UNIVERSITY OF MINNESOTA

This is to certify that | have examined this copy of a doctoral thesis by

Ed Huai-hsin Chi

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

John T. Riedl

Name of Faculty Advisor

Signature of Faculty Advisor

March 8, 1999

Date

GRADUATE SCHOOL

A Framework for Information Visualization Spreadsheets

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA
BY

Ed Huai-hsin Chi

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

March 1999

© Copyright Ed Huai-hsin Chi 1999

Declaration. The ideas described in this dissertation is patent—pending in a U.S. patent
application entitled “Visualization Spreadsheet” (University of Minnesota Docket Number

99009, Merchant & Gould Law Firm Reference Number 600.373-US-01).

Some portion of this thesis was previous published in IEEE conference proceedings
and magazines. As per IEEE Copyright Polibyt://www.computer.org/forminfo.htm),
| retained the right to reuse any portion of these copyrighted works, without fee, and in any
future works. However, | am required to give the following notice: Some portion of this
work is

(©1997, 1998 IEEE, reprinted from Proceedings of the Symposium on Information
Visualization 97, July 1998 issue of IEEE Computer Graphics and Applications, and Pro-

ceedings of the Symposium on Information Visualization '98 by permission.

ACKNOWLEDGMENTS

I would like to specially thank my advisor, John T. Ried|, for his mentorship, support,
advice, guidance, encouragement, and above all, his friendship. Choosing him as my advi-
sor was one of the best choices | have made in my life.

In the last several years, | have also been fortunate to have received great mentor-
ship from Dr. Stuart K. Card at Xerox Palo Alto Research Center (Xerox PARC), and |
thank him for his belief in my abilities. | also thank my co—workers James Pitkow, Rich
Gossweiler, Peter Pirolli, and Jock Mackinlay at Xerox PARC for their contribution to my
education and the Web visualization analysis work.

| thank Professors John Carlis, Joseph Konstan, and Phillip Barry of the Computer
Science Department, and Libby Shoop and Ernest Retzel at the Computational Biology
Centers, who have all contributed interesting ideas and discussions. | thank Dr. Gordon
Legge of the Psychology Department, who introduced me to visual perceptual psychology.

| thank my family for their continual support.

| would not have had the strength to complete this work without the love and support of
my big sister, Susan, and my friends, Chad, Brook, Ahna, and Kate. Completing a Ph. D.
is like running a marathon. The ups and the downs of its various stages is impossible to

endure without support from family and friends. | am forever grateful of their belief in me.

DEDICATION

To my family:
my Mother, Sophia Hsiu-chieh Chen, my Father, Charles Chiu-lang Chi,
my Sister, Su-shan Susan Chi, my Brother, Tim Ssu-yuan Chi,

To my friends:
my Soul Brothers, Chad Potter Juncker, and Brook Winston Kabanuk,

my two Caring Friends, Ahnnie and Katie.

Journey 1992-1998
You only see me through distorted lens.
The purple iris is no longer purple.
Through your torn lens,
a distortion is all that we have.

Around the corner | wept,
and straight ahead | carved.
Carved a path as | kept

my tired soul on the road.

As one phase blends into another,

| find comfort in the silence of my heartbeat.
Holding her in my arms, she rests.
Unfolding souls in charm, | rest.

Abstract

Information has become interactive. Information visualization is the design and cre-
ation of interactive graphic depictions of information by combining principles in the dis-
ciplines of graphic design, cognitive science, and interactive computer graphics. As the
volume and complexity of the data increases, users require more powerful visualization
tools that allow them to more effectively explore large abstract datasets.

This thesis seeks to make information visualization more accessible to potential users
by creating a “Visualization Spreadsheet”, where each cell can contain an entire set of data
represented using interactive graphics. Just as a numeric spreadsheet enables exploration
of numbers, a visualization spreadsheet enables exploration of visual forms of informa-
tion. Unlike numeric spreadsheets, which store only simple data elements and formulas
in each cell, a cell in the Visualization Spreadsheet can hold an entire abstract data set,
selection criteria, viewing specifications, and other information needed for a full-fledged
information visualization. Similarly, intra-cell and inter-cell operations are far more com-
plex, stretching beyond simple arithmetic and string operations to encompass a range of
domain-specific operators.

The complexity of operations and interactions requires a visualization framework that
is easily understandable to both end-users and visualization designers. This thesis devel-
ops and discusses the general utility of a novel visualization framework, and validates the
framework by applying it to various visualization techniques and showing several systems
that illustrate some of these research issues. We show that the spreadsheet approach facili-
tates certain visual user tasks that are more difficult using other approaches. The underlying
approach in our work allows domain experts to define new data types and data operations,
and enables visualization experts to incorporate new visualizations, viewing parameters,

and view operations.

Keywords: Information Visualization, Visualization, Spreadsheet, Interactive Graphics,
Visualization Systems, User Interface, User Interactions, Visualization Framework, Visu-
alization Model, Operators, View/value, Data State Model, Date Flow Model, Visualiza-
tion Design, Application Extensibility, Sensemaking, Biological Sequence Analysis, Al-
gorithm Visualization, World-Wide Web, Content Usage Structure Analysis, Information

Ecologies.

TABLE OF CONTENTS

List of Figures IX
List of Tables Xi

Chapter 1: Introduction 1

1.1 Motivation 1

1.2 Visualization Spreadsheet Defined 4

1.3 Cognitive Advantages of the Visualization Spreadsheet 5
1.3.1 \Visual Information Processing. 5
1.3.2 Sensemaking, Information Ecology and Foraging Theory 6
1.3.3 LevelsofKnowledge, 7
1.3.4 Advantages of Visual Sensemaking in the Visualization Spreadsheet 8

1.4 ResearchVision 9

1.5 ResearchApproach, 11

1.6 OVEIVIEBW e 13

Chapter 2: Related Work 15
2.1 Reference Model for Information Visualization 15
2.2 Spreadsheet 18
2.3 SUMMANY . . . e e 23

Chapter 3: lllustrated Principles, Scenarios and Detailed Case Study 25

3.1 Original Data Domain: Genetic Sequence Similarity 26

Vi

3.2 OtherDataDomains 31
3.2.1 Time-seriesMatrices 32
3.2.2 Algorithm Visualization 33

3.3 lllustrated Principles 33
3.3.1 Derive ComparisonDataSets. 34
3.3.2 Apply OperatorsinParallel 40
3.3.3 Extract Multiple Visual Features Simultaneously. 44
3.3.4 Create Analysis Templates 46
3.3.5 Update Automatically via Dependency Links 48
3.3.6 Mapping Value to Structure using Custom Layouts 50
3.3.7 Use Both Direct Manipulation and Command Languages 51

3.4 Detailed Case Study: Web Analysis Visualization Spreadsheet 54
3.4.1 \Visualizationof Web Space 54
3.4.2 Real-World Analysis Scenarios 55

3.5 Summary ... 63

Chapter 4: Information Visualization Operator Framework 67

4.1 The Need for an Operator Framework 68
4.1.1 Problems from End-Users’ Perspective 69
4.1.2 Problems from Designers’ Perspective. 70
4.1.3 Operator Framework Helps Users and Designers. 72

4.2 Fundamental Properties of Operators... 73
421 ViewversusValue 74
4.2.2 Operational versus Functional Similarity 74

4.3 A Data State Model for Visualization Operators 76
4.3.1 \Visualization Pipeline 76

4.3.2 DataStateModel 78

Vil

4.3.3 Example: Web Analysis in the Visualization Framework 81
4.4 Classification of Operators using the Framework 85
4.4.1 Example: Web Analysis Visualization Operators. 88
4.5 Properties of the Framework 88
451 ViewversusValue 90
4.5.2 Applicability of Operators 92
4.5.3 Operator-Centric Approach 93
4.5.4 Direct Manipulation 0L 94
455 Implementation Choices 95
4.6 DISCUSSION 96
4.6.1 Three Classes of Users of this Framework 96
4.6.2 End-User Advantages using this Framework 96
4.6.3 Visual Sensemaking using Visualization Operators. 97
4.7 SUMMAIY . . . oo e e e e e e 100
Chapter 5: Duality of the Data Flow and Data State Models 102
5.1 Expanding the Data FlowModel 103
5.2 Visualization Equivalence. L o 104
53 Analysis 109
5.3.1 Data Flow Model and Data Flow Visualization Systems 109
5.3.2 Data State Model and Spreadsheet Systems 110
54 Summary e e e 112
Chapter 6: Validation: Applying Framework to Visualization Techniques 113
Chapter 7: Implementation 121
7.1 The Prototype System: Spreadsheet for Similarity Reports. 121
7.2 The General System: Spreadsheet for Information Visualization 123

viii

7.3 DISCUSSION e 125

7.4 SUMMAIY o e e e e e e e e e e 129
Chapter 8: Conclusion 130

8.1 Lessons Learned: Answers to High-Level Challenges 131

8.2 Contributions 134

8.3 Summary 135

Bibliography 137

11
1.2

2.1

3.1

3.2

3.3

3.4
3.5

3.6

3.7

3.8

LIST OF FIGURES

Grand Vision for Visualization Spreadsheetresearch 10
Research Plan for Spreadsheet for Visualization system. 12
Chuah and Roth’s Basic Visualization Interaction taxonomy 17

Molecular biology seeks to determine the interaction between gene, pro-
tein, protein structure, and protein function. Similarity algorithms provide

a shortcut for finding possible protein functions for an unknown sequence. . 27
Several alignments represented in AlignmentViewer: X-axis is the position
along the input sequence, Y-axis is the similarity score, and the Z-axis is

the frame number of the alignment. 29
Visualization of 3D random point generation and Delaunay triangulation

of the resulting pointset.. 35
Generating cells 4, 4 2, and 43 in the Delaunay Triangulation example. . 36
A screen snapshot of the Spreadsheet for Similarity Reports visualization
SYSIEM. . . . e e e e e 38
An example of the parallel application of direct manipulation operations to
multiple cells simultaneously. 41
Visualization of time-series matrices using the Spreadsheet for Information
Visualization system. 42
Discovering novel patterns using multiple visualization representations in

the time—series matricesexample. 45

3.9 The Delaunay Triangulation Algorithm Visualization Dependency Flow
Chart 49

3.10 Drop-down menus makes Spreadsheet for Similarity Reports (SSR) easy
tOUSe e 52

3.11 Commands and scripts in the SIV spreadsheet 53

3.12 Web Analysis Visualization Spreadsheet showing the Xerox.com Web site

usingCone Trees. 57
3.13 Faddish of Information in the Xerox.comWebsite. 57
3.14 Web Analysis Visualization Spreadsheet with Disk Trees.. 59
3.15 Creation of new Web content for Product Families in Xerox.com. 60
3.16 Visual usage pattern subtraction shows differences in usage quickly. 62

3.17 Straight mapping of usage pattern does not show difference in usage atall. . 63
3.18 Spreading Activation visualization enable visualization of related contents

using document similarity.o Lo 64

4.1 The information visualization pipeline (modified from Stuart Card’s model) 79

4.2 Our visualization operator model: Data State Model 80
4.3 The Delaunay Triangulation Algorithm Visualization Pipeline 82
4.4 The Web Analysis Visualization Pipeline 83
4.5 Multiple level of semantics for the addition operator. 91

4.6 Stages of the Visual SensemakingCycle 98
5.1 Anexample of the Duality Transformation 108

7.1 Interactions and Control Flow of the Spreadsheet for Information Visual-
ization System 124

7.2 Architecture of the Spreadsheet for Information Visualization System . . . 126

3.1

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5
6.6

Xi

LIST OF TABLES

The Visualization Spreadsheet Principles 66
Information Visualization Pipelinestages 77
Transformation Steps in InfoVis Pipeline 77
The Web Analysis Visualization Operators 89
Various visualization techniques analyzed using the Data State Model . . . 115
Various visualization techniques (continued) 116
Various visualization techniques (continued) 117
Various visualization techniques (continued) 118
Various visualization techniques (continued) 119

Various visualization techniques (continued) 120

Chapter 1

INTRODUCTION

A graphic is not “drawn” once and for all; it is “constructed” and reconstructed until
it reveals all the relationships constituted by the interplay of the data.... A graphic is never
an end in itself; it is a moment in the process of decision-making.

—Jacques Bertin [15, p. 16]

1.1 Motivation

We live in an exciting time. Great discoveries in science seem to come almost monthly,
due in part to the proliferation of technology that helps scientists observe and explore more
easily. It is now realistic to believe that, within our lifetimes, scientists may unlock the
genetic code, better understand the working of the brain, and cure diseases that plague
us. More powerful computer systems contribute to this rapid advance. The progression of
computer technology is dramatic, and seemingly unending. The progression of computing
tools, however, is helical, with feedback from each generation of tools used to motivate
and specify the next generation. We are embarked on a new cycle of the helix, leading to a
powerful tool we call the Visualization Spreadsheét

As computer scientists, we have been working with users in several different fields to
build tools that help them see and learn. Problem solving and decision making are essential
components of most complex tasks and are increasingly supported through novel user in-
terfaces to information [65]. As the volume and complexity of information increases, users

will need more powerful exploratory tools to effectively analyze the available information.

Our research is based on the techniques developed in the fidisiuaflization which,
put simply, is the use of visual representations of data sets to support understanding and
analysis. Visualization techniques are capable of visually communicating vast amounts
of information very quickly, and supports scientists and information analysts as they at-
tempt to find meaning in large data sets. Interest in visualization-based user interfaces has
blossomed in the past few years, with systems developed for applications from computa-
tional fluid dynamics [80] to geology [62], molecular biology [79, 31, 32], architectural
plans [59], and animal behaviors [83].

Traditional scientific visualizationslerive their graphical views based on the spatial
representations inherent in the data. For example, earth geological information have spatial
dimensions as part of the data set. In scientific visualization, these spatial dimensions are
usually used as the basis of a visual map.

The field ofinformation visualizatiorhas emerged as researchers seek ways to sup-
port understanding and analysisalfstract datathrough the use of interactive computer
graphics and visualization techniques [25, 40, 23, 36, 108]. Abstract data is data that is not
inherently geometric. In our daily lives, newspapers and magazines often employ graph-
ical design principles to communicate simple statistical information, such as stock mar-
ket financial data. There are a wealth of abstract information that has no physical spatial
properties, such as document linkage structures, document similarity data. These abstract
information present further challenges to visualization researchers because casting abstract
data into effective visual forms is non-obvious. Indeed, research shows that the approach
to graphic presentation can hinder or promote accurate and effective processing of infor-
mation [99]. For this reason, researchers in information visualization have concentrated on
semiology [33]—the use of symbols and signs to communicate information.

However, in decision-making [15] and sensemaking [86], useful information is often
derived from interacting and operating on the information with a variety of processing
mechanisms [15, 25]. In particular, recent advances in information visualization interfaces

have shown that visual analyses benefit not just from good visual representation methods,

but also good interactions with those representations [2, 33, 100, 25]. These interfaces
allow users to perform data analysis operations directly on the visual representation in
order to see the effects.

In a visualization system, a set of well-designed interactions can be used to answer a
wide variety of questions. The design of a good set of visualization interactions requires
domain specific knowledge, since the problems of information analysis are grounded in
the needs of a discipline. Because of the wide variety of data domains, the challenge is
to design an single environment that enables users to perform a variety of difficult visu-
alization tasks in an intuitive manner. Fortunately, although different domain applications
often require different visual representations, many of these domains share similar view
manipulations or data transformation operations.

By developing and employing a conceptual model for visualization, we can analyze
and categorize the similarities between these data domains. Without such a model, the dif-
ferences among these domains threaten to prohibit the sharing of similar operations. In the
Visualization Spreadsheet, we use this model to take advantage of the similarities between
the operations among different data domains. In doing so, we enable users to perform a
wide variety of information analysis tasks. For example, it is useful to have visualizations
for related data sets displayed simultaneously side-by-side. Furthermore, there are a num-
ber of operations that one would want to apply to the visualizations simultaneously, such
as comparing and filtering multiple data sets simultaneously. By enabling users to perform
tasks under the same conceptual model, more analysis tasks could be accomplished by the
same visualization interface.

The challenge, therefore, is to develop a system with an intuitive user interface that can
accomodate the task requirements of a wide variety of visualization domains and enable
users to easily operate on related data sets in the system in a coordinated way.

Our idea is to build &isualization Spreadsheethich is a spreadsheet-like interactive
program enabling a user to lay out data on the screen in rows and columns of cells, where

the cells contain datasets that are viewed through visualization. The Visualization Spread-

sheet supports complex data exploration where many parameters of a dataset, or a group of
datasets, are explored in a coordinated way.

The spreadsheet metaphor provides a structured, intuitive, and powerful interface for
exploratory data analysis. Spreadsheets have proven to be highly successful environments
for interacting with numeric data by providing an environment that easily affords the ap-
plication and reapplication of a variety of data analysis operations. Since computer users
are accustom to the spreadsheet metaphor, we expect user skills in numerical spreadsheets
to transfer easily to the Visualization Spreadsheet. The wide variety of operators and their
complexity may thwart this transfer. The challenge is to design a intuitive interface for this
wide array of operators. Our research seeks to create a Visualization Spreadsheet that is as
intuitive as a numeric spreadsheet such as Microsoft Excel, but instead of numbers, each

cell can display an entire set of data represented using interactive graphics.

1.2 Visualization Spreadsheet Defined

The concept of the Visualization Spreadsheet is based on four characteristics—visualization
in cells, grid layout, operators, and dependency. These properties gives the Visualization
Spreadsheet its characteristics. Many of these characteristics it shares with traditional nu-

meric spreadsheets.

¢ Visualization in Cells. The Visualization Spreadsheet displays the visualization of
an arbitrarily large data set in each cell. Cells are adapted to handle large datasets
instead of a few numbers. They handle visual representations of complex data-types
with text strings, hierarchical structures, and regular and irregular shapes. Because
spreadsheets now contain groups of large datasets, users can now see much more

than just a single dataset in an established context.

e Grid layout. The grid layout lets users view collections of visualizations simulta-

neously. The tabular layout has proven useful in numeric spreadsheets, and has a

number of advantages. First, it enables users to enter data into cells in various con-
figurations. Second, because of its easy-to-comprehend structure, the cells are easy
to navigate to and from. Third, because it affords easy grouping, operations can be

defined on rows and columns, or portions of a spreadsheet.

e Operators. Operators are available for generating or modifying cell contents. Since
the datasets are no longer just simple numbers, the operations now consist a variety
of operators for different types of datasets. This also results in more difficulties in
the design of the user interface for these operations. Operators can be applied across
a specified range of operand cells, such as an entire column or row. Certain operators

may take columns, rows, or a subgroup of cells as operands.

e Dependency Just as in traditional numeric spreadsheets, the data in a cell can be
computed from the data in other cells, because cells may contain references to other
datasets in other cells. The spreadsheet keeps track of the dependencies between
cells and automatically updates the cells appropriately when they are manipulated.
A cell’'s data is recalculated automatically whenever a data on which it depends

changes.

1.3 Cognitive Advantages of the Visualization Spreadsheet

In this section, we first establish some background about cognitive science. In particular,
we review visual information processing, and a cognitive science analysis of task structures
called “sense-making”. Then we explain how the Visualization Spreadsheet supports visual

sensemaking.

1.3.1 \Visual Information Processing

In the present and the past, knowledge workers have utilized various technologies to reduce

the cost of accessing, processing, and understanding large data sets. The vision of Vannevar

Bush’'s 'MEMEX’ was to enable workers to make sense of information by employing tech-
nology that allow them to “make real use of the record” [22] by extracting relationships
between pieces of information.

Even though people are inherently drawn to elegant graphics, the use of abstract sym-
bols in statistical graphics to represent information did not develop until late 18th century.
William Playfair (1759-1823) almost single handedly invented and improved upon nearly
all fundamental graphical designs used in statistical graphics [99]—length and area to show
guantity, scatterplots, bar charts, line plots. The use of statistical graphics to show num-
bers has since become a fixture in communicating information in our daily lives in printed
forms of newspapers and magazines [99formation Visualizatioras a technology has
extended our capability for communicating immense amounts of both real and abstract
information [25].

In visual information processing@ur visual, perceptual, and cognitive abilities enhance
our problem-solving skills. Visual metaphors are even used for information understand-
ing [25]: gaining an understanding of a concept is often called “seeing”, reducing a prob-
lem into its essentials is called “focusing”, uncovering a problem is called “bringing to
light”. Clearly, our ability to see and decipher relies heavily on our perceptual and cogni-

tive abilities [25].

1.3.2 Sensemaking, Information Ecology and Foraging Theory

Cognitive psychologists have developed frameworks to model how we use our perceptual
and cognitive abilities to absorb information. A popular model is called skeasemaking
modet [86]. Sensemaking is a term that describes the cognitive process in bringing new
light on knowledge. There is an extensive analysis of sensemaking tasks, which is found
to be cyclic and iterative [86, 15].

As an example, consider the task of conducting a literature survey on infectivity factors

of retroviruses in a physical library. Trained librarians have a set of processing tools that

provides information on the choice of next step, such as the author/keyword book searches,
citation indices, encyclopedias, dictionaries, and bibliographies. With these tools, librari-
ans can accomplish many tasks. Continuing with the example, an overview article is first
selected. Then its bibliography is consulted to pick out a list of other related articles that
fits the user’s interest profile. Next, the user returns to the stacks of the library to collect
these papers, and the cycle repeats until the user is satisfied with the literature survey.

The library is an example of a type of information environment, and has been the pri-
mary source of information for many centuries. New types of information environment
have been developing since the invention of the digital computer. The World-Wide Web is
quickly acquiring a large user community, and becoming the primary source of information
for many information tasks [55]. Cognitive psychologists have described this rich relation-
ship between users and an information environment asfarmation ecology[76, 77].

The word “ecology” is used to describe how the task and/or the information changes and
evolves through time. People seek information and consume it in these information ecolo-
gies, and they form strategies for acquiring the most important pieces of information.

Psychologists have observed that information access environments needs to support the
sensemaking process by offering tools that enable cyclic task structures [86, 15, 76]. Each

cycle during sensemaking gains new knowledge about the information.

1.3.3 Levels of Knowledge

The aim in the sensemaking cycle is to successively discover new higher-level knowledge
about the information [86, 15, 28]. This requires the uncovering of new relationships be-
tween information elements, or subsets. This means we must support ways of constructing

new groupings of data defined by the interplay of relationships between elements.

1. Elementary or Local Level: This is equivalent to finding a specific entry in the data
model. It is important that visualization tools always provide access to the precise

values at this level using detail-on-demand, e.g. what was the access frequency of

http://lwww.xerox.com/index.html?

