are re-traversed.

• During execution there is no dynamic display of the store. Thus, the changing values of
objects can only be displayed by breaking down the code into small segments and
executing them manually with re-traversal of the objects of interest each time.

• There is no way to visualize short-term objects as they never reside in the store.
• Although code residing in the store can be examined, there is no structured views of the

segments of code and how they interact with each other.
• There is no control flow, or execution sequence visualization.
However, even with these deficiencies, ABERDEEN plays a vital role in the development

of persistent programs. In providing the user with information about the contents of the
store, the first, major step, towards a visualization system has been taken.

env
proc

structure TYPE

aProc : proc
int

structure

-> void
x : bool

y : string

 Figure 4. Traversal of a procedure with ABERDEEN.

15

4.4. CASE*Designer
CASE*Designer [29] is a commercially available tool supporting the use of the Oracle

database. It is composed of a number of different illustrative tools that have been designed to
support Computer-Aided Systems Engineering Concepts and provides the user with a multi-
windowed, multi-user graphical interface to CASE*Dictionary, the development database.
However, CASE*Designer has been developed primarily for the generation of databases
through a graphical interface, in much the same way as a visual programming language
provides for the generation of programs through a graphical interface. As a result of this, the
facility to view an existing database graphically has not been incorporated into the
CASE*Designer tool set. While reverse engineering from an existing database to a graphical
representation of its structure can be achieved, the process needed to do this is very
complicated. Databases that have been generated with CASE*Designer’s graphical interface
can only be viewed through the generation tools, and there is no support provided for the
viewing of queries executed on these databases. In summary, while CASE*Designer is a
very useful tool and supports the concept of visual programming, it appears to provide very
little in the way of database visualization.

4.5. A Program Visualization Tool
A “Program Visualization Tool” [3], has been developed to assist C++ programmers in

their use of the class library framework and as a debugging aid. The tool allows a
programmer to review a run of an application, examining the behaviour of the system at
varying levels of detail, and focussing on particular interactions (such as those leading to
object creation and destruction of specific objects).
In visualizing a C++ program, the tool firstly annotates it with “tracing” statements and then
an application is built and run for demonstration. During execution the application generates
a trace file that is then processed by a display program to provide the visual model. The user
chooses icons from a predefined table of icons, to represent objects of different classes and
then the program trace is replayed. Figure 5 illustrates a snapshot of a trace replay with the
top portion of the screen showing objects that have been created, and the bottom portion
showing a simplified call trace indicating object interactions. The display shows all of the
instantiated objects and groups them together by class. Active objects are highlighted, and
are grouped to show the calling sequence. Data defining the methods currently under
execution is presented, with the methods identified by class name and method name. In this
way, inherited methods are identified.

16

Rather than passively watching a trace replay, in this version of the tool, the user may also
control the replay of information by setting breakpoints and using single-step execution. In
future versions of this tool it is proposed to also implement:

• “reverse”, allowing the user to go backwards through the trace;
• “find a place where an object of class X invokes a specified/unspecified method in an

instance of class Y ”; and
• “display only interactions involving this chosen object”.
This visualization tool provides the user with a very useful debugging aid, and helps in the

users understanding of an unfamiliar new “application framework”. However, it does fail to
provide any code visualization and there is also no visualization of the encapsulated state of
the objects created within an execution. Visualization is provided purely on a class level and
no attempt has been made to provide any information at lower levels of detail.

A similar research thrust is also being conducted at the Geogia Institute of Technology,
where a visualization system for visualizing the execution of complicated C++ programs is
currently under development [30].

4.6 Goofy, Cppinfo and POLKA
The Goofy software system [31, 32] is a general animation system that builds on the ideas

of Stasko [33] and his software system, POLKA. It is composed of the Goofy animation
language, and a processor, which together provide for smooth, 2½ dimensional colour
animations on top of the X11 Window System. The main features of the Goofy language are
as follows:

• Objects can be constructed from elements such as lines, rectangles, circles, ellipses,
splines and polygons.

• They are generally defined in terms of their size, colour and initial position in the
window along with specialized attributes. For example, a line can be thin, medium or
thick (its width), dotted, dashed or solid (its style) and can have noarrows,
forwardarrows, backwardarrows or twoarrows (its arrows).

IconEdit Demo 1

TIconDocument TIconBitMap

TApplication::Run

TIconView::DoMouseDown

TIconEditCommand::IconEditCommand

Objects currently
active

Doc. ?
?

?

?

View

**

Objects that have
been created

Figure 5. Screen image captured from the program visualization system.

17

• Animation is achieved by performing such operations as moving, showing, hiding,
revealing and deleting objects within the window. The animation is controlled by
specifying start and end times for each different event.

As demonstrated in [32], a simple program could be animated with Goofy by annotating it
in the following manner:

[call to create graphics.]
while (x<7)
{
 [call to animate upper part of loop.]
 [call to colour loop’s body.]
 y=y+z*x;
 x++;
 [call to animate change to loop variant.]
 [call to animate lower part of loop.]
}
[call to colour STOP box.]

Goofy functions corresponding to each call need to be defined. These calls then generate the
Goofy instructions that are filed and subsequently read by the processor to provide a Goofy
animation.

As demonstrated, Goofy is a general visualization system requiring the user to construct
animation code before visualization of a program is possible. To integrate with this, the
authors of Goofy have also developed a program cppinfo [34], which provides two forms of
information about a C or C++ program: static data and dynamic data, and a visualization
system built on top of the Goofy system that processes this information and automatically
constructs animations of the data information provided, as illustrated in Figure 6. The
visualization module works by processing each data record, specifying the appropriate

source
code

cppinfo

trans-
formed
source

compile
and link

executable

dynamic
data

static
data

File
Processor

Visualization
Module

Goofy

POLKA

Figure 6. Derivation and visualization of static and dynamic data.

18

animation and the time at which the animation should occur. In this way, an arbitrary
number of animations can be specified to occur simultaneously. The user is then able to
interact with the developing visualization by manipulating the visual display through
pausing, zooming in and out, panning, and so forth.

The visualizations produced show the static structure of the program and depict each
control construct in turn, starting with the first declaration in the main function. Figure 7
shows: a declaration, an assignment, a loop containing a choice statement leading to an inner
loop, and finally an assignment.

Data flow visualizations are used to depict dynamic software features. Figure 8 shows two
variables being used to assign to an element of an array. The smaller rectangles depict
variables that have been assigned to in the past. When an assignment occurs, the variables
and constants involved in the assignment are enlarged and moved to the centre of the
window. The view then moves away so that all variables in scope are again visible, but the
items used in the last assignment appear larger than those involved in previous assignments.
The effect of this is that the size of items is directly related to their execution history.

In summary, the Goofy/POLKA system provides a good basis for the construction of
visualization graphics, allowing the animation programmer to animate any aspect of program
behaviour that is desired by constructing the corresponding animation program. However,
the construction of an animation program is not a trivial task and to assist novice
programmers an automatic visualization tool has also been designed. This tool appears to
provide useful visualizations of the source code with both static and dynamic visualizations

declaration

assignment assignment

outer loop inner loop

choice statement

Figure 7. Visualization of static data.

Figure 8. Visualization of dynamic data.

19

presented. However, there is no integration of these visualizations and thus, programmers
may still have difficulty in isolating the source of program bugs.

4.7. IVE
IVE [5], the Integrated Visualization Environment, is a graphical debugging tool for

(massively) parallel programs. It supports three kinds of visualizations. The first are
program visualizations, which present logical and structural software relationships such as
call diagrams and dependency graphs. Process visualizations are also presented, depicting
the flow of execution of a program and, finally, application visualizations are presented.
These application displays represent the results of a computation using application specific
metaphors and abstractions. The IVE system is composed of a monitoring-rendering system
and a visualization template designer called the Visualization Design Environment (VDE).

VDE reads in a low-level specification of a program’s data structures and from this
produces a basic visualization template. This template can then be refined by the user into
higher level template specifications. VDE will produce all of the graphical specifications that
it can, if the user is not interested in some of these views they can easily be removed. The
final specifications are then incorporated into visualization templates that are subsequently
read by the monitoring-rendering system, as part of the visualization process.

The monitoring-rendering system is divided into four parts, the schedular, monitor,
instantiator-renderer, and subject program. The scheduler reads a file containing:

• the location of break points in the subject program;
• the visualization templates designed with VDE that will be used to render data

postprocessors for managing the data of a program; and
• pointers to the subject program variables that allow the data to be collected.
This information is then passed to the monitor that monitors the subject program during its

execution. When a break point is encountered in the program the monitor reads the current
values of the program variables and processes the information with the data postprocessors.
These results are then passed on to the instantiator-renderer and a process visualization is
created.

In this way, IVE is able to produce a wide range of visualizations pertaining to program
execution, limited only by the user's design of visualization templates. However, the
construction of good visualization templates is not a trivial task, as the choice of effective
visualizations is not clear. The static nature of the system also means that users cannot
change what they are monitoring once execution has started and hence cannot interactively
design a visualization template. However, the automatic generation of graphical
specifications within the Visualization Design Environment does appear to provide the
programmer with a good support base for this task, thus increasing the usefulness of IVE.

4.8. A Graphical Environment for Monitoring Prolog Programs
Lazzeri [35], has developed a graphical environment for logic programming that uses

cyclic AND/OR graphs to represent both program source code and dynamic program
behaviour. In the AND/OR graph, a program clause is represented by an AND node. The
node has a single incoming arc, representing the clause head, and n outgoing arcs, each
corresponding to one atomic formula in the clause body. Every arc is labelled with a box,
showing the name of the predicate that the arc corresponds to and the number of arguments
that the predicate takes. The parameter names given to the predicate arguments are also
displayed. During unification, the relation labelling an incoming arc is true, if and only if all
relations labelling the outgoing arcs are true.

Multiple clauses defining a single relationship within a logic program are grouped together
in the graph with an OR node. This is shown as a procedure box with an outgoing arc for

20

every alternative clause in the relationship definition. The outgoing arc is labelled with the
parameters to the clause and connects with the AND node of the clause. These alternatives
are searched from left to right during unification, corresponding to a linear ordering of the
clauses in a textual definition.

Recursive definitions of relations within a logic program are displayed by introducing
cycles to the AND/OR graphs. Arcs that correspond to a relationship already defined in the
graph by

location/2

at/2 visit/2

Person,Place Person,Place

Person,Place Person,Other

Other,Place

alan,room19 jane,room54 betty,office dave,alan janet,betty lincoln,dave

1 2

3 4

5

6 7 8 9 10 11

location(Person,Place):-
 at(Person,Place).
location(Person,Place):-
 visit(Person,Other),
 location(Other,Place).

at(alan,room19).
at(jane,room54).
at(betty,office).

visit(dave,alan).
visit(janet,betty).
visit(lincoln,dave).