2. Intermediate or Comparison Level: Information at this level consists of relationships
that exist between subsets of information, e.g. are access patterns in May 1998 com-

parable to a year ago?

3. Overall or Global Level: This is the highest level attainable from the data. The
knowledge obtained at this level is condensed from the correlation between one vari-

able of the data with another variable, e.g. are there any usage trends governed by

time in the data set?

Mathematical analysis of the problem can often provide glimpse of higher level infor-
mation, but requires visualization to make sense of the patterns [15]. A simple example
would be the computation of averages and confidence intervals of groups of numeric data.
We often use a scatter plot with error bars to make sense of this statistical analysis.

A more sophisticated example is spreading activation [4], which is an algorithm for
computing the relevance between items. Spreading activation can be computed using vari-
ous pieces of information, such as structure of the links and frequency of usage, co-citation
strength between documents, and word-vector based similarity [77]. Spreading activation
provides information at the intermediate level by condensing the relationship between each

node and its relevance to all other documents in the set.

1.3.4 Advantages of Visual Sensemaking in the Visualization Spreadsheet

From a cognitive point of view, the success of spreadsheet-based interaction eliminates
many of the stumbling blocks in information analysis and data processing because the

Visualization Spreadsheet:

e Forms an external cognition device. In using the spreadsheet, the user constructs the

required information in each step of the analysis. Step by step, the user forms an

understanding of the relationship between the pieces of information. By externaliz-
ing this cognition process of sensemaking and by showing the intermediate results
of each operation, the Visualization Spreadsheet becomes an externalized cognition

device.

e Reduces the cost-structure of the analysis. The Visualization Spreadsheet allows
new, ad hoc analyses to be defined quickly. Instead of the cost of programming
new analyses, the spreadsheet allows a wide-range of new analyses to be defined as
combination of other cells. By structuring a few simple rules for applying operations,

the user can readily apply processing mechanisms very quickly.

e Enables continuous iterative exploratory data analysis. As users find new knowledge
in their data, they can quickly formulate new directions for data discoveries by re-
tailoring the spreadsheet. Creative insights congeal because the analysis cycle can
continue uninterrupted. During analysis, the Visualization Spreadsheet enables users

to operate the system at about the same pace as the users’ cognitive deductions.

¢ Identifies new operators to add to the analysis repertoire. The spreadsheet frame-
work gives domain experts the ability to analyze the structure of the data and their

associated analytical abstractions. During this process, new operators are identified.

1.4 Research Vision

Building a Visualization Spreadsheet poses a large set of research questions. This project
addresses three types of key research questions. In Figure 1.1, we show an overview of the
issues we studied while building a spreadsheet framework for visualization. At the high
level (High-Level Challenggs the thesis explores the properties of applications, tasks,
data, and visualization techniques that are suited to the spreadsheet paradigm. At the mid-

dle level Model Questionk the thesis investigates the models needed to support three types

10

Spreadsheet for Visualization

! hat is th dsheet How general is the spreadsheet hay i . S
n what way is the spreads adigm to visualization? To wh What properties of visualizati

?aradlgrlr_\ vzti_luab’l)e for visualiz range of data and visualization do stasks dm';’:lke |;hemd ;uitablg 4
10n applications™ the spreadsheet paradigm apply? spreadsheet-based interactio,

What are effective What are effective How can the spreadsheet be
user models? programmer models? made extensible to new
data types and domains

Core Views and Values i
Objectives DynamicDatg__~

Data Import

High-Level
Challenges

Model
Questions

View/Value
Separation

View/Value
Propagation,

One-way/Multi-wa
Constraints

Defining
Data domains

(Default view)

Time |
Dimensio

Coercion and
Type Hierarchiep

Operators and Manipulatio

) . View Comparison
Manipulation: btwen Cells

Definir]g)

Visualization,

Implementatio
Substrate

Wall-sized

Future
High-Performancefl Collaborative usesfill Screen Real Estatd M Compatible
Work Computation of Spreadsheets _ User Interface Issudll Techniques
Parallel
Asynchronou Displays: '
Collaboratio Powerwal

Computatio
Distributed
Computation i
Learning for
_ Synchronous Multiple first-time
Computationa Collaboratio Displays users

Steering

Figure 1.1: Grand Vision for Visualization Spreadsheet research. This figure shows an
overview of issues involved in building a spreadsheet for visualization. The implementation
of the Core Objectivegnables us to answer tiModel Questionswhich in turn help us

meet theHigh-Level Challenges In creating this framework, the high-level challenges
govern the formation of model questions and core objectives. In the bottom box, we show
potential future research that is enabled by the examination of the core objectives.

11

of users: end users working with spreadsheet-based applications, application builders who
assemble applications from defined components, and domain extenders who add support
for new data types, visualizations, and operators to the framework. At the lowest level
(Core Objectivey this thesis will examine core design and implementation issues includ-
ing the key notions of data domains, cell values and views, operations, temporal mappings,
and extensibility. Finally, the bottom box shows future related issues such as performance,

collaborative spreadsheets, screen space, user interface, and visualization techniques.

1.5 Research Approach

In this section, we give an overview of our research plan, which is shown in Figure 1.2. We
take a prototype-driven research approach in studying how spreadsheet environments can
be employed for visualization. The plan encompasses three phases of the project—domain
studies, design and implementation, and evaluation.

In the first phase, we perform domain-specific studies to gather user requirements. For
each new domain, we also perform an initial interface design. We compare our design
with other existing spreadsheets [61, 44] to gain more insight in the modularity required.
We then put the experiences back into the construction of a general spreadsheet tool for
visualization of dynamic data.

In the second phase, we perform an analysis of all requirements gathered in the first
phase, and design and implement the spreadsheet framework. By gathering the require-
ments from these domain studies, we ensure the plausibility of the design for multiple data
domains and visualization methods, which is one of the high-level challenges. Design-
ing the interface for domain specific tasks helps us discover the properties of tasks that
make them suitable for spreadsheet-based interaction. We then implement the Visualiza-
tion Spreadsheet framework using the Tcl/Tk user interface building language [74] and the
Visualization Toolkit (VTK) [90]. We chose Tcl/Tk because it is well-suited for building

exploratory interfaces. VTK provide much of the functionality of existing visualization

Domain
Studies Biological Requi Spreadsheetg
Sequence equireme Interfac Requiremen for User
Analysis Analysis Design Analysis Interface
Specificatio
Time-series
Matrices and Requireme Interfac Requi
C ! quiremen
Algorithm Analysis Design Analysis Spreadsheets
Visualization Yy for Images
Web Site Usage Requiremen Interfac Requiremen Visual
Content Structur| Analysis Design Analysis — Languages
Analysis

Research Plan

New Domain Specific Studies

Existing Spreadsheets
(See Related Work)

12

| v ¥
Design and
Implementation ‘\ Analysis
\
\

\ Spreadsheet
\ Architecture Design

\ Spreadsheet
\ Implementation tel/tk
\
\/

Implementation

of Selected Applications

Evaluation

Validate Framewor|
by Applying to

Usability Analysis
via Scenario

Walk-throughs Vis Techniques

Figure 1.2: Research Plan for Spreadsheet for Visualization system. In the first phase,
we perform domain specific studies to gather requirements. For each new domain, we
also perform an interface design to capture interface requirements. In the second phase,
we perform an analysis of all requirements gathered in the first phase, and design and
implement the framework. In the final phase, we evaluate the framework and specific
applications using several evaluation methods.

13

systems.

In the final phase, we evaluate the framework and specific applications using several
evaluation methods. First, we implement applications for the domain-specific studies. The
implementations reveal the ease of use and the generality of our constructed tool. By
implementing these domain studies, we reveal whether the spreadsheet we designed and
implemented in phase two can indeed handle these domains. We also perform scenario
walk-throughs with specific domain tasks to see if the tool helps users in their data explo-
ration goals. We further validate our visualization system framework by examining a wide

variety of visualization techniques using our visualization model.

1.6 Overview

In this thesis, we show that the Visualization Spreadsheet is a powerful environment that
enables users to more effectively explore available information. Computer users care about
such a tool since it will help them interpret information and enable exploration tasks that
were previously impossible.

We designed, implemented, and evaluated a general visualization spreadsheet frame-
work that is applicable for many kinds of data. The contribution of this project are: (1) Un-
derstanding of when and how the Visualization Spreadsheet can be applied, (2) Understand-
ing of what user tasks are particularly suitable for the spreadsheet, and (3) Understanding
of a general visualization conceptual model that can be tailored to multiple data domains
and data analysis situations.

We also developed a novel information visualization conceptual model called the “Data
State Model” that helps end-users, visualization analysts, and designers. Our extensions
to existing information visualization models, which we needed to build the Visualization
Spreadsheet, also apply to general information visualization problems. We show how our
model describes a wide variety of information visualization techniques. This model under-

taken in this project allows domain experts to define new data types and data operations

14

and enables visualization experts to incorporate new visualizations, viewing parameters,
and view operations.

The remainder of this thesis is structured as follows. In Chapter 2, we describe past
and present research in fields related to visualization spreadsheets. In Chapter 3, we dis-
cuss the case studies and task scenarios. We analyze the advantages of the Visualization
Spreadsheet concept and abstract them into a set of principles. The case studies include
several interesting data domains, such as molecular biology sequence analysis, time-series
matrices, and algorithm visualization. We also include a detailed case study on the analysis
of content, usage, and structure of a large World-Wide Web site.

In Chapter 4, we define and describe the Data State Model, which is the visualization
framework we used in the implementation. We describe the interesting properties of our
framework, as well as how it can be used to classify visualization operators. In Chapter 5,
we describe the relationship between the Data State Model framework and the Data Flow
Model used in traditional data flow visualization systems. In particular, we show that
the two have equivalent expressive power in describing visualizations, but each have their
merits. In Chapter 6, we further validate our framework by classifying the operators in
a large number of visualization techniques using the Data State Model. In Chapter 7,
we mention how our systems are implemented, and describe their architectures. We also
discuss some of the implementation issued and lessons learned during implementation.

Chapter 8 contains concluding remarks.

15

Chapter 2

RELATED WORK

To construct a useful graphic, we must know what has come before and what is going
to follow.

—Jacques Bertin [15, p. 16]

In this chapter, we present work related to the concepts of visualization spreadsheets

and visualization systems in general.

2.1 Reference Model for Information Visualization

Visualization can be viewed as a transformation process that converts data values into
graphical views. In scientific visualization, many researchers and practitioners have exam-
ined the use of a data flow network for constructing visualizations [101, 43, 53]. Schroeder
et. al. [90] described a conceptual data flow model in the context of scientific visualization
for applying operations to generate a visualization. The model consists of a visualization
network that can contain multiple sources and sinks. Every step in the middle of the net-
work consists of filters that have inputs and outputs.

The traditional data flow model used in scientific visualization is insufficient for de-
scribing information visualizations. This is because information visualizations often have
a different set of requirements from scientific visualizations. Information visualization sys-
tems confront such questions as how to represent abstract data visually, what types of ex-
ploratory interaction to include, and how to structure this interaction. Because information
visualization deals with abstract data that do not have inherent spatial mappings, the rela-

tionship between the value and the view becomes much more complex. Therefore, certain

16

capabilities are critical, such as exploring different views of the data interactively, applying
operations like rotation or data filtering to a view or group of views, and comparing two or
more related datasets.

Some information visualizers have observed the intricate relationship between the view
and the value associated with that view. One early observation was made by Becker in [10]
that when using an interactive brushtiigchnigue with a group of scatterplots, the effect of
an operation on a data point appears simultaneously on all scatter plots in the other views.
They termed this a “coordinated” interaction. There is only one data set, but many different
views. This is a simple, yet-powerful, notion of view and value, where the views are always
tied to the underlying value. This binding is never broken. The advantage of coordinated
interactions is that the user has a very concise and clear model of how the system works.
The disadvantage is that the opposing intention is impossible, which is that the user may
just want to temporarily change one view, but not all of them. For example, the user may
simply want to select a group of data points in one particular view to highlight it to discuss
it outside the context of other scatter plots.

Later works explored the view/value relationship further by examining how view is
dependent on the value. For example, Lee and Grinstein [58] presented a conceptual model
for database visual exploration, which describes the analysis process as a series of value-to-
value, value-to-view, view-to-value, and view-to-view transformations. They also describe
the concept of generating metadata using database queries to aid in this process.

Chuah and Roth [33] extended Foley et. al.'s user interaction framework [38] by incor-
porating BVI (Basic Visualization Interactions), which is a more detailed characterization
of data filters in the context of information visualization. They also presented a basic clas-
sification taxonomy for BVIs (shown in Figure 2.1).

Tweedie [100] presented a data transformation model similar to [58], an interactivity

model that classifies the interactions based on the amount of control the user has over the

! In information visualization, brushing is a term used to describe a moving cursor that interactively specifies
the area of focus for the current user interaction.

17

object
create <

mapping attribute
gg::ao de transform ~~ shift
mappin
PRIng ™\ scale

set- constant

graphical 1 graphical- continuous
operations value \ graphical/
transform

: copy
— manlpulate/
objects ™~

non-continuous

delete
enumerate
create se
Basic express membershi
Visualization set delete set P P
Tasks operations

—— summarize set

other

add

L data delete

operations

derived
— attributes

— other

Figure 2.1: Chuah and Roth’s Basic Visualization Interaction taxonomy

process, and a state model similar to [33].

As we developed the Visualization Spreadsheet [30], we found that past models were
not sufficiently detailed for describing operators and interactions in the Visualization Spread-
sheet. We could not use Becker’s “coordinated” method in [10], because the tight coupling
of view/value completely disallows the view to operate independently of the value under-
neath, and we need this capability in the Visualization Spreadsheet. Lee and Grinstein [58]
describes mostly database interactions, and is not general enough for detailed visualization
interactions.

We were motivated by Chuah’s BVI framework [33], and explored to what extent this
taxonomy suits our needs. While the BVI model tied the interaction model with a state
model, the state model lacks detail to help capture domain-specific designs. For exam-

ple, it does not appear to handle operations with multiple semantics. The filter example at

18

the beginning of the introduction section suggests that we could interpret dynamic query
filters as either a value operation or a view operation. Under the BVI architecture, dy-
namic querying is classified as a graphical operation, which does not affect the underlying
data. Moreover, we discovered that the relationship between “set operations” and “data
operations” was unclear, and the semantics of view/value filtering (“shift” as defined in
Figure 2.1) is confusing in this model. The “graphical operations” subtree is more de-
tailed than other areas of the tree, which are less developed. The class of visual mapping
operators needs more examination.

In Tweedie’s framework, the data transformation model and the state model in her work
are at the high level of abstraction. Because of the high level of abstraction, her model does
not deal with domain-specific interactions in a detailed way. For example, her model could
not be used to evaluate information visualization systems that have multiple data sources
and views.

Most importantly, past models also failed to unify the interaction model with the visu-
alization process. For example, the visualization pipeline as described by Stuart Card [24]
is a rich design space that has yet to be unified with a complete interaction model. As
another example, Chuah and Roth’s work, which unified the low-level keyboard/mouse
interactions, did not incorporate this visualization pipeline.

We need a model that describes how the graphical, data, and control states are affected
by the operators. Here we are trying to extend past work by unifying a taxonomy of oper-

ators with the visualization pipeline that uniquely solves the above problems.

2.2 Spreadsheet

Spreadsheets are one of the few true success stories among systems for end-user pro-
gramming—that is, systems designed to allow non-programming users to create compu-

tations of their own designr—Scott Hudson [48]

People have long used tables to organize information. More recently, the invention

19

of the VisiCalc numerical spreadsheet in 1979 fueled the adoption of personal comput-
ers [21]. The spreadsheet naturally extends the tabular organization of information by
allowing the user to specify and interact with the contents and the interconnections of the
cells. The spreadsheet paradigm has been suggested in earlier work for domains such as
images, volume visualization, and financial data. Here we review the literature related to

spreadsheet-based visualization systems.

Tabular Organizations Mathematicians and statisticians use tables of sine, cosine, and
confidence probabilities. Statisticians have examined visualizing higher dimensional point
sets by a table of projections. For example, one multivariate analysis tool is the scatter
matrix, which is a table of scatter plots (see [34]). Visualization researchers have applied
similar ideas, but in different ways, to produce a table of views of a single dataset [103, 6].
In the scatter matrix, a statistics researcher may mark a datum in one scatter plot, and the
program would then highlight the corresponding point in all other scatter plots. These
approaches represent a largely static tabular approach to the data, but some interactivity is

present, such as rotations, translation, and zooming.

Spreadsheets for Visual Programming Spenke and Beilken’s PREPLEX system uses
constraints and a spreadsheet interface for logic programming [92]. Spreadsheet cells on
fixed grids are Prolog variables and constrained using Prolog predicates. PREPLEX is
based on earlier suggestions in the logic programming community [94, 102, 56].

There are many visual programming data-flow language systems, such as Forms/3 [106,
45] and Fabrick [51]. Forms/3, implemented using the Garnet constraint system [68], uses
cells that are free-floating and attached to graphical objects such as line boxes and buttons.
Textual formulas or programming statements can then be entered as cell values in a dialog
box. Even though it has been called a “spreadsheet”, its similarity to spreadsheets is limited
to data propagation and textual formulas, and therefore is more accurately termed “form-

based” [45, page 4].

20

Spreadsheets for User Interface Design Two notable systems designed for user inter-

face specification are the Penguims system [49, 48], and the C32 spreadsheet [67] in the
Garnet toolkit [68]. The purpose of both systems is to enable user interface programmers
to specify complex constraints among user interface elements by using equations in cells.
The Penguims system does not strictly conform to a grid, but instead organizes cells into
related stacks. In both systems, the spreadsheet is used to specify the user interface, but not

to display the result, which appears in a separate window.

User Interface and Information Visualization Techniques There are several distortion
presentation techniques based on a tabular layout [60] such as Document Lens [84], fish-
eye views [39, 87], stretching rubber sheets [88]. Many of these techniques have been
applied directly to a tabular organization to provide global context viewing and detailed
focused zooming, e.g. Table Lens [81]. As another example, DataSpace [6] used 3D lattices
and cone trees to lay out images in 3D space.

In addition, Magic Lenses and see-through tools [95, 16, 17] are relevant, since they can
provide zooming and other interactive filtering capabilities. For example, a debugging lens
may be placed over the spreadsheet to reveal dependencies between cells. Other examples
of relevant user interface techniques include Pad++ [12, 11], which can be used to organize
several spreadsheets at different depths.

Spreadsheets are also related to the area of constraint languages and systems [68, 20,
19, 18, 71, 110]. Constraints are relationships that are declared once and then maintained
by the system. Constraints are relevant to spreadsheets since values of cells are constrained
by equations. Spreadsheets use single-direction data propagation, thus can be viewed as
one-way constraintystems. Although not in common use, spreadsheets can be built using

multi-way constraintswhere data propagation occurs in both directions [94].

Spreadsheets for Images Past spreadsheet work has focused mostly on data that can

readily be visualized with a straight mapping, e.g. numbers, or images. The first spread-

21

sheet that allows the display of images in a cell is ASP [75], but it contains no advanced
capabilities. The “Spreadsheets for Images” (SI) system [61] and the Interactive Im-
age Spreadsheet (1ISS) system [44] examine ways to profitably extend the spreadsheet
paradigm to images. For example, in [61] Levoy shows how a spreadsheet can be used
to examine an image processing pipeline, and in [44] Hasler shows how many image
processing tasks can be efficiently organized in a spreadsheet system. “Spreadsheet for
Images” [61] mentions the importance of data flow in spreadsheet. Levoy also briefly men-
tions volume visualization in the context of his tool. Most of the interactions in his tool are
implemented as Tcl [74] commands, with certain geometric operations implemented using
direct manipulation. These two systems illustrate some of the capabilities made possible

by extending the spreadsheet paradigm to other domains.

Visualization Systems Interest in visualization-based user interfaces has blossomed in
the past few years, with systems developed for application areas from hypertext informa-
tion to geology, molecular biology, file system structure, and animal behavior patterns.
Large visualization systems contain modules that users can hook together into a data-flow
network to create visualizations. These systems offer many advantages for rapidly build-
ing applications. The success of these systems attests to the utility of modular, easy-to-use,
extensible tools for visualization tasks. Examples of such systems include ConMan [43],
AVS [101, 8], IRIS Explorer [53], IBM Data Explorer [50, 1], and Visualization Toolkit
(VTK) [89, 90]. In general, existing visualization systems are designed for visualizing a

single dataset at a time.

Visual Interactive Spreadsheets Past work in the visualization community has produced
interactive tables for specific applications, and include systems such as TableLens [81],
FOCUS [93], a graphical financial spreadsheet called FINESSE [104]. The TableLens
system [81], designed for browsing tabular numerical information, looks much like a con-

ventional spreadsheet with bar graphs. The FOCUS interactive table, modeled after Table-

22

Lens, allows sophisticated navigation via sorting and hiding of information contained in
the table, but lacks editing capabilities [93]. FOCUS is similar to TableLens, with the main
difference between the two in the interaction methods. TableLens uses a fish-eye layout
strategy for display, whereas FOCUS uses a dynamic querying mechanism as the primary
interaction method. FINESSE is a prototype system designed for financial data, where the
cells are on fixed grids and contain four representation primitives—Iline plots, 3D surface
plots, heat maps, or 3D bar graphs.

The NoPumpG prototype [107] system abandons the fixed tabular grid of conventional
spreadsheets, so all cells are free floating. It allows the specification of line plots based on
sliders attached to variable values [107]. Itis compared to a spreadsheet because of its data

dependency capabilities.

Analysis of Related Spreadsheet ResearchThe Visualization Spreadsheet is a natural
extension of the above ideas. Our work focuses on the area of information visualization,
and the issues that arise prominently in that domain. We build upon the experiences of other
spreadsheets mentioned above, and include a variety of different visual representations and
operations useful for interacting with the visualizations.

We build upon the experience of numeric spreadsheets. We explicitly keep the nu-
meric spreadsheet features of tabular grid layout, operators that specify operations and
relationships between cells, and automatic recomputation of dependent data sets. We ap-
ply these concepts to visualization so that each cell can contain an entire visualization,
which includes the underlying abstract data sets, the sequence of data transformations and
the associated viewing parameters.

The image spreadsheets (IISS and Sl) focused on images, and the associated image
operations. Images, however, are a straight forward mapping from value to view. In a
sense, the view is the value, and there is very little discernible differences between the two.
Therefore, the operator model for an image spreadsheet is limited to only image processing

operations in comparison to a full-blown visualization system. We take a similar approach

23

to the Sl system in using Tcl as the command language, but we focus on the tasks and
operation associated with information visualization.