1
 3
2
 4
 5

6
7
8

9
10
11

(a) (b)

Figure 9. (a) A simple recursive logic program; and (b) its cyclic AND/OR
graph representation.

a procedure box, simply point back to that initial definition, and introduce a cycle to the
graph structure. The textual and graphical representations of a simple recursive logic
program are shown in Figure 9.

Using this visual representation, the system developed by Senay and Lazzeri is also able to
depict the run-time behaviour of logic programs by showing the successive goal reductions
performed to solve a given goal. The AND/OR graphs are augmented with various symbols
to indicate clause failures and unifications and the user is able to observe the changing graph
as program execution progresses. As these graphs may grow large very quickly, the ability to
cluster, hide, and resize components of the graph has also been built into the graphical
environment. To further facilitate the programmers understanding of an execution run,
binding dependency graphs, which show how and when variables are generated during the
computation, will be added to the system.

By utilizing these static and dynamic displays the programmer is able to effectively
monitor the execution of logic programs. Static and dynamic graphs of the program code are
produced, along with binding dependency graphs which show the generation of variables
throughout an execution run. The clustering, hiding and resizing of components of the
graphs also allows the programmer to focus attention on particular program segments,
providing good support for the debugging process. In summary, the graphical environment
developed appears to encompass the range of needs of a programmer within the field of logic
programming, and provides very good support for the debugging of logic programs.

21

4.9. PIE
PIE [6], the Parallel Programming and Instrumentation Environment, is a visualization

system implemented on the Mach operating system to support the visualization of programs
written in languages such as C, MPC [36], C-threads [37], Ada and Fortran. It is not an
architecture specific system and hence may be ported. Its basic platform is a workstation
running the X Window System [38].

When using PIE, the programmer enters a program textually and a basic visualization
showing the code’s principle constructs, (eg. syncs, joins, puts, gets, etc.) is automatically
generated. To gather performance information the user chooses the constructs of interest and
then executes the program. When a selected construct is encountered during execution,
important information, such as time stamps, is automatically collected, through a sensor and
an independent collector process.

The PIE system can then present the gathered information in a variety of ways. One of
these views is a histogram plotting the various levels of parallelization achieved throughout
program execution, against the percentage of total execution time that achieved each level.
Another view displays the number of processes being used concurrently, against a time-line
of program execution. However, the most informative view presented by PIE, is where time
is plotted on the horizontal axis and the processes used throughout the computation are on the
vertical axis. Each process used has a separate horizontal bar that makes use of changing
colors to represent different episodes in the process's history, with the entire bar depicting the
execution history of the process over the life of program execution. As an example of the use
of colors in these bars, process waits resulting from to a sync construct may appear as a
yellow rectangle in the bar of that process, the length of the rectangle showing the length of
the wait encountered by the process. Green rectangles might similarly indicate an instance of
a process waiting to join a child.

Rectangles may be selected by the user and the PIE editor then automatically moves the
cursor to the corresponding construct in the program text. In this way, the programmer can
analyze the computation's performance using data that is automatically projected onto the
computation's structures. Thus, the aim of mapping performance data onto program
constructs is achieved in the PIE visualization system.

PIE goes to considerable effort to compensate for any performance perturbation caused by
the monitoring. An algorithm is used which manipulates the time stamps of events according
to the number of monitored events that have come before it to reflect the true times of the
computation. However, with this compensation method a risk of reordering events is
introduced and ways of overcoming this are still under investigation.

In summary, PIE provides good support to allow users to observe computations while they
execute by mapping the performance data onto the program constructs. It presents
visualizations at a language (process) level and an architectural (processor) level, and is the
only visualization system that we are aware of that does this. However, it presently has
limited interactive features and does not support dynamic changes to the object code during
execution. It also makes no attempt to display the data structures created within the program
or to supply any visualizations pertaining to the code's overall structure.

4.10. Zernick, Snir, and Malki
A visualization tool has been developed by Zernick, Snir and Malki [11], that attempts to

use visualization to understand and overcome concurrency related bugs. The visualizations
are based on trace information collected from interprocess communication and are suitable
for systems with thousands of processors, coarse-grained parallelism, and any language that
makes communication and synchronization explicit.

The visualizations are displayed in the form of causality graphs, see Figure 10, which
provide a logical view of execution by indicating to the user which operations in the source

22

code can have an effect on, or cause other operations. They are organized according to
computational threads, synchronization events, messages, and so on, and are generated from
trace information collected at run-time. As the volume of the information generated by the
interprocess communication and process generation can be overwhelming, the ability to
collapse the graphs has been incorporated into the tool, giving the programmer the freedom
to abstract over the causality graphs where desired. The importance of the causality graph is
that they reflect a relativistic rather than absolute notion of time, where events are ordered in
relativistic time only if the first event can affect the second one. By presenting this
information, any chains of interprocess communication operations and intraprocess
dependencies leading from one operation to the other can be readily identified by the user.

When viewing an execution run, the visualization tool developed by Zernick, Snir and
Malki allows you to step both forwards and backwards through the execution by serializing
the execution sequence. At the point of execution of a given event u the graph is partitioned
into three sets of events: Past, Present and Future, as shown in Figure 10. Past is the set of
events that have definitely occurred when u executes, Future is the set of events that have
definitely not yet occurred when u executes, and Present is the set of events that may, or may
not, have occurred when u executes. Four different methods of serializing the parallel
execution of the source code are available to the user, allowing them to completely explore
the execution run being visualized.