Our work is most like FINESSE [104], but differs from FINESSE because our sys-
tem allows animation, dynamic visual filtering [32, 2], and dynamic mapping of variables
to representation. FINESSE has a limited number of cell primitives, whereas our system
allows a wide variety of geometric primitives, since our system is built on top of the Visu-
alization Toolkit (VTK) [89, 90]. Using a command language, our system also allows users
to construct their own visual representations of their data. FINESSE focuses on financial
data, whereas our system can be tailored to any information visualization tasks.

Lastly, in contrast to the visualization spreadsheet, existing large visualization systems
are designed for viewing a single visualization at a time. In contrast to spreadsheet systems,
in data flow systems, a large amount of screen space is devoted to the operators, rather
than the operands. We believe that for many applications spreadsheets can provide better

interaction.

2.3 Summary

Here we reviewed prior work related to information visualization systems in general and in
particular the applications of the spreadsheet concept to visualization-related areas. Typ-
ically, information visualization is accomplished by carefully examining the task require-
ments and then designing an application that fits the needs of the user. However, not all
needs can be anticipated ahead of time. The exploratory nature of many tasks suggests
that we need to construct an environment that provides a set of data and graphic processing
primitives that users can employ as needed. The Visualization Spreadsheet is geared to
achieve a version of this environment.

A number of researchers applied the spreadsheet concept selectively to a few data do-
mains, mostly images, and mentioned its possible wide applicability to visualization tasks.

Our review indicates that work is needed to define the visualization spreadsheet’s advan-

24

tages and uncover frameworks for implementing the spreadsheet concept. By examining
the structure of sensemaking, we seek to show the inherent capacity of the spreadsheet

metaphor for supporting user tasks.

25

Chapter 3

ILLUSTRATED PRINCIPLES, SCENARIOS AND DETAILED
CASE STUDY

The basic trick in user interface design is to find a starting place that is somewhat
recognizable, and then help the user grow into the strongest set of tools possible.

—Alan Kay

In this chapter, we show the principles underlying the power of the spreadsheet paradigm
by presenting a set of scenarios and case studies of the usage of our visualization spread-
sheet system. We show how the Visualization Spreadsheet afford the construction of “what-
if” scenarios, by applying different operations to the cells. We illustrate the spreadsheet
using several data domains. We show how our spreadsheets enable users to compare vi-
sualizations in cells using the tabular layout. Users can use the spreadsheet to display,
manipulate, and explore multiple visual representations for their data. Just as a numerical
spreadsheet enables exploration of numbers, a visualization spreadsheet provides a frame-
work for exploring large and complex visual information. Structuring user interactions
using a spreadsheet paradigm creates a powerful tool for information visualization.

In Section 3.1, we describe the original molecular biology data domain that motivated
our research. Then in Section 3.2, we describe other data domains used in our examples
throughout the thesis. In Section 3.3 we use examples to illustrate a set of principles that
make spreadsheets a powerful paradigm. In Section 3.4, we present a detailed case study
of using the spreadsheet to analyze an abstract data set—the content, usage, and structure
of a very large Web site. We show how the principles apply in this specific data domain.

Sections 3.1 and 3.2 are detailed descriptions of the data domains that are needed to

26

understand all of the details in Section 3.3, but are not necessary for understanding the rest
of the thesis. Also, Section 3.4 is an extended example of these principles, and is valuable,

but not essential for understanding the rest of the thesis. Some readers may choose to skip
the detailed description of the data domains and the detailed case study on web analysis,

and read the essential Section 3.3 on illustrated principles.

3.1 Oiriginal Data Domain: Genetic Sequence Similarity

Biological Sequence Analysis Modern biology has evolved to the point where the un-
derlying mechanisms of biological organisms can be understood by digging down to the
genes that control how cells function. These mechanisms play an important role in our
lives. Indeed, our very existence depends on genes passed from one generation to the next,
because the inherited genes encode the proteins that are necessary for our survival. These
proteins fold in complex physical structures, which help to define their functions in the
complex chemical reactions that occur in our body. Over many generations, the functions
of the proteins in turn affect the encoding of the genes through the evolutionary mecha-
nisms of mutation and natural selection. This four-way interaction is depicted in the upper
part of Figure 3.1. Because organisms are related through evolution, genetic material from
different organisms often share common functions. Molecular biologists seek to determine
and understand the connections between these evolutionary relationships.

Traditionally, painfully detailed lab experiments are designed and carried out to de-
termine the function of the proteins. This is still a relatively slow process. One method
used to improve protein function determination is through sequence similarity analysis
using computers—the comparison of a single sequence against the databases of known
sequences. Sequence similarity algorithms are a well-developed aspect of computational
molecular biology research and employ dynamic programming and heuristic search tech-
niques. These algorithms identify similar regions (also called alignments) between se-

guences. These alignments provide clues to possible protein functions for the unknown

27

Protein e Structure

I

Gene 4= rynction

M Textual
DNA Similarity . <F Multivariate
Sequence Algorithm \\ggyy Reports
ACGTA...

Figure 3.1: Molecular biology seeks to determine the interaction between gene, protein,
protein structure, and protein function. Similarity algorithms provide a shortcut for finding
possible protein functions for an unknown sequence.

input sequences, reducing the need for painstaking lab work [41]. The information that a
computer provides in a few hours would otherwise take months of lab work.

Ironically, as more information about sequences becomes available, potentially reduc-
ing the need for laborious laboratory work, the task of analyzing the sequences on comput-
ers becomes increasingly difficult. BLAST [3] is one of the most popular similarity search
algorithms in use today, but its running time is approximately proportional to the size of
the database. In the past two decades, molecular biologists who conduct large-scale genetic
sequencing projects are adding to the databases by using automated DNA sequencing ma-
chines. As molecular biologists discover new genes of various organisms and the functions
of corresponding proteins, the information is being cataloged in the form of nucleic acid
sequence databases for genes, and amino acid sequence databases for proteins. GenBank,
the primary repository for DNA sequence data, contains roughly 499,000,000 nucleotides
in 744,000 sequences as of April 1996, and is doubling every 1.3 years [70, 13]. The rate of
increase will further accelerate as large projects such as the Human Genome Project [73]
and theArabidopsis thalianaGenome Project gain more momentum [97]. Even using
computers, keeping pace with the analysis of these data is a difficult task for biologists.

This data domain has a number of properties similar to many datasets we encounter in

28

information visualization: (1) The similarity reports are highly textual, and (2) the similar-

ity relationships between items are an important visualization problem.

AlignmentViewer We began working on the Visualization Spreadsheet through our col-
laboration with molecular biologists who are interested in exploring plant DNA sequences.
The biologists often compare a given sequence against a database of known sequences us-
ing similarity search algorithms, which produce reports indicating regions of similarity.
These regions of similarity are also called “alignments”. These reports can be hundreds of
pages long for a single sequence. To help the biologists use these reports, we developed the
AlignmentViewer system that visualizes the most prominent data [31, 32]. The following
is a concise description of some of AlignmentViewer's features.

The basic 3D visual representation of this data consists of comb-like glyphs as shown
in Figure 3.2 that show the different regions of similarity, the degree of similarity, and
where the regions occur in the input sequence. Each alignment is associated with twelve

variables, some of which are listed below:

e Position The position in the input sequence where the alignment starts.

e Frame or frame number The frame number defines how the DNA sequence is
translated into a protein sequence. DNA sequences are composed of a four letter
alphabet. Three DNA bases encode praein residugalso called aramino acid.

A DNA sequence can encode a protein sequence starting from the first, second, or
third position. The starting point determines how bases are grouped into residues.
When comparing a DNA sequence to a protein sequence, each encoding is tried

separately.

e Similarity Scoresand Residue Pair ScoresSimilarity algorithms such as BLAST
compute the similarity score of each alignment [3]. For each pair of residues in an

alignment, BLAST looks up the entry insubstitution matrixand gets theesidue

29

Figure 3.2: Several alignments represented in AlignmentViewer: X-axis is the position
along the input sequence, Y-axis is the similarity score, and the Z-axis is the frame number
of the alignment.

pair score which is a measure of the match strength. A positive entry corresponds
to a good match, and a negative entry corresponds to a bad match [35]. BLAST then

sums all residue pair scores in the alignment to obtain the similarity score.

An alignment also includes a matching vector. This vector, represented by an array of
integers, contains the residue pair scores of the matches starting from the first matching
position. Therefore, an alignment can be described by the above twelve variables, plus a
matching vector.

AlignmentViewer uses three spatial axes and one temporal axis. Any of the twelve
variables can be mapped to any of the four axes. The temporal axis allows the user to

construct animations with respect to the temporal variable [32]. Within the 3-dimensional

30

spatial image, the matching vector is represented by a comb-like glyph. The lengths of the
teeth of the comb correspond to the integers comprising the matching vector.

The user can explore the data further by such means as interactively rotating, translating
or scaling the representation, following a hyperlink to the textual report, mapping the data
into a different geometric representation, animating the information over a variable, and
filtering the data. The report data has many variables, and only a small number of them can
appear in a single 3D visualization. AlignmentViewer mitigates this problem by enabling
the user to selectively map the data dimensions onto 3D space, and allowing dynamic
filtering of this data. In addition to dynamic query capabilities, we also support several

types of animation along any of the dimensions, enhancing the display to 4D.

Motivation: Multiple Visualizations Biologists found this visualization technique ex-
tremely useful in the discovery of biological artifacts [31, 32]. AlignmentViewer allowed
them to find solutions to questions that were hard to answer, or questions that no one
had thought of asking before. A large number of the questions involved the relationship
between two or more similarity reports. The AlignmentViewer’s visual representation en-
abled biologists to compare visualizations of related sequences, and the biologists found
this ability useful. We noticed that the biologists often put two visualizations side-by-side
on the screen to compare and contrast the visual features. They also frequently applied
the same operation on two visualizations simultaneously, such as rotating to similar ori-
entations, or applying animations to both at the same time. However, trying to do this
simultaneously to two applications on the screen is difficult and cumbersome.

While our information visualization techniques provided biologists with the tool to
view genome data in new and novel ways, a new paradigm was clearly necessary to take
them to the next level of exploration. They have found the ability to compare visualizations
for related sequences useful, and have specifically requested the ability to apply a number
of different operations to the visualizations simultaneously. Our experience with the biol-

ogists motivated us to think about how we could support such behavior in a more general

31

environment, where users can perform these tasks efficiently and productively.

First Spreadsheet: Spreadsheet for Similarity Report Our first spreadsheet system
called “Spreadsheet for Similarity Reports” (SSR) was built for visualizing genetic se-
guence similarity reports, which grew out of the AlignmentViewer system mentioned above.
We collaborated closely with molecular biologists who can interact with us frequently. This
allows us to directly support their information analysis tasks. This close collaboration has
allowed us to directly capture many of the requirements of building a visualization spread-
sheet for this data. For example, this spreadsheet uses direct manipulation controls with
menus and buttons, which specifies particular operations to be performed on the data sets.
It also includes a similarity processing engine that is used to generate similarity data on-

the-fly. We discuss more details of this system in Section 3.3

3.2 Other Data Domains

After our first system, we built our general visualization spreadsheet system called “Spread-
sheet for Information Visualization” (SIV, pronounced “sieve”). SIV is built on top of a
multi-platform interpreted development system combining Tcl/Tk and VTK [90], which
provides an object-oriented architecture with many pre-built visualization objects.

In this section, we briefly describe these more information domains on which our test
studies are based. Each of these domains will illustrate specific problems our research
group encountered in information visualization analysis tasks. In Section 3.3 we will fur-
ther demonstrate the usage of the systems in these domains, and at the same time, illustrate
the principles behind how the spreadsheet paradigm facilitates information visualization
tasks. By using a task-centered approach, we illustrate concretely the principles that under-
lie how the SIV Visualization Spreadsheet enables users to solve problems in information

visualization.

32

3.2.1 Time-series Matrices

Besides similarity data, a time-series of matrices is another type of data that presents chal-
lenges of the type commonly encountered in information visualization. Two major difficul-
ties arise in dealing with time-series matrices. The first difficulty is to identify differences

in the matrix values between successive matrices. The second difficulty is that there are
many visual representations that can be applied. For example, the “cityscape” representa-
tion shows the matrix values as 3D bars, whereas the “heatmap” representation show the
values as colored tiles [99]. Different representations extract different features, so an easy
way to view and explore these several representations simultaneously is needed. Fortu-
nately, the spreadsheet environment deals well with these difficulties.

We encountered two matrix series in trying to solve problems with molecular biologists,
who are interested in studying the effect of mutation and natural selections on genetic
sequences. Natural selection accepts certain mutations, which result in the substitutions of
one protein residue by another residue. For a mutation to be accepted, the protein usually
must function in a similar way to the old one, presumably due to chemical and physical
similarities. PAM (Point—Accepted Mutations) [35] and BLOSUM (BLOcks SUbstitution
Matrix) [47] are two matrix series with each matrix representing substitution probabilities
at a given evolutionary distance. The two matrix series were calculated from different sets
of information sources. An elemenf;; of a matrix specifies the relative probability that
the amino acid$ andj will be substituted after a given evolutionary interval. A positive
entry specifies an accepted mutation that is more likely than random, whereas a negative
entry specifies less likely than random.

The detailed nature of this series of matrices results in a large amount of informa-
tion [35]. For example, biologists use these matrices in the calculation of similarity be-
tween sequences. Unfortunately, the computational molecular biology community have
not applied visualization techniques to these matrices. To be sure, biologists want to under-

stand the nature of these matrices because of their mathematical and biological complexity.

33

The computational molecular biology community seeks to understand these matrices, be-
cause the choice of which matrix to employ is dependent on the situation. We have used

the SIV system to try to gain a better understanding of these matrices.

3.2.2 Algorithm Visualization

A third domain we examined is algorithm visualization. In the past, algorithm visualiza-
tions have used animation techniques and sequential layouts to show successive steps. In
Section 3.3, we show how a spreadsheet can be used to easily construct both animations
and tabular layouts of steps for 3D Delaunay triangulation. We also show how we can uti-
lize multiple visual representations to enhance the comprehensibility of the visualization.
We use this algorithm as an example of how algorithm visualization can be supported in
our SIV Visualization Spreadsheet.

The algorithm generates 3D random points using random number generators, and then
forms tetrahedra from the points using Delaunay triangulation. Delaunay triangulation
has been used in scientific and information visualization domains to generate structures
around points. 2D Delaunay triangulation is an optimal triangulation and has a number of
interesting properties, such as maximizing the minimum angles. However, 3D Delaunay
triangulation is much more complicated than 2D, and is a more complex algorithm. Even
though the problem of 3D triangulation is well studied, it is still non-intuitive for many

people. So visualization techniques can help in gaining better insights into the algorithm.

3.3 lllustrated Principles

In this Section, we will derive and define the principles of the Visualization Spreadsheet
concept by demonstrating SSR and SIV in the context of three data domains as described
above—genetic sequence similarity, time-series matrix visualization, and algorithm visu-

alization.

34

3.3.1 Derive Comparison Data Sets

In the data exploration process, much user interaction involves applying operators to data
sets. The Visualization Spreadsheet facilitates these interactions by letting users explore
“what-if” scenarios in a structured environment. For example, users can copy and then
modify the contents of a cell, or perform an operation on two cells and put the result in

a third cell. Whereas the application of operators has largely been viewed as a sequential
process in other environments, the spreadsheet environment is capable of supporting non-
sequential spontaneous explorations.

The spreadsheet paradigm provides a simple interface for performing value operators
that derive new data sets, such as subtraction and addition. Let’s illustrate using the algo-
rithm visualization example. Figure 3.3 shows an algorithm visualization of 3D Delaunay
triangulation, which forms tetrahedra from a set of 3D random points generated using ran-
dom number generators. Here the columns show the results of the algorithm after 5, 6, 25,
and 50 steps, from left to right respectively. Row 1 shows the point set using 3D scatter
plots. Row 2 shows the transparent tetrahedra after performing 3D Delaunay triangulation.
Row 3 represents the tetrahedra using edges between vertices.

In this example, we show how the Visualization Spreadsheet can be used to quickly per-
form operations between successive steps of the 3D Delaunay triangulation. For example,
by adding the geometric contents of cells together, the user can aggregate representations
together to create new representations that show differences between the steps of the algo-
rithm. For instance, the user now wishes to examine the intricate relationships between the
different results from successive steps. To do this, she adds several cells together to form

new visualization:

AddCell 4132312221
AddCell 4 2 33322322
AddCell 4 334332423

The first command adds the geometric contents in &lks, 2 2, and3 1, 3 2

35

= 0000000000000 Soreedshest forVisualicabion 0000000000000 [-

Command: || |

nddcell 4.2 232233 32 Sprea’déheeﬁ)

nddcell 4 3 2 4 2334 33 TOR

Bddc=11 4 4 34 35332 31 L Visuallzation
~ 7 —

=] i

Figure 3.3: The columns visualize the outcome of the algorithm after 5, 6, 25, and 50 steps,
respectively. The last row shows the result of several addition operations (the formula
syntax is tommand result operands.):

AddCell 41 32312221;

AddCell 42 33322322

AddCell 43 34332423

AddCell 4.4 34333231,

36

FT

Figure 3.4: Generating cells¥, 4.2, and 43 in the Delaunay Triangulation example.

together and put the result into cdll 1. The other two commands follow the same pattern

and generates results for cells2 and4_3. The result of these operations are shown in
Figure 3.4. The user sees that the difference between each successive step of the generation
of the 3D random points produces a larger polyhedron. This prompts the user to issue an

additional command to add all of the triangulations together to form a new visualization:
AddCell 4 4 3 4 3.3 3 2 3 1,

See Celld_4 in Figure 3.3 for the result of this command. The command adds the geo-
metric contents in all of the cells in Row 3 and produces a single content and puts into the
bottom-right celd_4.

Cells4 1,4 2,4 3 shows differences between steps of the algorithm. Cell
shows the difference between step 5 and 6, whete@sshows the difference between
step 6 and 25. We can see where new points were added into the point set, as well as

the structural changes in the convex hulls between steps. IMCe|lwe see the convex

37

hull after 25 steps is almost completely embedded inside the convex hull obtained after
50 steps. We see the blue surfaces and vertices where the convex hull has not changed.
Cell 4_4 shows the aggregate of adding all of the stick models in Row 3 together. These
representations arise after many iterations of trying different combinations of the points,
sticks, and surface representations of the data in Row 1, 2 and 3.

We see that each successive step indeed generates a larger and larger polyhedron. This
discovery makes an observation about the Delaunay triangulation algorithm—with each
additional point added to the set, we can only increase the size of the resulting triangulation,
but not decrease it. This is a well-known result in computational geometry.

Interestingly, these algebraic operations can take on different semantics at multiple
levels. At the low level, we can capture the cell images and perform image subtractions
by subtracting corresponding pixels. At the mid level, as shown in the above algorithm
visualization example, we can perform geometric object algebraic operations. We can
define objects and algebraically add them to or subtract them from the scene. At the high
level, we can perform algebraic operations based on the particular data domain semantics.

We encountered the need to examine domain semantics for operators in the domain
study with molecular biologists exploring DNA sequences. In the genetic sequence simi-
larity data domain, the spreadsheet paradigm also provides a simple interface for perform-
ing operations such as data set subtraction or addition. Molecular biologists want to locate
differences between several algorithm runs with different algorithmic parameters. In this
example, the values are the sets of alignments, and we define two alignments to be equal if
they share a region. Figure 3.5 shows a snapshot of an example session that is the result of

a three step analysis:

Step 1 We load each column with data sets generated from the same input sequence by vary-
ing a parameter that is used to specify the sensitivity of the algorithm with respect to
distantly-related versus closely-related sequences. We decrease the distance from far

to near in columns 1, 2, and 3, respectively.

38

=] 51V 4.0 Beta [

= i P

Figure 3.5: A screen snapshot of the SSR system after performing three operations. (Step
1) Initially, we loaded each column with a slightly different, but related, dataset=£

Bl = C1 = D1, A2 = B2 = C2 = D2, A3 = B3 = C3 = D3). (Step 2) We
selected Rows, and then subtracted cell3 from it (B1 = B1 — A3, B2 = B2 — A3,

B3 = B3 — A3). Cell B3 contains the empty set as expected. (Step 3) We changed Row
C and D to show different views of RowA. The views show different sets of variables
using a different representation, thus increasing our ability to see other dimensions of the
multivariate datasets simultaneously.

39

Step 2 We select Row and then subtract cell3 from each cell in that row. Thug31 =
Bl — A3, B2 = B2 — A3, B3 = B3 — A3. Cell B3 contains the empty set
as expected. The cell values are alignment sets, and we define two alignments as
equal if they share a region. Celisl and B2 show alignments found by using far

evolutionary distance parameters, but not by the near uséd.in

Step 3 At this point, cells in Row' andD still contain the same data sets as the correspond-
ing cells in RowA. We change the variables that are represented on the X, Y, and Z

axis (the variable-to-axis mapping), resulting in different views of the datasets.

In this example, the visual subtraction allows the user to see the difference between the
datasets.

Within the domain-specific semantic level, sometimes several possible definitions exists
for the operator. For example, the difference operator above is only one of the three possible
interpretations. We can actually define three different types of equality between alignments,
resulting in three difference operators [30]. The three equalities are name, overlap, and
exact. In name equality, two alignments are considered equal if they occur in the same
database sequence. In overlap equality, the alignments must also share an overlapping
region. In exact equality, the alignments must share the same exact region. Likewise,
high—level algebraic operations in other domains should rely on the specific semantics of
those domains.

With many data domains, the comparison operations are set algebraic rather than nu-
meric. For example, instead of having negative numbers, we have the existence of set
membership. An additional operator is set intersection. For instanee creates a new
set of items inA except those that are alsoih In a numeric spreadsheet, negativity is of-
ten represented using a negative sign, coloring the item red, or putting the number inside of
parentheses. For a task—specific operation in the Visualization Spreadsheet, we can define
visibility, colors, or special icons to represent these different set memberships.

The ability to generate comparison data sets proves important in exploring the dif-

40

ferences between related data sets. If we know the domain semantics, we can apply this
spreadsheet principle to enable users to algebraically explore differences between data sets.
The addition and subtraction operation shown here typify the case of comparing two sim-
ilar, but not identical data sets, something of interest to researchers in many fields. The

spreadsheet approach makes such algebraic manipulations straightforward.

Spreadsheet Principle 1Applying algebraic operators between
cells derives comparison data setshich enable comparison tasks

to be carried out precisely in the Visualization Spreadsheet.

3.3.2 Apply Operators in Parallel

One common, but equally important, interaction applies direct manipulation operations
such as rotation, translation, and zooming. In a spreadsheet environment, often we want
to be able to apply the same operation to multiple cells simultaneously. We have found
this feature to be extremely useful for comparison tasks. For instance, the user can select
the first row in Figure 3.3, then perform rotations simultaneously on all of the cells in that
row, giving a rotationally—coordinated view of the data. Scatter plots in the same orienta-
tion provide correspondence between the points in different cells. Figure 3.6 illustrates an
example of the parallel application of operators. This feature is useful in this situation be-
cause we want the pictures to be in similar orientations to provide correspondence between
the points in different cells. In general, we have found the end user’s parallel application
of operators across cells extremely useful.

For example, in the time-series matrices example, understanding the differences be-
tween the matrices requires visually comparing a number of different matrices simultane-
ously. In Figure 3.7, the first, second, third, and fourth rows of cells visualize the PAM40,
PAM120, PAM250, and BLOSUMG62 matrix, respectively. Propagating view changes in
parallel to multiple cells proved highly valuable in this data analysis situation. By selecting

a row, we can compare the various visual representations in the same orientation. Alter-

41

Time

¥

Figure 3.6: An example of the parallel application of direct manipulation operations to
multiple cells simultaneously.

42

- Gereadshest for Visuslimstion 0[]

Command: || |

Eource xumat.ops

Spreadshest |

GetValue 2_4
paml 20cube
RemoveValue 24 paml20cube

TOF {
. VisuallZation
SubtractC=ll 3 4 3 1 & -~ =

=

Figure 3.7: The screen snapshot shows visualizations of protein residue substitution proba-
bility matrices of various evolutionary distances. The first, second, and third rows visualize
matrix 40, 120, and 250 from the PAM matrix series. The fourth row visualizes matrix 62
from the BLOSUM matrix series. The first column uses a cube representation that maps
positive matrix values to the volume, height, and color attributes of the cubes. The second
column uses a carpet plot that maps values to the height and color of a 3D surface. The
third column uses a bar representation that maps values to the length, height, and color at-
tributes of the bars. The fourth column shows various representations in different rotational
configurations.

43

natively, we can select a column and compare different matrices using the same visual
representation.

Besides algebraic operators and simple scene operations, we have found that other op-
erations, such as loading a data set, animating over a variable, and dynamic query filtering,
are useful under this principle. For example, by selecting a column of cells, the user can
apply an animation operation to those cells simultaneously. The animation tool provides
accumulative, or sliced animation over any variable [32]. A synchronized animation can be
performed on a group of cells simultaneously. In Figure 3.5 for example, suppose we are
interested in the distributions of the lengths of the alignments, so we animate the cells over
the length variable. Animation shows the extra alignments in £2kre short alignments
when compared to the alignmentsAn.

As another example, the user can apply a data filtering operator across a row of data
to cut out unwanted data points. As a concrete example, in Step 1 of our sequence sim-
ilarity example in Figure 3.5, we parallelly load the data sets by first selecting a column
by clicking on the column button, and then applying a load-dataset operator to all the cells
in that column. In Step 2, we parallelly subtract Céll from Row B by first selecting
Row B and then applying a subtraction operator to all the cells in that row. A filtering tool
enables the user to explore subsets of the data. When the user interactively adjusts sliders
controlling each variable, the view is updated in real-time. Using the filtering tool, closer
inspection reveals that the short alignmentsiinare between 11 and 29 residues long.

Distributing a single operation across a group of data sets is a common interaction in
data exploration. We speed up users’ tasks by automating the chore of applying operations

to a large number of cells.

Spreadsheet Principle 2The Visualization Spreadsheet easily af

fordsapplying operators in paralléb a large group of cells and data

sets.

44

3.3.3 Extract Multiple Visual Features Simultaneously

Users of the spreadsheet can also use the spreadsheet to compare different visual represen-
tations. For a given data type, we can often choose from many different visual representa-
tion techniques. Often, a technique contributes to the finding of one visual feature, while
another visually extracts a different visual feature. Fortunately, the spreadsheet environ-
ment assists in the organization and display of various visual representations. Because our
system can be easily extended to handle new techniques via command modules, it allows
us to quickly experiment with and compare several representation techniques. Here we
illustrate this flexibility in all three data domains.

The algorithm visualization of Figure 3.3 shows several different visual representations
of a 3D Delaunay Triangulation. Row 1 represents the point set as 3D scatter plots, showing
the spread of the points quite well. Row 2 shows the same data using transparent tetrahedra
after 3D Delaunay triangulating the point sets. Through interactive rotation, this represen-
tation gives a better view of the relative placement of the points. It also shows the convex
hulls of the point sets, and how the hulls change between steps of the algorithm. Row 3
represents the Delaunay triangulation as edges rather than tetrahedra, thus giving a better
view of the interior structure of the triangulation.

Our SSR sequence similarity spreadsheet also allows changing of visual representation
via a mapping tool. In Figure 3.5, the cells in R@wand D contain the same data sets as
the corresponding cells in Row, but we changed the mapping in Réwand D to show
different variables of the similarity report. In this organization, the cells in a given column
represent the same value; however, each row offers a different view of the data. The ability
to map different variables to different axes in different cells improves a user’s ability to see
more variables simultaneously. In this spreadsheet, a click-and-point interface controls the
operations. The user loads the columns with data one column at a time, and changes the
mapping of the data of each row using the mapping tool dialog box. We implemented the

mapping tool as a pull-down menu for each axis.

45

Exploring multiple features is also important in the domain of time-series matrices.
By constructing several modules for different visual representations of matrices, we used
our spreadsheet to answer specific scientific questions on the amino acid substitution time-
series matrices. In Figure 3.7, the tabular layout shows different visual representations in
different columns. The values in the cells are the same across each row, but we varied the

visual representation to bring out different features of the data set.

Figure 3.8: Discovering novel patterns using multiple visualization representations in the
time—series matrices example.

We discovered several novel patterns in these matrices. In Figure 3.8, the first column
uses a cube representation that maps positive matrix values to the volume, height, and color
attributes of the cubes. This representation shows the interesting variation of the diagonal
entries more clearly than the other representation methods. The entry represented by the
orange cube varies more than any other entry.

The second column uses a “carpet plot” that maps values to the height and color of a
3D surface (using a rainbow colormap with negative entry mapped to red). The carpet plot
technique shows that the matrices have different ranges of values (the colors get brighter
and brighter from top to bottom).

The third column uses a bar-plot representation that maps values to the length, height,

46

and color attributes of the bars. The bar-plot technique makes comparing a specific entry
from matrix to matrix easy, and shows the overall decreasing trend of most off-diagonal
entries.

Our experience shows the elegant organization of the spreadsheet allows interesting
combinations of different visual representations of the underlying data. Users can compare
and visually extract different features from the different representations. The spreadsheet

environment equips users with the necessary tools to explore the representation space.

Spreadsheet Principle 3Users can represent data sets using several

different visualization representation techniques, which enable the

\3”

to extract multiple visual features simultaneously

3.3.4 Create Analysis Templates

The spreadsheet enables users to create templates to reliably repeat often-needed computa-
tions without the effort of re-development or coding. This advantage—evidentin numerical
spreadsheets—translates easily into visualization spreadsheets. Users can construct their
own layouts in situations that programmers cannot foresee, and re-use them over and over
again. By allowing users to enter data into cells in various configurations, the spreadsheet
supports a variety of different tasks. This single easily understood, easily configured tool
can handle multiple situations. Users, already familiar with tables, can immediately start
organizing their data in this spreadsheet metaphor. For example, for easy comparison in
numerical spreadsheets, users often put two numbers next to each other or load two sets of
numbers into adjacent columns. Similarly, in the Visualization Spreadsheet, users layout
two data sets next to each other, or compare two groups of data using adjacent columns.
This flexibility contributed to the numeric spreadsheets’ success.

For example, in Figure 3.5, the user set up a particular organization that enables the im-
mediate detection of differences between different but related data sets. Each vertical col-

umn contains a different dataset generated by changing one parameter of the algorithm—

a7

the sensitivity of the algorithm with respect to distantly-related versus closely-related se-
qguences. For example, even viewers without molecular biology training can see the simi-
larity in the data sets’ general structures, but also that some alignments that are present in
cells A2 and A3 do not appear iM1. This example shows that the tabular organization

of the spreadsheet enables the user to detect differences between visualizations of several
datasets. Users can now take advantage of their visual comparison abilities to detect differ-
ences between data sets.

As another example, the columns and rows of the table increase the number of dimen-
sions we can see simultaneously. In Figure 3.3, the columns show several snapshots of the
steps of the 3D Delaunay algorithm. The columns show the results of the algorithm after
5, 6, 25, and 50 steps, from left to right respectively. So in this case, the columns are used
to represent the time dimension. With the same analysis template, the user can analyze
several different runs of the algorithm, examining a different random point generator each
time.

Figure 3.7 demonstrates an analysis template of different visual representations set up
for visualizing a series of matrices. Simply applying other matrix values to the cells enables
multiple analysis. Configuring the spreadsheet lets us see how templates can be adapted to
a wide variety of tasks, such as showing the time dimension, different data sets, or different
visual representations.

As the above examples show, the tabular layout’s flexibility lets users construct different
analysis templates for different tasks, and thus contributes to the power of spreadsheet—
based environments. Spreadsheets are familiar, flexible, easily configurable, and excellent
for interactive comparison tasks. Coupled with the capability of simple direct manipulation
operations that can be applied in parallel, we see how users can tailor the spreadsheet to

individual situations on-the-fly.

48

Spreadsheet Principle 4The Visualization Spreadsheet enables
users to perform repetitive analysis tasks drgating analysis tem-

platesthat can be applied over and over again.

3.3.5 Update Automatically via Dependency Links

One of the spreadsheet’s advantages is that it automatically updates the contents of the
cells based on the data dependencies between them. Now that the cells store complex
data sets that may be composed of several different data sets of several different types,
the dependency between cells is much more complicated than in the numeric spreadsheet.
In SIV, since all objects are results of the application of an operator, the application of
operators also specifies the dependency relationships between objects in the cells. This is
consistent with the way numeric spreadsheets derive their dependencies between cells.

Each operator has input data ports and output data ports. Upon the specification of the
application of an operator, the output data becomes dependent upon the input data.

In the Delaunay triangulation example, the dependency graph is shown by the flow
chart in Figure 3.9. The figure summarizes the dependency relationships between the cells
in this example. A point addition operator specifies the relationships between the cells in
the first row. Corresponding cells in the first row are related to cells in the second and third
row via a Delaunay triangulation operator. Cells in the fourth row are related to cells in the
third row by the geometric addition operator. For example, 4ell is related to cells in
the third row via an addition operator.

In the operation of the spreadsheet, the system keeps these declaration of dependency
relationships in memory. Whenever the system notices a change in a cell that affects other
cells, the system executes the corresponding commands that formed the dependency rela-
tionship to keep the relationship up-to-date. For instance, as Figure 3.9 shows, adding a
single point in Celll_1 will cause Celll_2,1 3,1 4 to obtain an extra point in their

data set as well. All other cells’ content depend on this first row and thus will also be

49

add 1

point

add 19
points

Delaunay
Triangulation

Cell
3,2

p
Delaunay
| Triangulation
Cell
2,2

add 25
points
v IV
Delaunay
Delaunay [Triangulation

Triangulation

Cell
2.3

Figure 3.9: The Delaunay Triangulation Algorithm Visualization Dependency Flow Chart

4]

50

recomputed. By enabling the system to automatically keep these data sets up-to-date, we
take away this burden from the user, which enables them to focus more on the analysis of

the data sets.

Spreadsheet Principle 5Visualization Spreadsheatpdates auto-
matically via dependency linkisetween cells. Automatic recompuj
tation based on dependencies among cells reduces the burden of gom-

putation on the user.

3.3.6 Mapping Value to Structure using Custom Layouts

The advantages of the tabular layout are that it is familiar, flexible, easily configurable,
and excellent for interactive comparison tasks. It can be tailored to multiple situations in a
single tool that is both easy to understand, as well as easy to configure.

We used our SIV system to compare the two matrix series (PAM and BLOSUM). To
understand the differences between the matrices, it is important to be able to visually com-
pare a number of different matrices simultaneously. We found being able to quickly bring
in data and lay them out in different ways to be extremely useful. For example, after 7 lines
of commands, the last row shows the BLOSUM62 matrix. In Figure 3.7, the first, second,
third, and fourth rows of cells visualize the PAM40, PAM120, PAM250, and BLOSUM®62
matrix, respectively. In the horizontal dimension of the spreadsheet, the columns show the
matrices using various visualization techniques.

By vertically scanning the spreadsheet, the user can detect differences between matrices
quickly. The spreadsheet allows a way of comparing somewhat similar entries. Since
the data is complicated, the spreadsheet furnishes ways to organize and compare matrix
values across different matrices. As we can see from all the columns, the diagonals of
these matrices have strong values, which makes sense since the identity substitution (no
mutation) is favored by evolution. From the second column we see that the matrices are

quite different because the colors get brighter and brighter from top to bottom. The last

51

row shows the BLOSUMG62 matrix, and we see its values are clearly different from any of
the PAM matrices shown.

The tabular layout is one of the reasons why spreadsheet-based environments are so
powerful. The organization is familiar to users, and simple direct manipulation operations
can be used to rotate contents in the cells. It can be custom tailored to individual situations
on-the-fly.

One important lesson learned from this example is the importance of being able to
map values onto the structure of the spreadsheet. By using the vertical dimension of the
spreadsheet for time and the horizontal dimension for various representation methods, we
externalize the variability of the two variables we are interested in correlating. Without the
spreadsheet, correlating between these two features visually is difficult. We call this the
process oalue to Structure MappingBy employing external cognition, we reduce the

cognitive load of the user, and speed up the sensemaking analysis.

Spreadsheet Principle 6The Visualization Spreadsheet canap
value to structure using custom layoughich externalize the vari-
ability of variables using the horizontal and vertical dimensions of

the Visualization Spreadsheet.

3.3.7 Use Both Direct Manipulation and Command Languages

How to access and apply operations is an important aspect of the Visualization Spreadsheet.
We examined two different methods for performing spreadsheet operations.

The first method is a direct manipulation interface corresponding to a “noun-verb”
model, where the user first selects a group of cells (the noun), and then applies an op-
eration (the verb) to those cells. The operation is specified using a combination of menus
and dialog boxes. For example, to set up the similarity data in Figure 3.5, the user first se-
lects a column of cells, then performs a single import operation of a large dataset into those

cells. Some example menus and dialog boxes used in SSR system is shown in Figure 3.10.

52

(a)Main popup menu (c) Animation dialog box

Figure 3.10: Our Spreadsheet for Similarity Reports (SSR) visualization spreadsheet uses
a direct manipulation interface with menus and dialog boxes, which makes the system easy
to use.

53

The second method is a command and script language based interface. The user can in-
teractively enter commands in an entry box, similar to a traditional numerical spreadsheet.
Alternatively, she can write a script file and load in the script. For example, she can define
a layout by writing a script that specifies the datasets and the representation method used
for each cell. The script file can contain other non-layout commands such as animation, or
even define new commands. In Figure 3.7, we can see in the history window, the user has
just loaded a script with a pre-defined layout. An example of how commands and scripts

are used is shown in Figure 3.11.

MathRandom3D psetd 100 50;

— Scatter scad psetd $red 0.05 1.0;
Addvalue 1 4 scad axesActor;

— Delaunay3D trid psetd §red 0.5;
Addvalue 2 4 trid;

—sp TubeEdge tubed deltrid §red;
Addvalue 3 4 tubed;

Figure 3.11: Textual commands allow users to specify operations in the SIV spreadsheet
using simple macro languages. Scripts can be specified in a file and loaded.

The command language can also be used to define modules to extend the spread-
sheet, such as file input modules or modules that define a visual representation for a
given data type. To use the module, the user simply loads the module, and the new
commands in that module become available to her. For example, in Figure 3.7, the user
programmed new modules that implement new visual representations for matrices using
the command language. The command language we defined for the visualization spread-

sheet includes operators suchSagotractCell , Scatterplot , ReadBioMatrix

54

andCarpetplot . The operators follow the language conventiotorhmand result

arguments ”, where command operates on tharguments and puts the outcome in
cell result

From our experience of the two systems, we believe a combination of the two ap-
proaches is appropriate for the Visualization Spreadsheet. The advantages of a menu-based
interface are that it is relatively intuitive to use for first-time users, and training time for
new users is short. However, because there are many features in a visualization spreadsheet
system, there is the danger of creating a large number of menus with no structure to them.
Menu systems also tend to slow down expert users. The advantages of acommand language
based interface are its flexibility and its appeals to power users. Command languages can
also be used to construct macros so complex tasks can be performed rapidly. The disadvan-
tages are that command languages are difficult to master and require substantial training

and memorization.

Spreadsheet Principle 7Visualization Spreadsheet shoulde both
direct manipulation and command languades certain operations,

one technique may be more appropriate than the other.

3.4 Detailed Case Study: Web Analysis Visualization Spreadsheet

In this section, we present a detailed case study of using the spreadsheet to analyze a large
abstract data set—the content, usage, and structure of a large Web site. We demonstrate

how the visualization principles apply in this specific data domain.

3.4.1 Visualization of Web Space

Site administrators want to know patterns of use for their Web sites, so that improvements
can be made. Strategists would also like to mine information about users, such as prod-

uct interest. Users need tools to navigate and locate information faster. To support these

55

sensemaking tasks, visualization of large hypertext spaces has been done by various re-
searchers [5, 7, 27, 46, 109, 78, 69]. These systems are designed with a fixed priori with a
limited set of tasks in mind.

A system has yet to provide a set of primitives for conducting iterative and cyclic anal-
ysis tasks on Web ecologies. In our work, we provide such a system by handling very large
Web sites (15,000 files) and their associated evolving attributes [28].

We develop the use of the spreadsheet paradigm for visualization in the sensemaking
of Web sites. We present a visualization application called the Web Analysis Visualiza-
tion Spreadsheet (WAVS) using the spreadsheet paradigm that enables the processing and
subsequent understanding of evolving Web content, usage, and topology (CUT). We use
developed visualization techniques such as the Disk Tree [28] and Cone Tree [85] to re-
duce the cost of doing cyclic analysis tasks over hypertext document collections. For the
purpose of this paper, we will examine the application of WAVS to the evolving Xerox
Web site over a one-year period. Our targeted users include Web analysts, marketers and
advertisers, and Web masters and administrators, who have a need to reduce the cost of
accessing millions of pieces of related Web CUT information. The reduction in their cost
of comprehending this immense amount of dynamic Web data enables sensemaking tasks
to be done orders of magnitude faster than previous applications. Since Web sites and its
associated usage data change daily, this cost-structure reduction is critical in maintaining
timely Web sites.

Figure 3.12 shows the WAVS system during one step of the analysis.

3.4.2 Real-World Analysis Scenarios

We motivated the need of site administrators, content providers, and users to be able to per-
form exploratory sensemaking of Web sites. In this section, we show how the Web Analysis
Visualization Spreadsheet (WAVS) is able to engage the user in a visual sensemaking cy-

cle, and successively gather higher levels of information. Given the ability to operate on

56

Web site analysis data, we can permute different operators to graphically process the data

by supporting a visual sensemaking cycle.

Faddishness of Information In our previous work [28, 77], we showed the importance

of finding various patterns of faddishness in information. A problem encountered in using
the Time Tubes visualization [28] is the choice of color scale for mapping frequency of
usage. Each color scale has advantage and disadvantages. As a result, we typically found
ourselves experimenting with many different color scales without finding a perfect scale.
The Visualization Spreadsheet provided the appropriate tools for experimenting with this
problem. By simply applying a change of the color scale across an entire row or column,
we can simultaneously view the effect of frequency of usage in different contexts. The

principle ofapplying operators in paralletnables this interaction with ease.

First Sensemaking Cycle: Cone Tree In the vertical dimension of Figure 3.12, we
choose to threshold the color scale so that it maps values between 0 and 100 in Row 1,
and [100, 500] in Row 2, and [500, 2000] in Row 3. In the horizontal dimension, across
the columns, we show the 1st, 2nd, 3rd, and 4th week of April 1997. The 5th columnis the
3rd week in August 1997. We use Cone Trees to show the hierarchy, and the color scale is
a rainbow heat scale where red correspond to high levels of usage, and blue correspond to
low levels of usage. Here we are using tladue to structure mappingrinciple to correlate
between color scale and time. Figure 3.13 shows two particular features that emerged in
Row 3 (color scale = [500,2000]). The feature marked by a yellow square corresponds
to the sub-tree rooted &ttp://www.xerox.com/investor/content.html, while the feature
marked by the yellow circle correspondhtp://www.xerox.com/news.html. Both fea-

tures show that the information rose in usage from the 1st week to the 3rd week and then
lowered again on the 4th week. It is important to note that this feature is not visible in

either Row 1 or 2.

57

ep—|

P E—— T — e p—— Ty a
Ay im0 B 1 e T e Mo il e G

s I 1 " T o eyl e il By 13

| -.-
| R e ———— =

Figure 3.12: Web Analysis Visualization Spreadsheet showing the Xerox.com Web site
using Cone Trees. Across the columns, we show the 1st, 2nd, 3rd, and 4th week of April
1997. The 5th column is the 3rd week in August 1997. We use Cone Trees to show the
hierarchy, and the color scale is a rainbow heat scale where red correspond to high levels
of usage, and blue correspond to low levels of usage. We choose to threshold the color
scale so that it maps values between 0 and 100 in Row 1, and [100,500] in Row 2, and
[500,2000] in Row 3.

Figure 3.13: Faddish of Information in the Xerox.com Web site. The area marked by
yellow first increases in usage, then decreases in the 4th week.

58

Second Cycle: Disk Tree After doing the interpretation step of the sensemaking cycle,
we decided to try a different visual mapping transformation—Disk Tree [28]. Figure 3.14
shows the same data using Disk Trees instead of Cone Trees. Notice that while these two
features are also visible on the third row, they were harder for the eye to pick up because
the Disk Tree layout algorithm does not exaggerate the first several levels of the tree, while
the Cone Tree layout algorithm does exaggerate the first few levels. On the other hand,
it is much easier to comprehend the overall structure and usage pattern using the Disk
Tree, because Disk Tree is a 2D technique that does not have occlusion problems. This
example shows that different visualization techniques can contribute different senses in the
sensemaking process. Here with the Disk Trees, we still useathie to structure mapping
principle to correlate the color scales and time. We also usedrdage analysis template

principle by reusing most of the spreadsheet format from the first cycle.

Correct Creation of New Content Continuing with our case study, we wanted to find

out the reason for the usage increase of these two areas of the Web site. By looking at
the details around the area and examining the content, we found that on April 15, 1997,
Xerox announced “New Digital Product Family Unveiled: Becomes Basis of Xerox Office
Products into the Next Centuryhitp://www.xerox.com/PR/NR970415-newfam.html).