In addition to the causality graphs which provide a logical view of execution at a language
level, this tool also provides views of execution that are hardware oriented. The views
organize and display information pertaining to physical system entities such as processors
and physical channels. As an example, one view that is available displays the computation
and communication load at each processor.

Start

Fork

Barrier
synchronization

Send

Receive

Join

Terminate

Join

Fork

Past

Present

Future

process f(i,j)
int i,j;
{
 synchronize(*,j);
 send-message((i+1)%4,j);
 receive-message((i-1)%4,j);
}

main()
{
 int i,j;
 par-for(j=0; j=1; j++)
 par-for(i=0; i<4; i++)
 f(i,j);
}

(a) (b)

Figure 10. (a) A parallel program and (b) corresponding causality graph partitioned
into past, present, and future sets.

23

In its aim to provide useful debugging information by helping the user understand
concurrency this tool appears to succeed. However, the information provided by this tool
solely relates to interprocess communication and processor usage. No standard code or data
visualizations exist and hence, for effective overall debugging of concurrent programs, this
tool would need to be integrated with other visualization tools.

4.11. ParaGraph
ParaGraph [4], is a visualization tool that provides a detailed and dynamic, graphical

animation of the behaviour of message-passing parallel programs and graphical summaries of
their performance. ParaGraph works from trace data, collected at execution time and provides
a visual replay of the events that actually occurred during the execution of the parallel
program. It provides 25 perspectives on the trace data including the following:

• a processor count, showing the total number of processors in each of the three states –
busy, overhead, and idle – as a function of time;

• a utilization summary, showing the percentage of time over the entire run that each
processor spent in each of the three states;

• a communication matrix, where messages are represented by squares in a two-
dimensional array whose rows and columns correspond to each message's sending and
receiving processor, coloring the appropriate square when the message is sent and
erasing when the message is received;

• a task Gantt chart, showing which tasks are being executed by each processor as a
function of time; and

• a task status display, which indicates whether a task has yet to begin, is currently in
progress, or has been completed.

ParaGraph's usefulness arises from the fact that it produces these views from standard trace
files. This allows other visualization systems to make use of ParaGraph's functionality to
provide the user with a comprehensive set of views of program execution simply by
producing trace information that can be processed with the ParaGraph tool. As an example
of the widespread use of ParaGraph, a conversion tool has been provided with Xab [1], that
converts standard Xab trace files into ParaGraph compatible format, see Section 4.12. It has
also been used by Lee [39] to visualize Adl [40] at the University of Adelaide.

ParaGraph provides the user with a very rich set of displays, for message-passing parallel
programs, that provide the user with valuable performance analysis information at an
architectural level. The main deficiency of the views currently produced is that it is
extremely difficult to connect the different sections of source code to the related performance
statistics, as all statistics are displayed relative to time and not tied to the program constructs
responsible for them. Other problems that occur within ParaGraph include the lack of control
over simulation speed, and the limitation of some of the displays when the number of
processors gets too large.

4.12. Turner and Cai
A joint project between the University of Exeter and the Queen's University at Kingston,

Ontario, aims to develop a set of programming tools which together form an integrated
graphical environment, capable of supporting both the visual programming and program
visualization of parallel programs [41]. The tools provided within this environment are the
Constructor, Translator, Monitor, and Displayer.

24

The Constructor provides graphical annotations which the programmer can use to express
parallelism, communication and synchronization, as well as conventional control and data
structures. Four levels of abstraction are provided to the user, as shown in Figure 11. At the
centre level of abstraction (level 2), concurrency maps are used as a framework for
constructing parallel programs. These maps describe the individual processes within the
program as a sequence of events and show the inter-process dependencies that exist between
these events. For example, in Figure 11 it can be seen that event ba1 of process Pa must be
executed before event bb2 of process Pb. Program constructs such as iteration and
replication can also be expressed with these concurrency maps using different forms of
notation, not explained in detail here. The individual events within each process may be
further refined with conventional visual programming techniques or described explicitly with
program text. This is the lowest level of abstraction (level 1), and is known as editing the
detail.

When the concurrency map is sufficiently abstract, a graph, whose nodes are processes and
edges are communication channels can be automatically generated. This is the third level of
abstraction and is referred to as grouping. Based on this graph the user can map the
individual processes onto a network of processors. This is abstraction level 4.

The Translator automatically transforms the diagrams used in constructing the program
into some existing parallel programming language (such as occam or parallel C). This is then
compiled and loaded onto the parallel computer.

The Monitor collects feedback information about the execution of a user’s program by
monitoring the run-time characteristics of the program and storing the information gathered
in a log file. This is the only tool within the integrated environment that is run on the parallel
computer and the machine-dependent parts may be localised to increase portability. The
feedback data collected by the monitor will include debugging information, as well as
indicating how effectively the program exploited parallelism.

Due to the multiple threads of control and the existence of contention or nondeterminism
within parallel programs, any attempt to observe the behaviour of the system may modify the
behaviour of the program, this is known as the probe effect. Turner and Cai define
transparency as being achieved by a monitor when the events that constitute a monitored

mapping

processor network

abstracted
processes

grouping

process building blocks

editing
the detail

block
construction

block a1

1

2

3

4

ba1

ba2 bb1

bb2

Pa Pb

LEVEL

Figure 11. Levels of abstraction within the constructor.

25

program’s execution are identical both in the presence and absence of the monitor. In order
to achieve this, they have developed a new approach to the monitoring and visualization of
parallel programs known as the logical clock approach. With this approach the probe effect
is eliminated and transparency achieved by introducing the techniques of logical clock
management and communication control to the monitoring of parallel programs. The logical
clock approach centres around the idea of compensation for the delay on a process (caused
through monitoring), by artificially delaying the execution of all processes for which a time-
dependency exists between events within the two processes. In this way the partial ordering
of events is preserved and transparent monitoring achieved. A detailed explanation of the
logical clock approach can be found in [42].

As the degree of transparency is not affected by the time spent on monitoring with the
logical clock approach, the authors note that the approach can also be used to build a run-
time interactive graphical debugger and performance analyzer that exhibits transparency.

The Displayer retrieves the information from the log file and presents this to the
programmer using the concurrency maps and the diagram of abstracted processes,
constructed during the design of the program. A single instant of display on these diagrams
corresponds to a snapshot of the program state and the snapshots are displayed one after
another, making up a moving animation. By using diagrams that the user has created and
understands, rather than graphs which are generated automatically by a visualization system,
the graphical displays of feedback information can be more readily interpreted by the user.

The Displayer, currently still under development, will provide both single-step and multi-
step facilities to the programmer, providing necessary control over the execution replay. As
an example of the type of visualizations which will be produced by the Displayer, an
overloaded processor will be identified by a “hot” colour in the graphical representation of
that processor at abstraction level 3. In addition, the level 2 animation of the program's
execution will enable the programmer to quickly locate the code segments leading to these
“hot spots” with the program.

In summary, Turner and Cai appear to have provided the foundation for a very good visual
programming/visualization system, targeted at constructing, debugging and fine tuning
parallel programs. The construction of the system from many separate tools enables it to be
expanded to work for many other parallel languages and on many different architectures
simply by providing translators and monitors that work for the different languages and
architectures. The major deficiency within this system at the moment appears to be the
limited visualizations produced by the Displayer, however the authors seem keen to improve
this in the near future.

4.13. Xab
Xab [1] , is an X Window analysis and debugging tool created for the runtime monitoring

of PVM programs running on the heterogenous network of computers. Xab is composed of
three separate parts: an Xab library of routines, a PVM process called abmon, and a display
process called xab.

When monitoring a program through Xab, the Xab library routines are called instead of
the standard PVM functions. These library routines call the standard PVM functions and
send PVM messages to the abmon process. The messages contain information regarding
which PVM function is being called, a time-stamp for the local machine (this could be used
to calculate the length of time at a barrier), and event-specific information, for example, the
name of a barrier and the number of processes that must reach the barrier before continuing.
The abmon process then formats these messages and they are sent to the xab display process
or written to a file.

Xab displays this trace information in a text window in either a continuous or single-step
mode. In order to visualize the trace data though a graphical display, which provides for easy

26

extraction of performance information, post mortem monitoring can be done with ParaGraph
(Section 4.11). Although the textual Xab display is very limited it has the ability to display
the trace data in real time. This is a significant advantage for debugging programs which
block indefinitely and, hence, never terminate. If trace data within a system is buffered and
sent to monitoring tools in batches then the data relevant to the program bug may never be
flushed from the buffer, thus inhibiting the use of post mortem monitoring.

Xab appears to be successful in gathering and presenting trace information for programs
run across a distributed heterogeneous network of computers. By showing the trace
information textually, and graphically, through the ParaGraph tool, Xab is able to provide the
user with invaluable performance evaluation information. However, as the ParaGraph
displays pertain only to performance information, and only plot against execution time, Xab
could be greatly enhanced by the development of further views that display the gathered trace
information in conjunction with the program constructs responsible for the trace data. In this
way, debugging information and more informative performance evaluation information could
also be presented to the user.

4.14. Hence
Hence [1], the Heterogeneous Network Computing Environment, attempts to simplify the

task of programming on a heterogeneous network of computers, and is composed of five
different tools. The first, a compose tool allows the user to explicitly specify parallelism by
drawing a graph of the parallel application. The second is a configuration tool that uses the
composed graph to specify the configuration of machines that will compose the virtual
machine. It helps the user set up a cost matrix that determines which machines can perform a
specified task and gives priority to certain machines. This cost matrix is then used at run-
time, to distribute the program dynamically across the network. The third tool automatically
generates the parallel program from the graph, compiles the node procedures for the various
heterogeneous architectures and installs the executable modules on the machines. The fourth
tool starts the requested virtual machine and automatically maps procedures to machines on
the basis of the cost matrix and the Hence graph.

The final tool in the Hence system is the trace tool. It is an X Window based application
that allows trace information to be displayed in real-time or replayed later. It is composed of
three windows, the first of which displays a representation of the network and machines that
underlie PVM. Icons of active machines are illuminated with different colors to indicate
whether they are computing or communicating. Associated with each icon is the list of node
procedures that are mapped onto the machine at any given instant. The second window has a
display of Hence’s version of the user’s abstract graph. This display changes dynamically to
show the actual paths and parameters taken during an execution run and the nodes change
color to indicate the different activities in each procedure. The final window shows a
histogram of processor utilization.

As Hence interprets the user’s abstract graph and then visually displays the new graph, any
mistakes made in the graph’s initial specification can be found easily. If the Hence graph
differs from the users graph it will highlight any unrecognized serial bottlenecks in the
algorithm or problems with the network.

As the program is running in parallel, there may be multiple program failures that occur in
a single execution. In Hence, if part of a program fails and other parts continue to execute,
the trace tool highlights the failure of the program node while continuing to display the
progress of other program nodes as they continue to execute. This enables the programmer to
locate various bugs across the system easily and quickly.