A new product series was to present a new approach to network printing, faxing and scan-
ning. In this press release, Xerox introduced two of its first products in this series, the
Document Centre 220 and 230 Digital Copier. In looking into this press release, we found
a new page linked off of the root node of the Web site that was the primary product page for
this product serieshftp://www.xerox.com/Products/XDC/content.html). The details of

this area are shown in Figure 3.15. While it is immediately obvious that the pattern of us-
age as well as structure has changed on the 4th week, other less obvious visual features are
also noticeable after careful examination. The feature marked by a long rectangle corre-
sponds to this new product page, and its related pages. The red coloring of this entire area

shows its high usage. Because this area is new and is being used extensively, this means

59

. ———————————————
£l |

Figure 3.14: Web Analysis Visualization Spreadsheet with Disk Trees. While the faddish
of information is visible, they are harder for the eye to pick up.

60

the area shows a correct creation of new content that is highly desirable to Web users. The

importance of the content is validated by the amount of attention it received.

Figure 3.15: Creation of new Web content for Product Families in Xerox.com. Parallel
application of navigation operations enables examination of area details in different slices
of the Disk Trees at the same time.

One lesson learned from this example is the usefulness gfatadlel application of
operators By first selecting all of the cells in the first row, the user can simultaneously
zoom, rotate, and translate to the same area of all of the Disk Trees. The spreadsheet
affords this parallel operation in a natural manner, thus making the interaction easy and
fast. In terms of the visual sensemaking cycle, it is imperative that we provide fast and
easy interactions. By reducing the cost of interaction, we reduce the users’ cognitive load
for view manipulation so that they can concentrate on the task at hand, rather than minute
details of the interface.

The other lesson we learned from this example is the importance of allowing quick
access to detailed information. The detail-on-demand tool provides this via picking, and
the amount of detail displayed is programmable via the spreadsheet’s interpretive command

line.

Surprising Increases or Decreases in UsageOur interpretation of the visualizations has

uncovered an interesting story around the introduction of an important product, and how

61

it has affected the usage of the Web site. We are further interested in mining for changes
in usage, no matter how small the changes may be. In order to accomplish this task, we
realized that a new analytical abstraction must be computed—the subtraction of one usage

pattern from another usage pattern.

Third Cycle: Visual Usage Pattern Subtraction Figure 3.16 shows the result of con-
structing a new spreadsheet. Column one shows the result of subtracting week one from
week two, while Column two is week three subtracted from week two, and Column three
is week four subtracted from week three. In other words, we are showing the first order
difference between the weekly usage patterns. In Row 1, we show only the negative values
(blue on the color scale), and only the positive values (red) in Row 2. Row 3 shows both
negative and positive values at the same time. The visual usage subtraction shows the rise
of information for the Pagis” and TextBridgé" home pages (marked with a yellow oval

in Figure 3.16). On the other hand, the Copier's home page had increasing usage (marked
with a yellow rectangle) only during the second week, but not the third or fourth week.
Without the visual subtraction, these trends are not at all noticeable (see the straight usage-
to-color mappings in Figure 3.17). Here we used the principldeofve comparison data

setsto enable users to extract potentially interesting differences in the data.

Validation of Web Site Design

Fourth Cycle: Relevance by Spreading Activation As the last step in the visual sense-
making cycle, we wish to validate the Web site design using spreading activation. Using
document similarity as our metric, we perform spreading activation over the web site. Fig-
ure 3.18 shows the result of performing this operation over the week of May 10, 1998.
From left to right, we show the Web site in two day intervals. In the first Disk Tree, we
spread over thsupplies.html page, and the red vector glyphs show that move relevant

documents are within its own sub-tree (marked in yellow). In the middle Disk Tree, how-

62

Spreadsheet for Visualization N] E3

Cammand: I

S‘preé’dé heet
Picking...valug=ct370416k pt=4237 pos=0 41 546 -21.5732 B
Document D = 4237 = soho.html has 93 _fOI' "
Picking...value=ct370418k pt=6419 pos=0-21.0094 10.7744 =i B P a e
Document D = 6419 = products/software.htm has 271 s \/.Sl..lil'l.‘a.tlﬂljl_

® 1 z

|«

Figure 3.16: Visual usage pattern subtraction shows differences in usage quickly. Column 1
= week 2 - week 1, Column 2 = week 3 - week 2, Column 3 = week 4 - week 3. Row 1
shows only negative values (blue), while Row 2 shows only positive values (red). Row 3
shows both negative and positive values at the same time.

63

Figure 3.17: Without the visual subtraction, straight usage-to-color mapping of usage pat-
tern does not show difference in usage at all.

ever, the visualization shows that there are two clusters of documents in different parts of
the hierarchy that have relevance to terkgroup.html node. The third Disk Tree shows

the relevant documents to tiservices.html node are in only one cluster. This example
shows the documents in these parts of the Web are placed in relatively accessible positions
according to document similarity. Here we use the principlapglying operators in par-

allel, because we apply the spreading activation mathematical analysis operator across the

rows in parallel.

3.5 Summary

Via examples, we illustrated the principles behind how the spreadsheet paradigm facilitates
information visualization tasks. Here we presented our system called Spreadsheet for In-
formation Visualization (SIV, pronounced “sieve”). We presented specific examples while
noting a number of issues and capabilities of our system.

We list the visualization spreadsheet principles in Table 3.1. With Principle 1, we
illustrated how the visual spreadsheet paradigm facilitates data exploration by enabling
researchers to derive comparison data sets using operators such as set addition and sub-
traction. In Principle 2, we illustrated how the spreadsheet paradigm enables the parallel

application of operators to a range of cells, facilitating visual comparison of values in the

64

il Spreadsheet for Yisualization -0~

)
Command: |

Spreadshest’
Ficking...value=ct98051 4a pt=20535 pos=0 0.370198 23.6082 . =
Document ID = 20535 = products/cop_oft htm has 670 TOF
Picking... value=ch380514a pt=12847 pos=0-6.38201 535059 s 1 XT3, =
Document 1D = 12847 = services himl has 1191 s .V.su:‘J._I.‘_atmn

Figure 3.18: Spreading Activation visualization enable visualization of related contents
using document similarity. The clusters are localized to sub-trees, which means the Web
site is well-designed relative to these areas.

cells. In Principle 3, we discussed how to use the spreadsheet paradigm to enable the ex-
ploration of multiple visual features in the spreadsheet simultaneously. This is especially
useful in information visualization, since there are several different visualization represen-
tation techniques available at the user’s disposal for a given data type. In Principle 4, by
constructing a layout configuration, we showed that the user can set up analysis templates
to apply to many data sets. In Principle 5, we showed how automatic recomputation based
on cell dependency reduces the computation burden on the user. In Principle 6, by equip-
ping users with a set of operations, we show that the Visualization Spreadsheet lets them
explore data sets in their unique situations by mapping values to structures. In Principle
7, we show that direct manipulation and command languages should both be used in the
Visualization Spreadsheet.

We also presented Web Analysis Visualization Spreadsheet (WAVS) as an example of
a series of techniques for Web Ecology and Evolution Visualization (WEEV). We showed
how WAVS supports a visual sensemaking cycle by presenting real-world scenarios in the

context of analyzing the entire Xerox Web site. We picked out visual cues that show pat-

65

terns and trends in the relationships among content, usage and topology over time. By iden-
tifying and applying the visualization operators in Web ecology analysis, we have opened
the door to the answers of many interesting Web site design questions. WAVS provides a
Web analysis workbench that provides users with a set of tools that can be combinatorically
applied in various analysis tasks.

As the case studies show, by using a spreadsheet we further expand the user’s ability to

interact with multiple data sets simultaneously.

Principle 1

Applying algebraic operators between celésives compar:
ison data setswhich enable comparison tasks to be carr

out precisely in the Visualization Spreadsheet.

Principle 2

The Visualization Spreadsheet easily affoaggplying oper-

ators in parallelto a large group of cells and data sets.

Principle 3

Users can represent data sets using several different vi
ization representation techniques, which enable theexic

tract multiple visual features simultaneously

Principle 4

The Visualization Spreadsheet enables users to per
repetitive analysis tasks hyreating analysis templateébat

can be applied over and over again.

66

ied

sual-

form

Principle 5

Visualization Spreadsheapdates automatically via depe
dency linksbetween cells. Automatic recomputation bas
on dependencies among cells reduces the burden of co

tation on the user.

Principle 6

The Visualization Spreadsheet gaap value to structure us
ing custom layoutsvhich externalize the variability of var
ables using the horizontal and vertical dimensions of the

sualization Spreadsheet.

Vi-

Principle 7

Visualization Spreadsheet shoulde both direct manipula

tion and command languages-or certain operations, or

e

technique may be more appropriate than the other.

Table 3.1: The Visualization Spreadsheet Principles

67

Chapter 4

INFORMATION VISUALIZATION OPERATOR FRAMEWORK

In a much larger study ..., the construction of the table depends not only on the data
but especially on the hypotheses and the available means for reducing these data. These
means are the mathematical and graphical methods of information-processing.

—Jacques Bertin [15, p. 17]

Information visualization encounters a wide variety of different data domains. The
visualization community has developed many different representation methods and inter-
active techniques. As a community, we have realized that the requirements in each domain
are often dramatically different. In order to understand, classify, and easily apply exist-
ing graphical representation methods in separate domains, researchers have developed a
taxonomy and semiology of graphic representations methods [14, 25, 24, 99]. A major dif-
ference between current information visualization work and past work on graphic design
is the development of interactivity. The dialog between human and computer enriches the
communication of information.

Therefore, we seek to further develop a framework for visualization operators and in-
teractions in visualization systems. We will then use this framework in the visualization
spreadsheet. We discuss properties of this framework and use it to characterize operations
spanning a variety of different visualization techniques. The framework developed here
enables a new way of exploring and evaluating the design space of visualization operators,

and helps end-users in their analysis tasks.

68

4.1 The Need for an Operator Framework

Imagine a visualization application with two views of the same source dataset, say a Home-
Finder application [2]. In this application, the user is to find a potential home to purchase
using a number of criteria, such as the number of bedrooms, geographical location, price,
etc. The user seeks potential homes by filtering out homes that do not satisfy the her list
of desirable features. Imagine that in one view, the dataset is visualized using a scatter
plot display with dynamic query sliders [2], while the other view shows the values using a
sorted numeric table.

Now let’s use the sliders to filter out some data points. The scatter plot view changes
accordingly. However, a question of semantics arises for the table view. One possible
interpretation of this action is that the table view is a totally independent view of the original
dataset, and therefore should not change its view. The other possible interpretation is that
the original data source is being modified by this interaction, which means the table view
should change accordingly! Which of these two possibilities is the correct interpretation?

Let’s try to solve this problem of contradictory semantics by examining the applica-
tion domain. Assume the user is interested in selecting homes in a relatively expensive
neighborhood that fall in her price range. Say that the user is interested in seeing the
distribution of the homes over the geographical locations while she manipulates the price
slider to include only highly-priced homes. If the user is merely interested in how the plot
view changes while manipulating the price sliders, we would then argue that the table view
should not change at all, because the task semantics do not require the original data source
to be modified. If the user is actually interested in creating a new dataset that only contains
homes in her price range, then we would argue that the original dataset is indeed being
modified, and therefore the table view should change accordingly. Both interpretations of
the interaction are valid under this task scenario! The user needs a “Do What | Mean” key

that requests the behavior she intends.

69

4.1.1 Problems from End-Users’ Perspective

The above example shows that end-users often have difficulty interacting with visualization
systems because there is a wipldf of executior—"a difference between the intentions and

the allowable possible actions” [72]. Sometimes the semantics of operations are imprecise,
or worse, impossible to achieve. The user is often left with no way of predicting the result
of her actions, or may even be incapable of selecting the operation she desires from among
several alternatives.

The gulf of execution is evidence that the operation and interaction model of a visual-
ization system often hampers the analysis process because it does not fulfill the needs of
the analysis. We can construct similar scenarios by examining other data domains, such
as visualizing hierarchical structures like file systems or organizational charts, slices of a
3D human brain, or world-wide web linkage structures. Fundamentally, each of these data
domains have data and its associated visualized view, therefore filtering actions in these
data domains will also have the same exact ambiguous meanings. So this problem exists
even after careful consideration of the application task domain.

The HomeFinder example emphasizes the difference between view and value. The
valueof a visualization is the raw data set being visualized. Vieercontrols the way that
this raw data is represented on the screen. In information visualization, since the data is
represented abstractly on the screen, there is a distinct separation between the value of the
data and the view of the data, and it is especially useful to represent the same data in many
different ways. This is different from other areas of visualization, such as fluid dynamics or
volume visualization, where there is a tighter coupling between the value of the data and its
visual representation. In HomeFinder, the user needs the ability to decouple the view and
the value, so that they can be specified and changed independently. We cadvifsalue
separation

Existing visualization operation models do not take the view/value separation into ac-

count, leaving users with the difficult task of figuring out how to operate on view and value

70

separately, if this is at all possible. New visualization models are needed that bridge this
gulf of execution by presenting a consistent visualization model that not only is valid in
one application domain, but is also valid across several application domains. This consis-
tency is especially important in visualization systems that tailor to multiple data domains,
because users will be able to transfer their knowledge of the usage of visualization appli-

cations across domains based on a consistent user mental model.

4.1.2 Problems from Designers’ Perspective

Visualization designers face problems that are similar to ones that end-users face. They
need to provide a user model and deal with view/value separation and its semantic issues.
An additional issue faced by designers daily is how to flexibly extend a visualization system

to include new data domains.

Providing a User Model

One approach to solving the view/value separation issue is to think about how value is
turned into a view. In scientific visualization, past work in data flow networks and the
visualization pipeline helped users to focus on the visualization process. Because these
models were designed with the goal of providing a processing model, they have enabled
designers and end-users to better understand how operators interact with each other. We
seek to develop a model that makes use of the concepts in the visualization pipeline to
help designers present user models that are consistent with possible user intentions. Such a
model could help us eliminate errors caused by imprecise or incorrect conceptual models,
and potentially bridge thgulf of evaluatior—the feedback from the system is “directly
interpretable in terms of the intentions and expectations of the person” [72]. In other words,
the model must help users in evaluating and performing the actions appropriate to the task.
Another issue in user models is that, in different problem-solving situations, users pre-

fer to focus variously on the operations to achieve a single desired result, or on the operands

71

at various stages in the computation. As an example afpgmnation focusnodel, the tra-

ditional visualization pipeline model focuses on t@cessof the visualization, rather

than on thestateof the data. The user interface of such a system generally consist of a
diagram editor that allows users to drag-and-drop processing modules onto a canvas and
connect them with data pipes. As an example afata state focusin commercial nu-

meric spreadsheets such as Microsoft Excel, instead of showing the explicit relationships
between variables (the numeric equations), the system hides those relationships in favor of
showing the operands of the formulas. This enables the user to focus on the intermediate
computational results. For this reason, commercial numeric spreadsheets emphasize the
operands.

Instead of focusing on the process, sometimes the user is more concerned with the state
of her data. This mode of interaction is especially useful in situations where the next anal-
ysis step is not immediately apparent. By showing the state of the data, the user gets visual
feedback that helps bridge the gulf of evaluation. The user can evaluate the result of her
last action and choose the next step based on the results of the computation. Therefore,
in addition to describing the analysis process, we seek a user model that allows us to cap-
ture the data states so we can accurately provide feedback and support these exploratory
interactions. We call thiglata state focusWe need a model that not only describes the
data transformation process such as the visualization pipeline, but that also models the data

states.

Extensibility to New Data Domains

In designing a generalized visualization system, we will encounter many new data domains.
In extending a visualization system to include a new data domain, the first step is often re-
quirements analysis. The result of requirements analysis is often a user study that specifies
the groupings of user tasks or operations, but visualization designers have no framework in

which to take advantage of these analyses. From these requirements analysis, designers of-

72

ten have no idea how to start designing, classifying, and specifying the influences between
a set of operators and interactions. While information visualization has made great strides
in the development of a semiology of graphical representation methods [14, 63, 24], we
still lacks a comprehensive framework for studying visualization operations.

Consider our Spreadsheet for Information Visualization system (SIV) [30], for exam-
ple. Spreadsheet environments are powerful because of a rich set of operators. One of the
challenges of applying a spreadsheet to information visualization is the wide variety of data
domains that are dealt with in information visualization. Therefore, the flexibility and the
generalizability of the spreadsheet hinge on the application programmers’ ability to extend

the spreadsheet with additional operators as needed for their application domain.

4.1.3 Operator Framework Helps Users and Designers

So from the viewpoint of end-users and designers, we see that there is a need to construct
a general operator framework—a conceptual model that enables us to clearly classify and
organize different operators. An operator framework is a conceptual model for all possible
visualization operations. Bgperation we mean all user interactions, whether based on
direct manipulation or other interaction.

Our motivation can be distilled into three major goals. First, we need to develop a
framework that is sufficiently clean and simple that it enables end-users to choose which
operator to apply for a desired result. Second, we need the model to help the end-user to
predict the results of their interactions with the visualization system. The biggest bene-
fit of achieving these two goals is establishing a user conceptual model that allows us to
bridge the conceptual gulf of execution and evaluation for the end-user. Thirdly, we need to
develop a general interaction model for information visualization that helps visualization
designers classify and understand the relationships between operators and the composition
of interactions. This model will enable us to organize operators by classifying and tax-

onomizing the space of possible operations. Herb Simon once said in understanding any

73

phenomenon, the first step is to “develop a taxonomy” [91]. The inherent value of classifi-
cation and understanding is that it enables us to isolate the important artifacts for design. In
information visualization, an operator framework will allow us to build interaction models
for new data domains.

While we were motivated by our research in the Visualization Spreadsheet [30], these
are general questions about the utility of visualization systems, because it is often unclear
how domain-specific operators are to be integrated into visualization systems. Without the
ability to incorporate domain-specific operators, a visualization toolkit or system would
be useless. Furthermore, there are many operators that are not domain-specific but are
not effectively reused in different applications. The framework must enable us to better
understand the interaction between data, view, and the operators. We need an effective
operator framework in order to better understand these issues. In summary, the operator
framework should enable both end-users and designers to better understand the situations
in which operators can be applied, how operators can be applied, and what operators do

when they are applied.

4.2 Fundamental Properties of Operators

In order to develop an operator framework, we first start by observing some fundamental
properties of operators from the visualization spreadsheet point of view. One property
is whether an operator is a view or value operator—whether it modifies the underlying
data set or not. The other property is degree of functional similarity with other operators.
These two properties are important because functional similarity deals with an operator’s
degree of applicability, whereas the degree of view/value separation has deep implications

regarding the semantics of the operator.

74

4.2.1 View versus Value

One dimension of operators is whether it is view-oriented or value-orientedvaiBg,

we mean the raw data, wheredsw is the visualization end-product. Yalue operator
changes the data source by such processes as adding or deleting subsets of the data, filtering
or modifying the raw data, and performing a Fourier Transform on an image. A value
operator fundamentally generates a new data set.

A view operatoy on the other hand, changes the visualization content only. Examples
of such operators include 3D rotation, translation, and zooming, a horizontal or vertical flip
of an image, and changing transparency values of a surface in order to see the underlying
structures better. A view operator fundamentally does not change the underlying data set.

The distinction between a view and value operator is not always clear. For instance, for
an image, since the value is the image pixel values, the modification of the colormap repre-
sents a raw pixel value modification, and therefore, should be classified as a value operator.
However, in a 3D surface heat map, the modification of the heat color scale appears to be
a view change that does not fundamentally change the underlying surface values. Another
example is the HomeFinder [2] application in Section 4.1. Sometimes we would like to
apply filtering to generate a data set. Other times we just like to temporarily make cer-
tain data points invisible without affecting the underlying data source. The same filtering
operation appears to change its property depending on the user’s intentions! How do we
unify such seemingly contradictory classification of operators according to this important

property? View/value does not appear to be a black and white property for operators.

4.2.2 Operational versus Functional Similarity

In developing our model, we made the observation that some operatarpeaagionally
similar across applications—operations whose underlying implementations are exactly the
same from application to application. Some examples of such operations include rota-

tions, scaling, translation, camera position manipulation, geometric object manipulation,

75

and lighting. The entire class of geometric and scene operators are operationally similar
across applications, because we can make a fundamental assumption that once we obtain a
view, we are dealing with graphic primitives such as lines and polygons. We can operate on
these lines and polygons without regard to its original data sources. There are other opera-
tors that belong in this class, such as duplicating or deleting a view or value, and renaming

a data source.

We also observed that there are operators that ardamtyionally similar —operations
that are semantically similar across applications, but the underlying code implementations
are different for different types of data sets. For example, filtering a data set is a common
and extremely useful operation, but different application domains have different ways of
filtering the data set, since each domain has very different data structures. Another example
is the class of algebraic operators such as adding or subtracting data sets, which is again
domain specific. The way we add two for-sale real estate property lists together is not the
same as combining the Web linkage structures from two different crawls of the Web.

Finally, there are operators that are completely application task dependent. These are
operations that are specially designed for a specific task in a particular application domain.
An example of this class of operations is triggering a heart pulse by first inserting an elec-
trical probe during a heart electrical pulse visualization. We could specify the positioning
of a probe using the mouse. The electrical simulation process is a domain task specific op-
eration. Another example is a specific implementation of the hypertext document parsing

operation for multi-dimensional scaling to compute similarity of documents.

The concepts of functional and operational similarity are related to the concepts of
view and value operators. On the one hand, view operations tend to be more operationally
similar across application domains. On the other hand, value operators tend to appear
functionally similar but are implemented differently for each data domain. Even though
there are classes of value operators, such as combining data sets, a value operator must

operate on the specific data structures from the application domain. But view operators,

76

such as scene, geometric, and pixel operations, operates on the displayed visualization
end-product, which we can assume to be graphic primitives such as points, lines, polygons,

or voxels. We need a model that fits with this observation.

4.3 A Data State Model for Visualization Operators

4.3.1 Visualization Pipeline

Our discovery is that the solution to the above dilemma comes from a non-intuitive source—
the visualization pipeline. We developed a visualization operator framework [29] that
places operators in the context of the information visualization pipeline [24, 25]. Visu-
alization operators operate on data as well as views. On one end of the pipeline, we have
the raw data (value), while on the other end, we have the visualization (view).

We propose that the view/value property for operators is a fundamental classification
for what stage the operator is in the visualization pipeline. On the one end of the spectrum,
we have full view operators that can only be interpreted as view operators, such as rotation.
On the other extreme, we have full value operators that can only be interpreted as value
operators, such as expanding an existing data set by adding a new data set. Operators that
are not full view or full value operators lie in between the two extremes. One example
is the multi-dimensional scaling information processing technique, which reduces the di-
mensionality of data sets. Other examples of these types of operators include operators
related to textual word frequency vectors, which are produced from a set of documents.
For example, keyword clustering techniques can be applied to a wide variety of different
types of documents, and can be shared among all data domains that are related to textual
documents.