Another feature of Hence is its ability to convey some performance information. As the
trace can be displayed in real time it is noticeable if a machine is running more slowly than
expected for any reason, such as an unexpected heavy external load. When situations such as

27

these occur the user has the option of changing the cost matrix to reflect this unexpectedly
high load on the machine.

Hence appears to provide good support for the task of debugging and fine tuning PVM
programs. It provides the user with views that show the distribution of code over the network
and the dependencies that exist between the parallel sections of the code. The visualizations
produced are dynamic in that they show the actual paths and parameters taken during an
execution run, etc., and they are able to handle machine failure and still produce a reliable
visualization of the execution sequence. Machine performance can also be monitored
through the visualizations that are produced, providing the user with important run-time
performance data. However, as in many of the systems discussed in this paper, Hence makes
no attempt to visualize any data structures within the executing program. As a result of this,
significant amounts of relatively simple debugging information is lost to the user.

5. Conclusions and Future Directions
In this paper we have detailed the visualization requirements of a variety of programming

paradigms and architectural platforms and have examined a representative group of
visualization systems currently available. Due to the diverse nature of the visualizations that
are required across the paradigms and architectures these visualization systems are typically
targeted at a specific language, paradigm or paradigm feature (see Tables 1 and 2).

Table 1 briefly details the focus of each of the visualization systems examined, while Table
2 summarises the requirements specified in Section 3 and shows the extent to which the
visualization systems satisfy those requirements. Examination of Table 2 shows that the
visualization systems considered fall into three groups:

• systems that only visualize at a language level;
• others that only provide displays from an architectural viewpoint; and finally
• those that supply both language level and architectural level visualizations.

Visualization
Systems

Year Focus of System

ZEUS 1991 An algorithm and animation system designed to animate algorithms
from a wide variety of scientific domains. The algorithms are annotated
with interesting events and views can be designed by users to display
multiple animated pictures of the algorithms.

KAESTLE &
FooScape

1986 KAESTLE supports the debugging of Lisp programs by automatically
visualizing the list data objects that are created when the program
executes. FooScape visualizes the code structure of the programs
through a graphical layout of function ellipses.

Aberdeen 1991 A tool for browsing persistent stores in Napier88, (a persistent
programming language). It allows the user to traverse the store and
display the objects within (including code fragments).

A PV Tool 1992 Developed to describe class hierarchies and as a debugging aid for C++
programs. The displays show all instantiated objects and details on call
sequence and inheritance etc.

Table 1. A summary of the focus of the visualization systems examined.

28

Goofy, CppInfo
& POLKA

1993 Goofy is a general animation system composed of the Goofy animation
language and a processor that provides for smooth colour animations.
CppInfo is a tool that provides information about C and C++ programs.
A visualization system, POLKA, built on top of Goofy and CppInfo
processes this information and automatically constructs static and
dynamic animations of the data structures used in the programs.

IVE 1992 A tool for debugging massively parallel programs. Visualizations of
call diagrams and dependency graphs are displayed, along with process
views depicting the flow of execution. Application specific views that
are based on abstractions specific to the program can also be
constructed.

GE for Prolog 1991 A graphical environment for logic programming that uses AND/OR
graphs to represent both program source code and dynamic program
behaviour.

PIE 1989 Supports the visualization of programs written in languages such as C,
MPC, C-threads, Ada and Fortran. Code visualization showing the
code’s principle constructs, (e.g., syncs, joins, puts, gets, etc.) is
automatically generated and standard performance information can be
displayed that ties back to the corresponding code segments.

Zernick, Snir &
Malki

1992 Uses visualization to overcome concurrency related bugs for any
language that makes communication and synchronization explicit. The
visualizations are displayed in the form of causality graphs, which
provide a logical view of execution at a language level, and through
graphs showing standard performance information as execution
progresses.

ParaGraph 1991 Provides 25 different perspectives on trace data gathered from message-
passing parallel programs. These views dynamically animate details
such as processor utilization during execution and also provide
graphical summaries of the programs performance. ParaGraph uses
standard trace files to produce the visualizations, and thus, other
visualization systems can make use of ParaGraphs functionality by
producing information that can be processed with the ParaGraph tool.

Turner & Cai 1993 A set of programming tools capable of supporting both visual
programming and program visualization of parallel programs. The
visualizations are displayed on the graphs constructed by the user
during the design of the program and provide an animation of program
behaviour.

Xab & Hence 1993 Xab and Hence are tools designed to work in conjunction on a
heterogeneous network of computers. Xab is an X Window analysis
and debugging tool created for the runtime monitoring of PVM
programs running on the heterogeneous network. It gathers trace
information pertaining to the PVM functions being called, time-stamps
for local machines, etc. and then displays this information textually. A
graphical view of the trace data can also be generated using ParaGraph.
Hence attempts to simplify the task of programming on a heterogeneous
network of computers. It allows the user to configure the program
segments to different machines and then provides feedback information
during execution that dynamically shows the mapping of the procedures
across the machines.

Table 1 (cont). A summary of the focus of the visualization systems examined.

29

When looking at the systems that only attempt to visualize language features, it can be
seen from Table 1 that, with the exception of ZEUS and IVE, all of the systems are language
specific. This permits the displays to be automatically produced and reflect nuances of the
language that is being visualized. In general, the systems provide dynamic views of the
program code as it is being executed and the data values that are created and modified during
execution, or, in the case of logic programs, they show the unification path being executed.
Aberdeen and A PV Tool are exceptions as the focus of these systems is to provide particular
information on the paradigm being visualized and not on producing a rounded visualization
system capable of visualizing all aspects of the language.