In this framework, value is converted and transformed into four major stages: Value,
Analytical Abstraction, Visualization Abstraction, and View (see Table 4.1). In between
each of these four stages, there are three major processing steps: Data Transformation,

Visualization Transformation, and Visual Mapping Transformation (see Table 4.2).

Stage

Description

Value

The raw data.

Analytical Abstraction

Processed data that that is not yet mappable

include all information from the raw data that wil

1

but

le

be visualized.
Visualization Information that mappable and is visualizab
Abstraction on the screen using at least one visualization
technique.
View The end-product of the visualization mapping,

where the user sees and interprets the picture [pre-

sented to her.

Table 4.1: Information Visualization Pipeline stages

Processing Steps

Description

Data Transformation

from the value (usually by extraction).

Generates some form of analytical abstractjon

Visualization Transformation

tion, which is visualizable content.

Visual Mapping Transformatior

1 Takes information that is in a visualizable form

and presents a graphical view to the user.

Table 4.2: Transformation Steps in InfoVis Pipeline

Takes an analytical abstraction and further fre-

duce it into some form of visualization abstrac-

at

78

In information visualization, data domains usually contain complicated pipelines. For
example, a model is shown in Figure 4.1, which is slightly expanded from Stuart Card’s
information visualization pipeline). Raw data are first processed into some form of ana-
lytical abstraction, which are processed data that contain all the information to be visu-
alized, through a data transformation process. This analytical abstraction is often further
reduced using a visualization transformation into some form of visualization abstraction,
which is information content that is visualizable. Usually this process contains a dimen-
sion reduction step, because the data sets in information visualization are complex and
multi-dimensional, and only a few dimensions can be projected or displayed on the screen
at a time. An example of visualization transformation is multi-dimensional scaling and
clustering. From the visualization abstraction, there is a further step of visual mapping

transformation that brings a view that is presentable to the user on the computer’display

4.3.2 Data State Model

In order to accurately emphasize the end-user’s analysis process as well as the intermediate
results, we constructed a new model called the Data State Model (see Figure 4.2) based on
the visualization pipeline. The modifications are two-fold.

First, while the visualization pipeline handles a large variety of operators, the pipeline
model does not take multiple values and multiple views into account. If two separate data
sets go through two different pipelines to contribute to a single visualization, the model
breaks down. In order to ameliorate this problem, we expand the pipeline into a network
that allows as many values and as many views as needed. To this extent, our model is
similar to data flow networks as presented in [90].

Second, the visualization pipeline uses nodes to represent operators, and edges to rep-

resent flow of data. The use of nodes to represent operators emphasizes the processing

I Most visual mapping transformations do not preserve the precision of the data in the visualization abstrac-
tion. Furthermore, computer graphics on a bitmapped display is inherently a discrete mapping, since there
is only finite amount of pixels on the screen, and finite number of colors available. Other effects, such as
occlusions, shadows, and lighting, can affect the perception of values.

Data
Space

System
Control

View
Space

User
Control

Figure 4.1: The information visualization pipeline (modified from Stuart Card’s model)

Pipeline:

Data

Data
Transformation

A
Analyfical
Abstraction

Visualization
Transformation

Visualization
Abstraction

Visual Mapping
Transformation

View

Example:

Collection of
text documents

create text vector

text vectors

multi-dimensional
scaling

3D surface

hills and valley
with colorization

ThemeScape

79

documents

creg
text
vect

value-
filteirlg/‘

collection of
web pages

create
web
pages
linkage

Data

multi-
dimensional
scaling

rating
tuple
clustering
u

breadth
first
traversal

Data

Transformation

Analytical
Abstraction

surfaci

Visualization
Transformation

Visualization
Abstraction

hills)
and Disk
valley Tree
O 0/
rotate

ocus
on node

Figure 4.2: Our visualization operator model: Data State Model

Visual Mapping
Transformation

View

80

81

stages in the pipeline rather than the data states. This causes visualization pipeline models
to omit the details of how individual data sets is processed. Instead, we use a state model,
where each node represents a certain data state, and each edge is an operator transforming
the data from one state to the next. Instead of stages, each node in the network is a state
describing the status of the data. Each directed edge from a state to another state describes
the operator that is applied to modify the data. The source data states are the raw values,
whereas the sinks are the views of the data sets.

As an example, the visualization Data State Model used to construct the Delaunay Tri-
angulation visualization in Figure 3.3 is shown in Figure 4.3. It is an example of a simple
Data State Model for generating a visualization. This example applies our framework to
show how the visualization pipeline takes data sets and generates intermediate results and
finally creates a visualized view of the data set. Our example consists of a random number
generator that takes a seed number to start its operation. Then using this random number
generator, the "MathRandom3D” operator creates 3D point sets. Then the Delaunay Trian-
gulation operator creates a tetrahedra collection, which is then transparently rendered into
a visualization. The diagram shows that this same tetrahedra collection can also be edge
rendered into a different visualization that only shows the edges. We can then apply differ-
ent view operators to these visualizations to create new views. A different algorithm could
have been applied to the point set to generate a Voronoi diagram, which can be rendered to

create a different visualized view.

4.3.3 Example: Web Analysis in the Visualization Framework

Let's examine an example of applying this framework to a specific application domain—
visualization of Web sites. The pipeline that these operators are classified in is presented
in Figure 4.4.

The raw data set is a collection of Web pages generated by crawling a Web site. We

can first perform a value-filtering operator where we search for documents that contain

random
number
generator
seed

Value

(Data

create ranaom

L Transformation

J

]

3D point set ¢
_ Analytical
3D point Representation
set
_ (Visualization
voronor /- Defafimay | Transformation
Diagram/ Triarjgulation i

Tetrahedra
collection
Edge Transparent
Edge Rende¢r \render
Rend

Visualization
Representation

focus

Figure 4.3: The Delaunay Triangulation Algorithm Visualization Pipeline

visualization

rotate

(Visual Mapping
L Transformation

v

View

Filter
Value

web page
collection Value

(Data]

Transformation
Analytical
Abstraction
depth|first ?ilrbetadth (Visualization J
travefsal raversal (Transformation
v
hierarchy Visualization
Abstraction
Disk Cone
Tree ; . .
Tree Disk | susl Mapping
ree L Transformation
visualization i
View

rotate

Figure 4.4: The Web Analysis Visualization Pipeline

83

84

the word “Hewlett-Packard” or “HP”. This would be an exampleWithin Data Stage
Operator, because the raw data has exactly the same data format, with simply a specific
reduction in data set size. We can then use this collection of Web pages and generate a
graph network (the analytical abstraction) from the linkages between pages. This is a data
transformation operation, because the data format changed during this processing step.

Using the network, we can again select only subsets of the edges, such as choosing
only the first three levels of documents from the root node. This subset operation is an
example of aNithin Analytical Abstraction Stage OperatdiVe can then create a tree by
doing a breadth first traversal (a visualization transformation operation). The breadth first
traversal generates a visualization abstraction, a hierarchical tree of the Web pages, that
can be easily visualized. There are many visual mapping techniques that can be applied
to this visualization abstraction, such as Cone Tree [85], Disk Tree [28], TreeMap [54],
Hyperbolic Tree [57].Within View Stage Operatomich as focusing and brushing nodes,
or rotating the cone tree can then be applied to this visualized content.

In validating our framework for Web analysis, we applied the framework to the Xe-

rox.com Web site:

e Value: For the exploration of Web ecologies, we chose the Xerox.com Web site
over a one-year period from April 1997 to May 1998. The Xerox Web site contains
roughly 7,500 HTML pages and 8,000 non-HTML items. The hyperlink topology

and usage information were recorded on a daily basis.
e Analytical Abstraction:

Content: The words in the page as well as clusters of items

Usage: For each file, the frequency of page requests was aggregated using one-week
intervals. The transition matrix, or hop count, from one node to another was also

computed

Topology: The hyperlink structure of the site was extracted from the HTML pages.

85

Rating: For each file, we compute similarity to other files using Spreading Activation

[15]. Using this information, we can show relevance of other files to a given file.

e Visualization Abstraction:
Tree: The result of the Breadth First Traversal is a hierarchy of items with back links.

Item Attribute: Each item stores its associated access frequency and hop?counts
Each item also contains information on its life cycle (newly created, deleted, moved,

or modified).

Iltem Vector: Each item also has a set of vectors that specify the pre-computed
Spreading Activation patterns. Moreover, the Spreading Activation is computed over
the evolving document collection, which enables the comparison of results from dif-

ferent time periods.

4.4 Classification of Operators using the Framework

Using the above model, we can classify a variety of operators according to what stage of
the pipeline the operator is involved in. The classification of visualization operators shows
that each operator either performs a transformation that takes information between stages,
or generates another information set within the same stage. That is, some operators work
within a single stage, while other operators work across different stages. For example, a
value-filtering operator selects a subset of the data and produces a new data set that does not
have a new data format. Therefore, the value-filtering operatowlighan Stage Operator

We have already described tBetween Stage Operatomshich were presented in Ta-
ble 4.2: Data Transformation Operatoy¥isualization Transformation OperatqrandVi-
sual Mapping Transformation Operators

There are four types aWithin Stage Operatorsand they correspond to the four stages

of the information visualization pipeline. They dbata Stage Operator#nalytical Ab-

2 the number of times a particular link to its children is traveled

86

straction Stage Operator¥isualization Abstraction Stage OperatpandView Stage Op-
erators

Here we present some examples of each seven types of operators. The left hand side
shows the domain that is associated with the example operators. The right hand side shows

the various example operators that came from that data domain.

Data Stage Operators (DSO) .

General value-filtering, subsetting

Domain Algebraic: difference or addition of two data sets
Image: flip, rotate, crop, Fourier transform, etc.

Point set value-filter

Web: collection of Web pages generated by crawling a Web site

Data Transformation Operators (DTO)

Textual: computing textual vectors, obtain ratings, create similarity relationships
Grid : iso-surface extraction

Point set triangulation

Web: hypertext document network

Analytical Abstraction Stage Operators (AASO)
Vector: select a subset of the vectors
Surface divide region

Web: select subset of the the nodes in the network

Visualization Transformation Operators (VTO)
Dimension Reduction multi-dimensional scaling or principal component analysis
Clustering: association rule, multi-modal clustering, spreading activation

Network: breadth first traversal, depth first traversal

87

Visualization Abstraction Stage Operators (VASO) .
Grid: simplify by reducing number of regions
Network: simplify by consolidating nodes

Hierarchy: cut-off depth of tree

Visual Mapping Transformation Operators (VMTO)

Point set scatter plot

Multi-dimensional Surfaces World-within-World,

Hierarchy: Cone trees [85], Hyperbolic Trees [81], TreeMaps [54] and Disk Trees [28]
Network: GV3D [42], NVB [66], SeeNet [9]

View Stage Operators (VSO) .
Object Manipulation : rotation, translation, scale, zoom
Camera: position and orientation

General: view-filter

For simple data domains where the visualization pipeline contains only two stages, we
get only full view and value stage operators. For instance, for the domain of graphical im-
ages, there is a straight-forward mapping from the value (floating point values) to the view
(pixels). Using only view/value stages becomes a succinct way of viewing the visualization
pipeline.

In more complex data domains, there are operators throughout the entire pipeline. Of-
ten there will be several different choices that generate different analytical or visualization
abstractions. For example, in textual analysis, there are several different kinds of textual
analysis algorithms, such as clustering, multi-dimensional scaling, principal component
analysis, collaborative filtering, etc. Each of these algorithms may require different analyt-

ical abstractions, such as textual vectors, similarity scoring, or user ratings.

88

4.4.1 Example: Web Analysis Visualization Operators

Here we will present a more extensive classification within a single complex data domain.
At the heart of our Web Analysis Visualization Spreadsheet is the set of Web analysis
visualization operators (WAVO). Here we present the details of Web analysis operators in
the context of this framework in Table 4.3.

The data extraction based Data Transformation Operators near the top of Table 4.3
are hypertext specific, and require certain file formats for the extraction operators to work
correctly. Since all Web sites are composed of HTMiles, these operators are re-usable
across different Web sites, no matter how complex or large.

Some of the operators developed as part of this analysis suite can be used to analyze and
visualize other hierarchical data sets. For example, Breadth First Traversal Visualization
Transformation Operator and the hierarchical display techniques in the Visual Mapping
Transformation Operator category.

The set of WAVO operators developed here is significant because it provides a frame-
work for Web analysis visualizations. This framework allows users to understand the tools
that are provided to them, and enable them to choose and execute these operators at their

will. In other words, the formulation of these operators enables the on-the-fly analysis.

4.5 Properties of the Framework

Why is this framework powerful? The Data State Model provides a classification that
is powerful because it makes several properties of operators explicitly clear. Earlier we
described how an operator model needed to encompasses the view/value and operational
similarity properties of operators. In addition to examining these two properties in detail,
we also discuss how this Data State Model describes an operator-centric approach. We
then discuss how the classification of operators using this Data State Model describes the

the amount of direct manipulation that is possible in each operator, and the choices that we

3 HyperText Markup Lanugage

89

f

esi)

"UOISSBSAUI S9aJ] YSIp [BJaASS MOUS uonewiuy
wooz
"uolTeuIIBXa 3S0|J 10} Wall Pa123las ayl 01 Ajpoaaip A4 puewap-uo-|relaq
'019 ‘9|eds ‘W00z ‘arejsuel] ‘a1e10y sioieladQ 211BW039 M3IA UIYUAA
‘<yibuans uoneanoe ‘wal> Jo sied Jo sisisuod ulened yoe3 ‘sydA|b
uIsn aall 3sig ay1 jo dol uo usaned uoneandy Buipeaids ayl moys ydA|o uiened Aejdsig
'saIngue Wall dLsWNU Uo paseq aaJ] pake|dsip e ojuo Jojod dely | ulaned Bullojod Alddy
‘[IoM AjpWwia1xa 9311 3y} Ul S|9A3| ShoLeA 3yl SMoys eyl anbiuyoay
uonezifensia Ayosessly g Y @U0d Qg B uo paskeq Aydrelaly INoAe 9911 auo) Ae|dsig
‘uoisusuwip paiys
a1 uo sydA|b Buisn sainglrme euonippe paqua ued am ‘anbiuydsal gz
asnedag ‘salydJelsiy abue| aziensia 0} pasn anbiuydsa)l uonezijensin uonewlojsuel |
Arewnd Ino si siyl ‘92410 reuejd ® uo paseq Ayateialy 1noke 93l Xsig Aeidsig | Buiddel rensip

*Jayjloue Ylim auo

rlIgab|y ulened

Bulppe /6unoengns Ag sulaied uoneandy Buipeaids arebaibbe/aredwo) | uoneandy Buipeaids uonoeNSaY
"SyoaM Jaylo woly suianed Jaylo yum pabelane/pappe/paioeligns elgeb|y ulened uoneziensip
g Uayl ued yaiym ‘a1is gam ay Jano uianed Aouanbal) e sajeiauas Aouanbali4 abesn Uyl
"8)IS 3J1IUd 3} JO MBIA |NJBSN e salelaush
wEFdSEC ul [eaiyatesaly Alybiy si aus gam xolax ayl aouIS ‘sanbiuyoal uonewojsuel |
uoneziEnsiA aaJl snoleA Buisn pazifensia aq ued Jey) Aydsesaly e ajelauas) ([esianel] 1Sli4 yipealg uoneziensi
‘'swiyiiobe BuldlsN(o JuaIayIp [eJanas uonoe.sqy
Buisn ‘siasn Jo sdnoib Alnuapl se [jom se ‘swall 8y] JO SasSse|d aonpoid Sapou Ja1sn|D | [eanAfeuy UIYLAA
‘(lunod doy) Jayioue 01 3|1} BUO WOJ) MO} uolyewuojul
alpesn ay1 pue Aouanbal sse®a|l yoea Jo uonezuewwns Ajlrep aonpolid abesn 10enx3
uonewlojul | uoneuwojsuel |
's9|l) 1xauadAy ayl wody ydelb abexul a1eald abexul| 10enx3 1R
"8pOU 1004 81 JO SHII|D INO} UIYIM B|geydeal ale Jey sa|i Ajuo
Buiurelyoo eiep Jo 18sgns e aleald ‘ajdwexa 104 “erep ayl JO 19sgns e a1eal)d aneA-1al|i4 aneA UIyupA
uonduoasaqg Jojelado adAL

Table 4.3: The Web Analysis Visualization Operators

90

have in implementing these operators.

45.1 View versus Value

The closer an operator is to the view end of the pipeline, the more it takes on view operator
properties. Similarly, the closer an operator is to the value end of the pipeline, the more it
takes on value operator properties.

Figure 4.5 illustrates the addition operator at different levels of the Data State Model.
Figure 4.5(a) shows an visualization addition operator that operates at the view level, where
the pixel values are determined. The system takes two data sets, and generates two visu-
alization representations, which in turn determines the two views as bitmaps. These two
bitmaps are then added pixel by pixel to generate a new bitmap. This is an example of a
within view stage operator.

Figure 4.5(b) shows an example of a within visualization representation operator, which
takes two polygon visualization representations and adds the two polygon lists together to
form a new polygon visualization representation, which in turn is rendered into a bitmap
view. The example shows that because the operator processes the information at the poly-
gon level, the user can rotate the geometric content.

Figure 4.5(c) shows an example of a within data stage operator, which takes two raw
data sets and adds them together to form a new data set. The data set is then processed
into a new set of polygons, and a new bitmap view is generated. The example shows that
because the underlying data set is changed dramatically, the visualization algorithm may
produce a view that is significantly different from the views generated from the two original
raw data sets.

The Data State Model makes these differences explicitly clear, thus making end-users,
designers, and implementors aware of these issues. Upon realizing these choices, imple-
mentors must examine the application requirements to decide which of these different oper-

ators should be implemented. Because of this framework, we can even ensure application-

91

raw data raw data
A 4 \
polygons polygons
@ —=
¥ v
+ =
bitmap bitmap bitmep
raw data raw data
y
(b) polygons polygons | polygons
A B -4
¥ v v
)
bitmep bitmep bitmep
ravdata | + raw data = raw data
A v y
(C) polygons polygons polygons
>> << ==
v v

E

bitmep bitmep bitrep

Figure 4.5: Multiple level of semantics for the addition operator at different stages of the
visualization pipeline.

92

independent operators, such as the pixel-oriented operators we described above, are imple-
mented within the architecture of our software system, making re-implementation unnec-

essary.

4.5.2 Applicability of Operators

The breadth of applicability of an operator is dependent on how similar it is operationally
to other operators in the system. Earlier we described the issue of operational similarity for
operators. Between two operators, the more operationally similar they are to each other, the
more actual code they can share. Code sharing means that it is possible to create templates
for these operators, thus reducing the amount of re-implementation.

The Data State Model helps in describing this phenomenon. The breadth of an operator
is dependent on how late it comes in the visualization pipeline. Moving down the pipeline
gets us closer and closer to a generalized data type that is applicable over a wider range of
data domains. For example, rotation, scaling, and other scene operators tend to have very
broad applicability, because view operators mostly operate on geometric primitives.

In order of decreasing breadth of applicability, we list some examples of the following

different levels of applicability:

e As mentioned in Section 4.3/iew Stage Operatoysuch as rotation, are applica-
ble across a large set of data domains, because they operate on computer graphic

geometric primitives such as lines and polygons.

¢ Visual Mapping Transformation Operatoase usually applicable to a wide variety of
data types. For example, glyphs, icons, streamlines can be employed to show multi-
dimensional data at a particular spatial point. Worlds-within-Worlds [37] can be
used to visualize high dimensional surfaces. Cone Trees [85], Hyperbolic Trees [57],
TreeMaps [54] and Disk Trees [28] can be used to visualize a wide variety of hierar-

chical data.

93

¢ Visualization Transformation Operatocan be applied to data domains with similar
goals. For example, multi-dimensional clustering can be used to reduce the dimen-
sionality of any problem that can be formulated using a feature space. Breadth-first

traversal can be used to produce a hierarchy out of a graph network.

e Data Transformation operatorare specific to the particular data structure from an
application domain, because they take the data structure as input, and output an ana-
lytical abstraction. Examples include creating text vectors from a list of documents,

or creating a graph network from a web site.

e Value Stage Operatoime specific to its associated data type.

4.5.3 Operator-Centric Approach

In our Data State Model, we are explicitly taking an operator-centric approach. If an oper-
ator appears to be able to operate on multiple types of data, we separate the single operator
idea into several different operator implementations. As an example, if a filter can be
viewed as both a value operator and a view operator, we separate these two meanings into
a value-filter and a view-filter operator.

This approach is the opposite of the data-centric approach, which favors overloading
operators so that they can function with multiple data types. The data-centric approach has
the advantage of simplifying the space of different operators. This presents a simpler end-
user model at the cost of complexity on the part of the designer. The data-centric approach
also sometimes creates semantic ambiguities that are very confusing to the end-user, as
we saw in the HomeFinder view/value-filtering example at the beginning of the chapter.
Moreover, the added simplification of the operator space in the data-centric approach does
not represent significant complexity savings. Since a visualization system needs to deal

with many different data types, the operator space of such systems will be very complex

anyway.

94

Our operator-centric approach is a significant departure from past visualization models,
and gives the Data State Model the ability to classify different operators in finer grain detail.
By taking the approach of classifying the space of operators in finer detail, we can more
easily reuse operator definitions, and actual code implementations. This in turn will be a
benefit to the end-user, because there is little ambiguity in the semantics of the operator, as

each operator is precisely defined in its inputs and outputs.

4.5.4 Direct Manipulation

The amount of direct manipulation that is possible in an operator also lies on the visualiza-
tion pipeline scale. The closer the operator is to view, the higher the amount of interactivity
is possible, because the operation has a visualization to manipulate. For example, the ge-
ometric position and orientation operators are easily directly manipulated. As described
in Section 3.3.3, variable-to-axis mapping in our SSR system is a Visualization Transfor-
mation Operator that can easily be specified using a point-and-click approach with dialogs
and menus.

As we move up the pipeline toward value operators, the amount of domain-dependency
increases, making the specification of these operations more and more difficult, because
near the raw value end of the pipeline, operators do not directly perform on a visualization.
For example, the parsing of a file for data extraction is a Data Transformation Operator,
and it is extremely hard to design an interface that allows the user to specify the file for-
mat. Interestingly, MS Excel has certain amount of automatic parsing capabilities using
an 'Import Wizard’. This is because the need to import data is especially important to its
users. Such capabilities are hard to design for information visualization, because the wide
variety of data domains has different data and information structures. Indeed, for many

visualization systems, the hardest part of the visualization process is importing the data!