ZEUS, on the other hand, is a general visualization system that aims to visualize
animations and not any particular language. Consequently, the views must be programmed
by a visualization programmer and the scope of the visualizations produced depends on the
skills of the programmer creating them. With IVE, all of the visualizations produced are
created from abstract data type specifications which are then mapped onto visualization
templates. Due to this, the abstract data types must all be defined according to IVE
specifications and, while the displays produced are applicable to different programming
languages, they all pertain to massively parallel programs and only make sense when
executed on a massively parallel machine.

This form of restriction is also true for the visualization systems that are targeted at both a
language and architectural level. PIE and Turner et al both provide the user with code views
of the program, however the views are only concerned with the parallel nature of the code
and make no attempt to show any of the fundamental or abstract code structures from the
imperative paradigm that are in use.

30

In summary, the examination that we have conducted of the various language level
visualization systems has indicated that, while systems targeted at a language level now tend
to provide adequate views for many aspects of that language, most do not cover the entire
spectrum of visualizations that would be useful.

From an architectural viewpoint, all of the systems provide information regarding the
distribution of code across processors on a multi processor machine, or in the case of Xab, a
distributed network of heterogeneous computers. As the systems are only concerned with the
parallel nature of the execution they are able to visualize a wide spectrum of languages and
are not restricted in the same way that language level visualization systems are. As can be
seen from Table 2, all of the systems provide similar sorts of information regarding processor
usage and communication message queues etc. However, in general, this information is
shown in a graph form against time, or as an animation as the program is executing. This
provides the user with very little feedback on the code segments that were actually
responsible for the performance statistics and thus, while still providing valuable information,
that information is not as pertinent as it could be. The two systems that do attempt to address
this issue are PIE and Turner & Cai. In both of these systems the visualizations produced
connect the performance statistics with the code segments that were responsible for them and

Static Code
D

ynam
ic Code

D
ynam

ic D
ata

D
ata/Code Correlation

D
ata Flow

 G
raph

Class Structures

M
ethod O

rigins

Static V
iew

 of Store/D
B

D
ynam

ic V
iew

 of Store/D
B

Show
 U

nification Path

Processor U
tilization

Com
m

unication Info.

D
istribution of W

ork
A

gainst Tim
e

A
gainst Code

A
bility to Scale

H
ighlight Parallel

Code Segm
ents

Interprocess D
ependencies

ZEUS

Kaestle & FooScape

Aberdeen

A PV Tool

POLKA

IVE

GE for Prolog

PIE

Zernick

ParaGraph

Turner & Cai

Xab & Hence

¦

¦ ¦

¦¦

¦

¦¦

¦¦

¦¦¦

¦¦¦

¦

¦¦¦

¦¦ ¦

¦

¦

¦

¦

¦

¦ ¦

¦¦

¦

¦ ¦ ¦

¦¦¦

¦¦¦

¦ ¦¦

¦

¦¦¦¦

Table 2. Capabilities of examined systems.

31

in turn provide the user with a well rounded visualization system.
Visualization systems to date appear to have mainly been concerned with discovering the

different types of information that are useful to the user and the form that the information
should take. Systems along these lines, that visualize particular languages or paradigms have
been designed and many of the systems have been integrated into a programming
environment for that particular language. However, as can clearly be seen from Table 2,
none of the systems that we have examined provide a truly rounded and complete view of the
language that they are visualizing. In the future, we see this as being the major concern in the
design of visualization systems. We now know the type of information that is important and
how that information can best be conveyed, the next step is to gather this information
together to form a cohesive and complete visualization system that will satisfy all, and not
just some, of the needs of the user.

32

References

1. A. Beguelin, J. Dongarra, A. Geist and V. Sunderman. Visualization and Debugging
in a Heterogeneous Environment. IEEE Computer, 26(6), pp. 88-95, June 1993.

2. M. H. Brown. Zeus: A System for Algorithm Animation and Multi-View Editing.
Proceedings from the IEEE Workshop on Visual Languages, pp. 4-9, 1991.

3. G. Cheng and N. A. B. Gray. A Program Visualizatin Tool. Research Report,
University of Woolongong, 1992.

4. M. T. Heath and J. A. Etheridge. Visualizing the Performance of Parallel Programs.
IEEE Software, 8(5), pp. 29-39, September 1991.

5. M. V. LaPolla. Towards a Theory of Abstraction and Visualization for Debugging
Massively Parallel Programs. Proceedings from the Hawaii International Conference
on System Sciences, vol. 2, pp. 184-195, 1992.

6. T. Lehr, Z. Segall, D. F. Vrsalovic, E. Caplan, A. L. Chung and C. E. Fineman.
Visualizing Performance Debugging. IEEE Computer, 22(10), pp. 38-51, October
1989.

7. A. D. Malony, D. H. Hammerslag and D. J. Jablonowski. Traceview: a Trace
Visualization Tool. IEEE Software, 8(5), pp. 19-28, September 1991.

8. B. A. Myers. Taxonomies of Visual Programming and Program Visualization.
Journal of Visual Languages and Computing, 1(1), pp. 97-123, 1990.

9. B. A. Price, I. S. Small and R. M. Baeker. A Taxonomy of Software Visualization.
Proceedings from the Hawaii International Conference on System Sciences, vol. 2,
pp. 597-606, 1992.

10. H. Senay and S. G. Lazzeri. Graphical Representation of Logic Programs and Their
Behavior. Proceedings from the IEEE Workshop on Visual Languages, 1, pp. 25-31,
1991.

11. D. Zernick, M. Snir and D. Malki. Using Visualization Tools to Understand
Concurrency. IEEE Software, 9(3), pp. 87-92, May 1992.

12. N. C. Shu. Visual Programming. Technical Report, Van Nostrand Reinhold, New
York, 1988.

13. M. T. Helm, K. Marriott and M. Odersky. Building Visual Language Parsers.
Proceedings from the Computer Human Interaction’91 Conference, pp. 105-112,
1991.

14. L. J. Rosenblum. Scientific Visualization at Research Laboratories. IEEE Computer,
22(8), pp. 68-70, August 1989.

15. R. L. Phillips. Distributed Visualization at Los Alamos National Laboratory. IEEE
Computer, 22(8), pp. 70-77, August 1989.

33

16. B. Cabral and C. L. Hunter. Visualization Tools at Lawrence Livermore National
Laboratory. IEEE Computer, 22(8), pp. 77-84, August 1989.

17. R. B. Haber. Scientific Visualization and the Rivers Project at the National Center
for Supercomputing Applications. IEEE Computer, 22(8), pp. 84-89, August 1989.

18. G. V. Bancroft, T. Plessel, F. Merritt and P. P. Walatka. Scientific Visualization in
Computational Aerodynamics at NASA Ames Research Center. IEEE Computer,
22(9), pp. 89-95, September 1989.

19. L. J. Rosenblum. Visualization of Experimental Data at the Naval Research
Laboratory. IEEE Computer, 22(8), pp. 95-101, August 1989.

20. T. A. DeFanti and M. D. Brown. Visualization: Expanding Scientific and
Engineering Research Opportunities. IEEE Computer, 22(8), pp. 12-25, August
1989.

21. G. M. Nielson. Visualization in Scientific and Engineering Computation. IEEE
Computer, 24(9), pp. 58-66, September 1991.

22. M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott and R. Morrison. An
approach to persistent programming. Computer Journal, 26(4), pp. 360-365,
November 1983.

23. R. Morrison, A. L. Brown, R. Carrick and R. Connor. The Napier88 Reference
Manual. Research Report, PPRR-77-89, Universities of Glasgow and St Andrews,
1989.

24. E. Kraemer and J. T. Stasko. Toward Flexible Control of the Temporal Mapping
from Concurrent Program Events to Animations. Technical Report, 94-10, Graphics,
Visualization, and Usability Center, Georgia College of Computing, Georgia Institute
of Technology, 1994.

25. K. M. Kahn and V. A. Saraswat. Complete Visualizations of Concurrent Programs
and their Executions. Proceedings from the IEEE Workshop in Visual Languages,
pp. 7-15, 1990.

26. H. Bocker, G. Fischer and H. Nieper. The Enhancement of Understanding through
Visual Representations. Proceedings from the Computer Human Interaction’86
Conference, Human Factors in Computing Systems - III, pp. 44-50, 1986.

27. A. M. Farkas. A Browser allowing intERactive DEclarations and Expressions in
Napier88. Honours Thesis, Department of Computer Science, University of
Adelaide, 1991.

28. G. N. C. Kirby and A. Dearle. An Adaptive Browser for Napier88. Research Report,
16, University of St Andrews, 1990.

29. C. Carson. CASE*Designer, User’s Guide and Tutorial, Version 1.1. Oracle
Corporation UK Limited, 1989.

34

30. D. F. Jerding and J. T. Stasko. Using Visualization to Foster Object-Oriented
Program Understanding. Technical Report, GIT-GVU-94-33, Graphics,
Visualization, and Usability Center, College of Computing, Georgia Institute of
Technology, 1994.

31. L. Ford. Goofy Animation System. Technical Report, 266, Department of Computer
Science, University of Exeter, 1993.

32. L. Ford. How Programmers Visualize Programs. Submitted to the Fifth Workshop
on Empirical Studies of Programmers, 1993.

33. J. T. Stasko. Polka Animation Designer’s Package. Technical Report, College of
Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, 1992.

34. L. Ford. Automatic Software Visualization using Visual Arts Techniques. Research
Report, 279, Department of Computer Science, University of Exeter, 1993.

35. S. G. Lazzeri. A Graphical Environment for Monitoring Prolog Programs. Masters
Thesis, Department of Electrial Engineering and Computer Science, The George
Washington University, Washington, D.C., 1991.

36. D. F. Vrsalovic. Performance Efficient Parallel Programming in MPC. Proceedings
from the 22nd Hawaii International Conference on System Sciences, CS Press, Los
Alamitos, California, Order No. 1911, Jan. 1989.

37. E. C. Cooper and R. P. Draves. C Threads. Technical Report, CMU-CS-88-154,
School of Computer Science, Carnegie Mellon University, 1988.

38. A. Nye. Xlib Programming Manual. O’Reilly & Associates, Inc., 1989.

39. K. P. Lee. IVIS, An Interpreter and a Visualizer for a Parallel Functional
Programming Language. Honours Report Thesis, University of Adelaide, 1993.

40. B. Alexander. Review of the Language ADL. Technical Report, TR94-10,
Department of Computer Science, University of Adelaide, 1994.

41. S. J. Turner and W. Cai. The ’Logical Clocks’ Approach to the Visualization of
Parallel Programs. Elsevier, pp. 45-66, 1993.

42. W. Cai. An Approach to the Run-Time Monitoring of Parallel Programs. Research
Report, 251, Department of Computer Science, University of Exeter, 1993.