95

4.5.5 Implementation Choices

A model should also help us choose implementation methods for the operators. What does
the classification of the operators tell us about how they can be implemented? More specif-
ically, if multiple pieces of software modules are used in putting together a visualization

application, where should a particular operator be implemented? There are three basic

choices for implementation:

¢ Inside the visualization system. Examples of operators appropriate for this choice

are scene operators, camera operators, color scale operators.

e Using queries inside a data management engine, such as a database management
system (DBMS). For example, we can use the full power of relational algebra to
organize and use OnLine Analytical Processing (OLAP) to analyze and generate the

meta-data.

e Using an analytical engine outside of both the data depository and the visualiza-
tion system. Examples are differential equation solvers for fluid-flow simulations,
Web crawlers, numerical analysis in Mathematica, Maple, Matlab, business compu-
tation using numeric spreadsheet in MS Excel, or image, sound, video processing in

Khoros.

The operator model also helps us in choosing between these implementation choices.
For example, if an operator is closer to the view stage in the pipeline, then it is most
efficient and most easily implemented in the visualization system. Data flow systems such
as AVS [8] and Data Explorer [50], and our Visualization Spreadsheet [30] implement
most, if not all, of its visual mapping transformation operators and view operators in the
visualization.

Often the data source of a visualization comes from a data analytical engine such as

a relational database. In these cases, if an operator is closer to the value stage of the

96

pipeline, then it is often more efficient to implement it in the database management system.
For example, a merge data set operation is often a simple ’join’ command in a relational

database.

4.6 Discussion

4.6.1 Three Classes of Users of this Framework

Three kinds of people can benefit from this framework. First, visualization system devel-
opers can use this framework to make the system extensible to the application programmer.
For example, we have applied this framework to our SIV visualization spreadsheet system
in extending it to multiple data domains, which we presented in Chapter 3.

Second, once a visualization system has been built, application programmers can use
this model to extend the system to new data domains. This framework enables program-
mers to identify operators that are not domain specific and, hence, that they can easily
reuse.

Last, but not least, this framework provides a clean and concise model for end-users to
understand how to operate a system such as the visualization spreadsheet, and to predict

the results of applying operators.

4.6.2 End-User Advantages using this Framework

Of these three types of users, the end-user matters most, because the visualization model
must help the end-users achieve their goals faster and easier. So how does the Data State
Model help the end-user when using the visualization spreadsheet? Empirically, we have
some end-user experiences with this framework in our SIV system. In our experience, the
development of this framework enhances the usability of the spreadsheet by solving the
following three problems.

First, the framework provides a user interaction model so that users can understand

what they have to do to get a visualization. This is accomplished by incorporating the

97

visualization pipeline process model. By following the steps in the pipeline, the user can
perform the actions required to create a desired visualization in the correct order.

Second, the framework establishes users’ expectation of the flow of changes to the
data. This enables users to understand how the system works, and how the data flow can
be manipulated to perform the correct analysis action. For example, let us create a set of
textual feature vectors from a set of documents (see the left side of Figure 4.2). In one
analysis, we choose to do multi-dimensional scaling, and in another analysis we choose to
first create a subset of these textual vectors before applying a clustering algorithm. Because
both states are dependent on the same data source, if the set of documents change, both
states would change as well. This is made explicit by the Data State Model.

Third, the framework cleanly solves the operator semantics problem, because it models
the separation between view and value. The view versus value filtering example mentioned
in the introduction is an excellent example of how the framework forces interaction de-
signers to realize potential ambiguity in the semantics of operators. By forcing designers
to think about where operators exist in the pipeline, the operator semantics are made ex-
plicit. By having a cleaner model, the end-user can now choose among several operational
semantics that correspond to the correct action that she desires. The user can interact more
accurately because she understands how operators in different stages of the pipeline fit

together.

4.6.3 Visual Sensemaking using Visualization Operators

Information is the reply to a question. —Jacques Bertin [15, p. 11]

Visual information processing is not instantaneous, as there is no such thing as an au-
tomated analysis machine. However, visualization systems, such as SIV, provide tools to
reduce the cost-structure of obtaining information for the next step of the analysis. By care-
fully analyzing a particular domain (e.g. the Web site analysis task described in Chapter 3),

the total time spent on a study can be significantly reduced.

98

A cognitive task structure called sensemaking has been developed to describe user in-
terface tasks [86], which we mentioned in Chapter 2. Bertin mentions the five major stages
of decision-making in [15]. In thinking about the visualization operator framework, we
use these five major stages to define the finer grain Visual Sensemaking Cycle. Figure 4.6
shows the Visual Sensemaking Cycle and its various stages. The gray boxes denote Bertin’s

five stages of decision-making.

| Defining the problem I

|
| Defining the data I

I Choosing an analytical abstraction |

IChoosing visualization abstractions |

|Adopting a processing language |

ITranscribe the value into view

|Processing the value or view |

| Interpret and deciding |

Iterate

Figure 4.6: Stages of the Visual Sensemaking Cycle

Here we show that the visualization operators in this framework and implemented in
our SIV system helps users carry out the various stages of the sensemaking cycle. We apply

the sensemaking cycle to the Web site analysis task scenario.

1. Defining the problem: An analyst, when faced with a problem, first defines the prob-
lem by asking certain questions. Sometimes the questions are formed in the context
of a hypothesis. For example, are certain areas of the Web site accessed more than

other areas? Does the access pattern in these areas change over time?

2. Defining the data: Once the problem is framed in the context of hypotheses, the

99

analyst must now gather the raw data that are necessary for analysis.

. Choosing an analytical abstraction: The raw data must be organized into data struc-
tures for easy access and query later. E.g. we extract the linkage information into a

graph specified using adjacency lists.

. Choosing various visualization abstractions: Visualization researchers know certain
information abstractions are visualizable. Depending on the structure of the analyti-
cal abstractions and the visualization techniques that are available to the task, devel-
opers can choose among a variety of visualization abstractions, or new techniques
must be invented to visualize new analytical abstractions. For example, visualization
researchers know that visualizing a graph network of on the order of 100 nodes is dif-
ficult. Unfortunately, the graph of the Xerox Web site is on the order of 10,000 nodes.
In the WAVS system, to solve this problem and in order to take advantage of the hi-
erarchical nature of the Xerox Web site, we choose a hierarchical representation for
our visualization abstraction. We preserve back links as part of the detail-on-demand

information.

. Adopting a processing language: The next step in visual sensemaking is to determine

the operators that are appropriate for the task.

. Transcribe the value into view: This stage is essentially the execution of the visu-
alization pipeline to generate a new visualization state. The user sees visualizations

that will try to shed light on the hypothesis that was posed earlier in stage 1.

. Processing the value or view: At this stage, the analyst perform certain interactive
operators on the results, such as rotation, scaling, detail-on-demand zooming, value-

filtering.

100

8. Interpret and deciding: The analyst cognitively process the visualization in order to

understand the features that are brought forth by these specific views.

9. Iterate: Specific features will grab our attention in the visualized results. Further
hypotheses will be formed, and new visualizations will then need to be constructed
to answer those questions. The process repeats until the analyst is satisfied that she

has completely made sense of the data.

The power of visual sensemaking comes from the combinatorics of visualization oper-
ators. There exists a variety of ways in which the operators can be combined to answer new
questions. This combination of operators covers a large conceptual space, where some of
concepts are not even conceived ahead of time. By reducing the amount of time spent in
between steps, “what-if” hypotheses and sensemaking cycles are accomplished in a matter

of hours or minutes rather than days or weeks.

4.7 Summary

In the past several years, researchers have made great advances in information visualiza-
tion. Semiologies of graphic representation methods have been developed by various re-
searchers [14, 63, 24] to gain understanding of the visualization design space. In this
chapter, we extended this research to include a framework for visualization interactions
and operators. We contributed to a new way of thinking about the operator model that ap-
plies over a range of data domains, with some specific discussion as applied to visualization

spreadsheets:

1. Establishing a new operator-centric framework for designers to explore the follow-
ing properties of operators in visualization systems: view vs. value, domain depen-
dence/independence, breadth of applicability, amount of direct manipulation possi-

ble, and implementation choices.

101

2. Developing a new end-user interaction model that establishes user expectation, thus
enabling users to apply and predict the result of operators and the relationships they
establish between views and values. We form an analysis process model for users to

apply to their task scenario in their particular data domain.

3. Focusing on end-users’ need for viewing intermediate results in determining subse-
guent analysis steps. We use a visualization Data State Model with multiple data

values and views to bridge the “gulf of execution”.

4. Applying this framework to past visualization systems and techniques, including vi-
sualization spreadsheets. We demonstrate the framework by enumerating the inter-

action techniques in many past visualization projects.

We examined recent work on visualization interaction frameworks and then developed
a novel operator and user interaction model. Our Data State Model unifies the data analysis
process and the complex relationship between view and value to characterize the interactive
and non-interactive operations in a visualization system. Using the visualization pipeline
as a basis, we developed a way to classify operators. We examined not just view and
value, but how data abstractions and meta-data is generated in the analysis process. We
discuss the properties of this framework. For example, we suggested three possible ways
of implementing operators based on where they are involved in the visualization pipeline.

The framework facilitates a new way of exploring the space of visualization operators.
Using the Data State Model, this method forms the basis of an evaluation technique for
operators in visualizations. By applying this operator analysis to various visualizations,
we can point researchers toward areas where particular operators are missing from a given
system or technique. We can also use this model to compare different interaction models
in visualizations. This will enable other researchers to characterize various interaction
techniques, and capture design requirements for new application domains, and develop

new and novel operators.

102

Chapter 5

DUALITY OF THE DATA FLOW AND DATA STATE MODELS

Graphics is a very simple language. Its laws become self-evident when we recognize
that the image is transformable, that it must be reordered, and that its transformations
represent a visual form of information-processing.

—Jacques Bertin [15, p. 183]

Visualization transforms data or information into graphical forms to be represented
on the computer display. Hence, visualization deals with @hsformationsand rep-
resentations Transformation is the process that converts data into graphical primitives.
Representation is the data structures that are used to handle and store the various outputs
of these processes.

Traditional visualization data flow networks [96, 101, 43, 53, 8, 50] have concentrated
on the various transformations that are necessary to generate a computer display. These
data flow networks are typically depicted graphically by drawing a network with nodes
representing data transformation processes, and directional edges representing how data
flows from one process to another. Experience in the visualization field has shown that
the Data Flow Model is an effective visual programming model that lets users build an
application by integrating modular components.

We introduced the Data State Model in Chapter 4. At first glance it has very similar
characteristics to the Data Flow Model. For instance, both models use nodes and edges to
transcribe the visualization process. Both models use these graphs to describe how data
sets travel through the processing mechanism. However, there is an important difference.

Data State Model captures distinct data states, whereas the Data Flow Model captures the

103

order of distinct processes that comprise of a visualization. This difference is reflected in
that the Data Flow Model uses nodes to denote processes and edges to denote data flow
directions, whereas the Data State Model uses nodes to denote data states and edges to
denote processes.

Our research question in this chapter is “what is the relationship between the function-
ality of the Data State Model and the Data Flow Model?” Is one model more expressive
than the other? If we are given an data flow model, can we build a data state model that
produces the same output? For example, are there certain visualization constructions that
are not possible with the Data State Model? User experiences and commercial success
have established the capability of data flow visualization systems and the expressiveness of
the Data Flow Model. By comparing the Data State Model with it, we can learn the merits
of each model.

In this chapter, we show that the Data State Model is as expressive as the data flow
model, and vice versa. We present a duality transformation between the two models. Using
the duality transformation, we show that the two models are equally expressive. However,
expressiveness is only part of the picture. The difference in the emphasis of each model
creates user interfaces that results in differences in the user experience. We discuss the

advantages and disadvantages of the two models for a variety of user tasks.

5.1 Expanding the Data Flow Model

States vs. Stages The Data Flow Model uses nodes to represent processes because the
model focuses on the data transformations. The edges represent the flow of the data from
one process stage to the next. A edge exists only if a process transforms the data into a new
form. Often, in data flow networks, the data state is not explicitly represented by distinct
edges. In other words, the edges represent slaigesinstead ofstates For example,
consider a single data flow chart that constructs a scatter plot (raw dataesdtact point

set— create scatter plot> view). Consider applying two different data sets to this flow

104

chart. Since the model does not capture data states, these two different data set can flow
down the same pipes, even though a difference data set clearly represents a different data
state. In the Data Flow Model, since the format of the data does not change, there is neither
new edges nor new nodes to represent this.

In order for the Data Flow Model to capture the same amount of detail as the Data State
Model, we first define a canonical form of the Data Flow Model that insists on having each
edge representing only a single distinct data state. The implication of this is that we force
the Data Flow Model to capture more details of the visualization process. The syntax and
semantics of the model remain the same. However, this change does not fundamentally
change the Data Flow Model, as it still shows how data flows through the system and
how processes and algorithms transform the data. The model still shows the functional
dependencies between the processes. This definition simply expands the Data Flow Model

based on data set instances.

Definition 5.1 Thecanonical form of the Data Flow Model restricts each edge to repre-

sent only a single data state.

Below, we will show that the canonical form of the Data Flow Model is just as expres-
sive as the Data State Model. By expanding the notion of data flow network in this way,

we can then show the equivalence of the Data Flow Model and the Data State Model.

5.2 Visualization Equivalence

In this section, we first introduce the notion of equivalence between two visualization mod-
els by defining the idea of expressiveness of the visualization model. Then we use a duality
transformation to show that one model can be transformed into the other and generate the
correct output.

To start, we first ask the question, “what is a visualization model?” A visualization

model describes a visualization process, which is a transformation process. A transfor-

105

mation process is composed of a series of transformation steps. So we first define the

visualization transformation. We will use a mathematical functional description:

Definition 5.2 A visualization transformationor visualization operatom processes in-
formationd from a domainD and maps it into informatioa’ in a different domainD’.

n(d) = d', whered € D andd' € D'.

The domain specifies the structure of the information. A domain may be as simple as
the set of natural numbers, or as complex as database records of user transactions with a
hypertext system. For example, a genetic sequence similarity alignment record computed
using the BLAST program is a single element in the genetic sequence similarity domain.
A domain may be a visualization domain, which means that the elements in that domain
are mapped or easily mapable onto the display screen. A domain may be a data domain,
which means the elements in that domain are raw data that are not yet mapped onto the

display screen.

Definition 5.3 A visualization function m is a visualization transformation that maps
from a data domairD to a visualization domaiv’. So givend € D, m(d) = v, where

v € V. Typically,m is composed of a series of visualization transformations from a set of
transformationsV = nq, no,.... Each transformatiom; in a series maps from a domain
D, to D;. The domain of the next transformation in the series must be the safe Bsr
example, ifng = (ng, n3, ne, n1), then applyingn; to d givesms(d) = ny(nz(ns(na(d)))),
whered € Dy, ny(d) € Dy, = D3, n3(ne(d)) € Dy = D,, and so on.

The output of a visualization transformation may not be compatible with the input of
another visualization transformation. This is because each visualization transformation
takes a specific kind of data from a domain as input. Therefore, not all visualization trans-
formations can be composed together, and we cannot simply construct a composition of
an arbitrary series of visualization transformations. The input domain of a transformation

must be the same as the output domain of another transformation for the two transforma-

106

tions to be connected in a series.

Definition 5.4 A visualization modelVM is a set of visualization functions

M = my, Mo, M3,

An instanceof a visualization model is a particular application, case, or example of the

visualization model. The act of constructing a case is caftisthntiation.

Definition 5.5 In the definition above, each; is aninstance of M, and m;(d) is an

instantiation of M.

A model is a series of transformations, which can be viewed as a mapping function
from data to view. An instance is a particular defined series of transformation designed for
a particular type of data.

Next, we define the relation “as-expressive-as”:

Definition 5.6 We say a visualization model is as-expressive-aanother modelB if
given an instancé of B, we can find a model of A such that for all inputs, a(i) gives

exactly the same output &§). (That is, giverb € B and for all inputsi, 3a € A such that
a(i) = b(i).)

Notice that expressiveness is not a symmetric relatibb€ing as-expressive-d$ does
not meanB is as-expressive-a$). However, it does define a pre-order relation because
it is reflexive (4 is as-expressive-ag) and transitive 4 is as-expressive-aB and B is
as-expressive-as implies thatA is as-expressive-as). To prove transitivity, we know
givenb € B and some input, 3a € A such thatu(i) = b(i). We also know that given
¢ € C and same input, 3b € B such that(i) = ¢(i). This means that givenc C and
inputi, we can instantiateé € B anda € A, such that(:) = b(i) = ¢(¢). Therefore A is
as-expressive-as.

Next, we use the concept of antisymmetric relation to define the meaning of equivalence

between two visualization models. A relatidhis antisymmetric if for allx andy, xRy

107

andy Rz impliesz == y.

Definition 5.7 We say that two visualization models aguivalent in visualization ex-

pressiveness and only if A is as-expressive-aB and B is as-expressive-as.

So the “as-expressive-as” relation is an antisymmetric relation. Since it is also reflexive
and transitive, “as-expressive-as” is a partial ordering.

Given this definition, we wish to show:

Theorem 5.1 The Data State Model is equivalent in visualization expressiveness to the

Data Flow Model.

Proof: We will prove this by construction. Using a principle we dliality, we will
show that given an instance of the Data Flow Model we can construct a Data State Model
that gives exactly the same output and vice versa. To prove this in both directions, we use
the directed graph expression of both models and the duality transformation.

Using Data Flow Model notations, an instanggcan be expressed as path- n; LY
n; & Ny LI through a directed graph where the nodes are the transformation steps
N = n;,n;,ng, ... and the data states, d;, d;, . . . are the edges. Using the Data State
Model notation, the same instance can be expresspd-ag; — d; “d, M . where
the the nodes are the data staigs!;, di, . .. and the edges are the transformation steps
N =n;,nj,ng,

Duality Transformation

To perform the duality transformatidnsimply take each edge in the model and convert
itinto a node and convert each node into edges. Mathematically, given a Gledél’, E),

the duality transformation construdyG) = G' = (V', E') where:

e For each edgein E(G), we construct a vertex, in V', and

! This is not the same as tleial graphin graph theory. The dual graptual (G) of a graphG constructs
a node for each enclosed region. If two regions share an edge, then we construct an edge between the
corresponding vertices ifual(G).

108

e For each node in V(G), for each pair of edge&e, e;), wheree; goes intov,
ande, exitsv, we construct an edge from v, to v;,, wherev; andv,, are the

corresponding vertices ef ande, respectively inG'.

Note that in this transformation, a single node may have several corresponding dual edges.

Figure 5.1 shows an example of this transformation.

Figure 5.1: An example of the Duality Transformation

The duality transformation switches the role of the nodes and edges. For example,
in one direction of this application, our state modél= (V, E) uses nodes to repre-
sent data state = set of data statgesand edges to represent distinct procesSes-
set of transformation processeAfter the duality transformation, we obtain/a(G) that
hasV’ = set of transformation processasdE’' = set of data states

To finish the proof using this duality transformation, we need to show that given a path
p in G, we have an patp’ in G’ that produces the same outputjasSayp = v, =

eh=(vL, 2l,)

. §— . . e’ es e’ .
vy B ... 5wy, the equivalent patpl isp’ == o} 37" o) .. vl_, =. The crucial

realization is that an vertex; in p have its corresponding edgephase;; = (v, , v).

Using Figure 5.1 as an example, the patht, b, 2, ¢) is transformed intda’, 1', b}, 2, /).
Assuming(G is using the Data State Model, and th&ts using the Data Flow Modep,

in the functional notation gives (. ..es(e1(v1))) = v;, andp’ givesv,_, (... vh(vi(e}))) =

e;. Given that thevs in G are states that correspondds in G', we see that the inputs

vy = e} andv; = ¢, and the two paths gives same output. In the reverse case @hiere

the Data Flow Model and?’ is the Data State Model, we can obtain the same output by

the same principal. This is because the transformation shows that the order of processes

109

and data states thawisits have exact equivalentsn Therefore, using this duality trans-
formation, we can construct a data flow model thaassexpressive-aa given data state
model, and vice versa. Hence, the two modelseapaivalent in visualization expressive-
ness

QED.

5.3 Analysis

We have described the two visualization models, and how they are related to each other
via its visualization expressiveness. Because of the different emphasis in expression, the
two visualization models have resulted in very different visualization user interfaces. Data
Flow Model based systems create modules that correspond to the process nodes, and data
transferring mechanisms are created to connect the modules. On the other hand, Data State
Model based system create data stores that correspond to the data states, with data pro-
cessing procedures created to connect the data states. While the two models have the same
expressive power in describing visualizations, here we discuss their different characteristics

when utilized to implement a visualization system.

5.3.1 Data Flow Model and Data Flow Visualization Systems

To construct a flow chart is to process information. —Jacques Bertin [15, p. 136]

There are several examples of visualization systems that manifest the data flow network
model. AVS [101, 8], IRIS Explorer [53], and IBM Data Explorer [50] are some examples
of such systems. As an user interface, all of these systems use a large canvas area where a
palette of modules (nodes) can be placed. Users can then connect these modules to signal
various connections. The focus of these systems is to enable the user to easily construct an
scientific visualization process that visualizes the large data set.

The construction describes how the data flows through the system, which also describes

the dependency of the various modules. For any given module to execute correctly, the

110

corresponding inputs must be up to date. This means that the system must remember
the state of each module so that the correct output will be generated. In addition, these
visualization systems allow the association of interface widgets such as sliders with module

input parameters.

Strength The strength of these systems is that they are focused on getting the user from
a data set to a visualization (see [43, 101] for more discussion). When the user has a
particular kind of visualization in mind for her data set, she constructs a mental model
of how to process the data into a visualized form. The data flow network model directly
supports this user goal. The model bridges the “gulf of execution” by modeling the mental
transformation the user performs to the data. This is extremely powerful, because the user

can accurately and quickly construct a visualization that conforms to her mental image.

Weakness The strength of the data flow systems is also its weakness. Because the user
often must have a pre-existing notion of the visualization that she requires, the model sup-
ports the construction of the visualization pipeline but provides limited support for explo-
rations of the pipeline.

Moreover, these systems generally focus on the generation of a single visualization,
instead of multiple visualizations of several different data sets. Its narrower focus on pro-
cesses allows the easy construction of the visualization model, but also causes the screen
spaces to be concentrated on the modules and their interconnections, which leaves very

little screen space for the resultant visualization.

5.3.2 Data State Model and Spreadsheet Systems

An instantiation of the Data State Model is our Spreadsheet for Information Visualization
system. Other similar spreadsheet systems such as Levoy’s Spreadsheet for Images sys-
tem [61] and IISS [44] have similar data transformation models. There have also been other

systems that use the Data State Model but do not use a grid layout (e.g. NoPumpG [107],

111

Forms/3 [106, 45], Fabrick [51]).

Data State Model based systems emphasize the operands rather than the operators in
the system, and thus the user can more accurately gauge the intermediate results, and make
adjustments during operation execution. They also make visible separate data states in-
stead of data stages. Operations are generally specified either via a command macro script
language, or via dialog boxes. Some interaction operations are manipulated directly, such
as by using a mouse.

The application of operators automatically creates the dependency between visualiza-
tion objects. The software system must also have an executive that keeps track of the state
of each visualization object, and its inputs and outputs. To ensure correct output, the system

executes the operators in the correct order to ensure dependencies are keep up to date.

Strength The strength of the spreadsheet-like systems that utilize the Data State Model
is that they handle multiple data sets and data states extremely well, since the focus of the
model is to represent data states. Each processing step in the transformation specified by
the user can be visualized to view the intermediate results. The state model has advan-
tages for some visualization tasks, because it makes the intermediate results explicit to the
user, which enables the user to view intermediate results in planning later operations. This
enables the user to monitor the progress of her task and how well the visualization is an-
swering the questions posed by her study. For exploratory tasks, these intermediate results
are important because they help the user in applying her intuition and experiences in the
analysis of the data sets.

In the spreadsheet systems, tasks that deal with multiple visualizations are easier. For
example, in Chapter 3, we show how a user can select an entire row of related visualiza-
tions and apply a single operator to all of them simultaneously. The parallel application
of operators is very natural in the spreadsheet system, but awkward in the data flow sys-
tem. The equivalent process in a data flow system requires dependency connections to be

made between the modules manually. In the spreadsheet system, when the user selects an

112

entire row, a temporary dependency is formed between the visualizations. As soon as the

selection ends, the dependency is broken.

Weakness The strength of the spreadsheet system is also its weakness. It is a poor choice
for tasks that do not require multiple visualizations on the screen at the same time. If a
single view of the data suffices in a particular application domain, then a tailored task-
specific visualization program should be used.

The construction of a single complex visualization is more difficult in the spreadsheet
paradigm than in the data flow systems. A traditional data flow system works better when
the ability to specify complex operations using a point-and-click interface is important.
This is because data flow systems tend to emphasize the operators needed to achieve a
desired result, while the spreadsheet-based systems tend to emphasize the “what-if” explo-

ration of the operands.

5.4 Summary

In this chapter, we showed that the Data State Model is equivalent in visualization expres-
siveness to the Data Flow Model, which means that we can model the same visualizations
using either model. Even though the two models are equivalent in expressiveness, we
showed that their instantiation in the user interface gives each model different strengths
and weaknesses. The Spreadsheet system we presented uses the Data State Model because
it naturally models the data states in its cells, and shows intermediate results, which is im-
portant in exploratory tasks. The data flow visualization systems, such as AVS, uses the

Data Flow Model and are suitable for the construction of a visualization process.

113

Chapter 6

VALIDATION: APPLYING FRAMEWORK TO VISUALIZATION
TECHNIQUES

What is “scientific research”? This is research which reducesalpgiori by justifying
the answers....

—Jacques Bertin [15, p. 265]

In this chapter, we validate the generality of the Data State Model visualization frame-
work by showing that it can be applied to a wide range of visualization techniques. Using
example data domains for each technique, we describe the operators that are possible. In
doing this, we illustrate the power of the Data State Model by applying it to the design of
many well-known visualization techniques.

We chose the various visualization techniques based on their familiarity to the infor-
mation visualization community and their relevance to information visualization systems.
This set of techniques spans a large area of the information visualization design space, as
it is based on a previous taxonomy of information visualization design space [24]. We
included all of the categories in [24], and further included more examples. In looking at
each of the visualization techniques, we first determine the raw data, and how it is obtained
in the system. We then construct the visualization pipeline according to the description of
each of the techniques in the literature.

This analysis shows how each of these visualization techniques would be implemented
in the Data State Model and how it could be used in a visualization spreadsheet. For
each of the visualization techniques to which the framework applies, the result of this

analysis helps us classify and choose how to implement the different operators in a large

114

visualization system, such as our SIV visualization spreadsheet. The visualization pipeline
used here also implicitly specifies the dependencies that are induced between them.

For example, in the hierarchical techniques category, we included four major visualiza-
tion techniques for viewing trees (Cone Tree [85], Disk Tree [28], Hyperbolic Browser [57],
and TreeMap [54]). The techniques share similar data domains and operators in their vi-
sualization pipelines, except that each technique is a different Visual Mapping Transfor-
mation Operator that can operate on the same Visualization Abstractions. Each of the
operators that are listed becomes an operator in our SIV spreadsheet. The operators’ inputs
and outputs then specifies the dependencies between the data. Regardless of which tech-
nique we have chosen to visualize the tree, we can then use these visualization operators to
operate on hierarchical data. Moreover, we can explore the use of each of these four differ-
ent representation techniques as we wish, since the operators in the visualization pipeline
have been carefully categorized. The Data State Model helps in this categorization, which

exposes the similarities and differences between each of the tree visualization techniques.

115

Burey |y
-aneA aiweuAqg
=22) €6 Buled
SnooH ‘9[eds [e20| 0183 INS S90e}INns 10 195
‘are10y ‘Bule|y feuosuBW Ip so|dures iod [euosuaWIp PJIOMN
-M8IA D IWeuAQ yby dey 8Z|PWION YbIH ereq UIYHA-P IO
Sixe Bs sJepwe red
10 uoireINW.ed Burel|ly | ainmes) ePWeled | 199)9p S} pue ppIA /60Bgpsu|
aANTeRIU| 'SIXe JO S97eUIPI000 s SN [eA o1LeUAp puepplA | diyo SIAJOUNI
Bunios BuiLy|ly plekd Busn | Julod :uonseIsqy SPJI0JJ WOy Bumsn spiodai Jo Buipuodss.ioo uononpo.d sps SafeUIpJo0D
-MOIA O JWeUAg Bs iod j0d uopeziensin Bs iodamelD | esynse fusooyd PR3 elep ajduexy plekd
sBuiddew BuLel|lyajcelen vebiequy
SoXe-01-sa[elien paddewun Sps erep safes
Bulel|i Busooy) ‘10d Addy ‘Builel)ly | uiod jeuosuswip SpJo%. SOINO|N ‘DWOH Buikend
-MOIA D ILRUAQ Jo1eds ojul de -aneA dIweuAQq -njnw ake 1) ainmpes) Ooulasked ‘erep ajdurex3 2IWLRUAQ
SI0|d [euosusWIp-NINA
(Ssul| joazs)
ydA|6 o1a|qelrren
ljoud dey
‘dew jeo1yde.bosh S|qellen suoifa
dew o 0o © 0JUO S9|gelfen 9RuIpJo0d so|gelen eowydebosh | suosiea(qSIA
abuey) arwWIuY 9euIp.Jood -096 Jo Buiddew aAleInuenb | 01 payul|SInsiIes
‘9pos ‘OrIoy -09b de |y elreds 10011q | a|dwes azipwJoN oJul J9enx3 1joid ereq adesspue 11joid
uoez|fensi/ peseq-ealyde oo
10|00 yre3 ojuo ybey elen
0] p/rS|8U0Z0 pue ‘spniie| anIreIUenb
dey ybey pue ‘spniibuo| 0} o sa(dures awn eUsIuBI L
dew.Jojoo | ‘spnime| ‘spnibuoj sanfenanelivenb | ssnpeaaaieinuenb uoew.ioul Jano uoirew jojul
abuey) arwIuY 0]1S9|qellen Jo Buiddew pue sa |duwes jeo1ydebioah [eayde.boah uoieziensin
‘91e3s ‘arIoy anmeinuenb de eleds 1211Q 9ZIpWIoON 1Penx3 | Jefejauozo ereq JBRe18u0z0

uonezifensiA o1jAUe IS

MSIA UIYHM

uolrewJojsuel]
Buiddely rensia

uonoe.sqy
uoneziensin
uIgIMm

uonewlojsuel]
uoneziensin

uonoelsqy
[eonAfeuy UIynMm

uonewiojsuel]
ereq

anfeA ulyIm

anbluyosa]
uoneziensip

Table 6.1: Various visualization techniques analyzed using the Data State Model

116

(861y0)s@1>81A
‘(TeUOSuLOr)
denealL
‘(Gebuidure)
deneoIL se Jsmoug
yons ssydeo.dde sabps 10 sepou o1j0q.edAH
Buiey|y-pre| | Bui|jiysoeds Busn jo Burel|y-aneA
olweuAg Alddy | 1noAeT ‘eeil ¥s1a olwreuAp Addy ainpnJis ‘(TeUOS1IRO0Y)
‘@1 Jouonsod | Busn inoke ‘son abexui| ggw 1o 891)18U0D
puUe uoireIua 1o o1jogtedAy Busn Ayrey ydeio Pe1BdAH ‘sireyo
abueyD ‘eo.agns noAe ‘SuU0D | 894 uonJeISaY jesenel) :uonoesqy uomreziuefio 'sanbiuyoe |
9pIH Bpousnood | dg Busn inoke uonezifensin 541 Yipesiq od eonAreuy | ydesB ojuloenx3g | wesAs a4 rereg [ea 1y e IH
S321]
|fep
jospmr| LRYIP Keidsip SpJ00a1 Jo BuLe |y
asooy) |1 paseq-uol1osIp |aneA oIWeuAQ
-MOIA D1LeUAQ 1X9IU09+SNJ0} $9.INn1ea) Wil
‘we}| ue snood ym yIm s1| Jeaur 1S pI0osJ pes.ed wesAs Tefe|unoe N
‘1lem enonsed | ‘sydA|6 yim gg ul :uonoesqy SpJodsl Jo :uonoesqy SpJodal ol 9|l ‘|8|Npays
B UOSN0S | spued |em okl uomezifensin BI1| Jaul|aral) [eonAfeuy | uoIRW.IoUISSed xereq a|durex3 | e\ 9A11090s Jod
sa0eds pue sadedspue] uoirew ou |
a|ge1 SpJodeJ 110S
peseq-uoosIp 9|Ce) dllswnu
1X9IU02+SNJ0} pa1dNJIsuU0D SPJ0%8. J1BLINN SpJoJsl G60eY eye0ey
[Spele]t yum ‘sreq Busn uonoeJsqy | SpJogsl wolyaigel :uonoesqy JLlBWNU 0| soisies sfeld
uolosIpabuey)d | equnu Juessidey uomezifensiA | dLewWNU 1DNJSU0D [eonAfeuy SolIsIes asled |fegeseq ereq sueal0eL

S9|qe L [euosuswip-#INIA

MSIA UIYHM

uolrewJojsuel]
Buiddely rensia

uonoe.sqy
uoneziensin
uIgIMm

uonewlojsuel]
uoneziensin

uonoelsqy
[eonAfeuy UIynMm

uonewiojsuel]
ereq

anfeA ulyIm

anbluyosa]
uoneziensip

Table 6.2: Various visualization techniques (continued)

117

laplis
-M3IA ALAISUDS
10|02 asN ‘9zIs
|oquwAs abuey)d
:sdewspou Jo4

f

Japl|s-Maln
ploysaiyl Aianb
olweuAq ‘ybus)
aul| 10 ‘sSSauxdIy}
aul abueyd
‘paads uonewiue
abuey) Buiysniq
Ag uoireoynuap|
‘Buisnaoy
Ja1vweled ‘wooz
‘J0j0D ‘8zIS
abuey) :sdeunjul|
ue sdewapou o4

suwnjod
pue smoJ ainwiad
{J9pIIS-MaIA B}
ploysaiyl :Aeidsip

5pJo2a. a1ehalbby
‘sonsnels
pake|dsip

10 sa|qelIeA
asooy) ‘Buiiayy
-anjeA ajgelen

'S19S erep ayl
JO SMB3IA JUBJIBYIP
[eJonas ‘asemyos

Juswabeuew eyep

puisn pajuswajdwi

Se pauonusw

Xuew Jo4 paddewun sI uoneba.bbe
(,6uluonipuoo, ‘sonuewss
U pajed = susened Buriayy
Kay) Buiayy a.nJes) pare [oosse UO 79 JUNWIOD anfen/Mmaln
-MBIA B|qelIeA sdewsapou puUe uoreusep |lew3 | pappe :Juawwo)
paddewun Jo ‘sdeunjul| SYJoMPBN pue 82.n0s ‘swo |} 1oed
oeqpas) reaiydeiboab pue ‘sydeio Jospliods. pesred PUR| ‘Bpew Gglaxoag
punos :SMain Xurew :uonoelsqy ‘uonoe.sge s|reoauoyd s¥es
2a.y) |e Jo4 | se ydelb Ae|dsig uoleziensin eanAreuy erep adwex3 IEINEE]S
Ul pue spoN
uonoensqy
uoljew.ojsues] uoneziensin uonewlojsuel] uonoensqy uoirewlojsuel] anbluyosa]
M3IA UlyIM | Buiddepy fensia UIYIM uoneziensiA | eonAfeuy Ulyim eleq anfeA ulyIm uonezifensia

Table 6.3: Various visualization techniques (continued)

118

uons|jooayy
sisiabed jo | woJy 4ooq e amxs.o
a|d suoioe|joo abe N pue TdNe wouy
Asos1y oo Ind ‘sis1| afed a6 N Iveso {sxsl| jo
'sue Juswndog so|id ‘o (el 111 Buiiea.) Jpus sobed g
Busnooq | ‘4pUsH00q 31B.D SIs!| | >ooqg uodidaded ayy Bumeb Aq
MBI Hooq e ul 'sue Wwewnooq | abed Jo uois||0D ‘9|1d e Jo »ooq pare.Jouab sabed afied g\ 96peD
safed ybnouyr dij4 Busn mai1A | ‘sisijafed fesui] | e owiarbeIBby | TINLH Jo sefew| yoes Jo saffew|
‘affed e U0 SNoOH ‘safied a(dnjnwi :uonoesqy ‘saffed Jo :uo e sqy R ‘sofed sabed gawm Bbelo40eM
j00gB UOSNO0H | Y1IMSX00q 818810 uomezifensia | 1| Jesul|apeeld [eonffeuy M e LBy JojsTdN ereg pue %o0goeM
od
Jo)eds arWIUY
Seixeeo Jod
S0 981D Awnb
adeosewey] 104 pewbem wioyed
ssheue wsy) pue well G695 I
10ds sfa|en Jueuodwiod SI0J0BA | Ueasooy) :I0109A
|/ep U0 SNo04 puesi||y Jjo ediould Buiess | X1 :uonoeisqy Aouenba) piom sallols [IXe e
BleI0Y ‘Wo07 | ssdelns ojul dejy [euUoBLBWIP-RINIA [eonfreuy [ENXe1818lD | SWBUNND eled | puesdesssuByl
(Burery
-NOIA 3] BAO Buieyiy
Jorekpll ue Bbusn (Uorrew o -anfeAaigelen saouanbas
AQ) uorrewiuy pasred paddewun JAyo Auew Jo
‘pUeWBP-UO Bunussaida. ‘sjiodal | aseqerep e 1surede
-1erg Juwewubife J10109A yIm ainpniserep) | ueBIp Usameq aousnbes a|Bus
a|buis e uo snooH 18s Wiod ainjeaH SpJo%aJ | SpPJ0384 WWUbI Y uondengns e Bulredwod 961UD
‘Wooz arpuel sydA |6 uonoelsqy | WoJy uoileuliojul uonoelsqy | ‘UonIppy ‘suodel woJjsliode.
‘uoieioy -qwiod ol dey uomeziensin Bunosenxg eonAreuy enpe) bus.req Alrejws ereq | emeiAuewub Y
XL
uonoensqy
uoljew.ojsues] uoneziensin uonewlojsuel] uonoensqy uoirewlojsuel] anbluyosa]
M3IA UlyIM | Buiddepy fensia UIYIM uoneziEensiA | [eanAfeuy ulyIm eleq anfeA ulyIm uonezifensia

Table 6.4: Various visualization techniques (continued)

119

uoreziensin
auwn|joA
ays Bu oy
‘suoleedo
Busssooud swsiueyossw
afew BY10 Busssoo.d
pue 8[eds 0|00 aflew| BYI0
abuey) (o114 pue a[eds 10|00
9few| a0y abueyd ‘11|14
‘afew | aeI0Y
(Mo 01erep
wo.} Buiddew S|eXoA ‘siexid y6hona
109.11P) S[PXOA WO 1} :uonoe.isqy
sawN oA ‘sexId uolezifensin pue saffew |
wo.y sefew| MaIA [eonhfeuy ‘ereq 10} RUEPER.dS
SEEITSSEENES
S0l 8yl
ybnoJylarew vy
SIS | Uo
79N wb1uby Aq
safled uo Buiysnig
'S01fs 910y
"} uo Buppip
-yb11 Ag apou
© JO AJIA108UU0D (@15 gam
8y} uo snao) (3pus | ayy Jo ABojodo L
Buiwooz ‘sgn --aqn1a[gsIAuI) ydeJb jo pue ‘abesn
awli] ay; ol s3] ¥s1d s3] U01199](00 paepJo “UBIU0D) SoNSIlels
¥Jeq sl bulg | o uoiebelbbe ue JO IS1|pasepIo | awn o uonsod Se pajussa.da. a1s | abesn pajeloosse
‘@0Ise UOSNo0H | Busn pejuesaidal sea9.J1 Buinjong apou [eqo | ydesb Buniong | gemayi Buiweld | Siipueawn JBAO 861UD
110} S9N1500 SIyoIym uonoesqy Ulim eslonen uonoesqy | Againionuis gem | Buinjons ainions
9z|ubodsy | ‘agn awilL aeI) uomeziensin 411 Ypesiq og [eonAfeuy | woJj ydesb axeiD oW ereg sgnlawil
uolrezifensiA e
uonoensqy
uoljew.ojsues] uoneziensin uonewlojsuel] uonoensqy uoirewlojsuel] anbluyosa]
MaIA ulynm | Buiddeny rensin UIYIM uoneziEensiA | [eanAfeuy ulyIm eleq anfeA ulyIm uonezifensia

Table 6.5: Various visualization techniques (continued)

120

udA19 eigebe 86 IUO
ulled Ae(dsig | useied uoireAIDY
uolewiuy | ‘uleied buliop)d Buipes.ids uolewoul aneA-BlH 1P9Uspeslds
‘wooz puewsp-uo | Ajddy @81 auod Addy ‘eigebe aflesn 10ex3 uoiezIEensin
-1epq ‘siormsdo Aeidsiq ‘9041 | udered Aousnbeuy jesinel] ‘UoIewLIoUI ssAeue abesn Busn
olpwosh Addy ¥1a Aejdsia afiesn wiioyed 514 Yipes.g Sspou BIsN|D abiexul| enx3g 915 GAM\ Bted SsARUY GBM
uorewosuel |
Buiddew ensia sJoresedo Bs erp
uoendivew | awes afeys 01S|d orIgeb|Y {11
109.41p pareulpioo) | abuey) Buiddew -anfeA olWeuAq
‘uoIrew iUy Soxe-0]-9[gellen S| Usamieq
'S| PO Usamieg Busooyd awl oo uosod yde.b jo N 3 puspuadeqg
uonippe 199lqo 0/d Joeds "0J0 's39.41 J0 81| 3pou [ego|f | uonos||00 pasepIo | gemay) Bulmelo MSIA pUe an e
J1IBWO0SY) S|P ‘sydA|6 ‘sa11 | ‘Ayoresrely :1ojoen UM jesienely Se pajussada. Againpnis 0l ‘ujened | smo|fe uewwo)
USSMIB] LoIpPe | >S1Q ‘8941 8U0D ainyesa) yim Bl yipes.q ydesb Bumjons | gem wouy ydeid afesn g
afew pXxid ‘Uolrezifensin | 188 UI0d -8oelns 0Q ‘spJod. ‘soldmanfen | ameel) ‘swps juiod ‘21NN 1S G/ SINOJUI/BIUD
‘UoIRIUB Lo pUe Jeq Xupew parenbue WoJj S9Ines} ‘sps wiod pue wiopuelawpal) | ‘syuodal AlLre|ws
uonsod 109[go ‘uorrezifensin XLIR ‘188 e 10e1X3 | X1JTew pazifew JoN ‘suodes enixe)l | 2ouenbas XN uoneziensin
abueyD ‘.11 agno XLeW | Iod :Uuonoessqy ‘uorenBuels | :uooeIsqy asked ‘solew ‘SIS WI0d SIS uorewioju |
-MBIADIWeUAQ | ‘dew By aReID uopeziensiA | AeurepQ woyed [eonhfeuy 9Zlpw.oN erep ajdwex3 1o} POUSpERIdS
uonouny
yrew induj ‘well
eppe buppid
sdigsuorepl
Aouspusdsp |0 sdiysuoirepl
MOUS :UOIRIB LIo skpisaneA apwWyYILe abueyD
J11eWoah Busn sa|qelren ‘suolpuny Jo
awes busn Jussa.Idey Bpuwe.kedabueyd
MOIA ‘JU0} Jo ‘Soweuws |1} o}
clewJojod uowwiod | 1xe181al) so|d suonouny
01abuey)D | aull gz ‘siew feq SaAIND [eo mewayre |\
‘spefgo oupwosb | gg busniod ‘ds | pendwo) ‘Xuren Sppow uoouny 'SpJ0J8J XLITe N 9sfouLs e\
JO UOIBIUBIIO | UIS30e}INs 918lID :uo e lsqy yrew woJy uonoelsqy | seoud uondo ind erep
abueyp | ‘dew meyamei)d uopeziensiA | seAIN0 sindwiod [eondfeuy | pue |eoamndwod [eloueuld ereg 3SS3ANIH
uonoensqy
uoljew.ojsues] uoneziensin uonewlojsuel] uonoensqy uoirewlojsuel] anbluyosa]

MSIA UIYHM

Buiddely rensia

uIgIMm

uoneziensin

[eonAfeuy UIynMm

ereq

anfeA ulyIm

uoneziensin

Table 6.6: Various visualization techniques (continued)

121

Chapter 7

IMPLEMENTATION

Graphics is progressing even farther by giving a visible form to research and method-

ology.
—Jacques Bertin [15, p. 265]

In this Chapter, we document our experiences of building visualization spreadsheet
systems. Our experience is enhanced by collaborating with potential users in specific data
domains. By documenting our experience, we hope that others can benefit from this im-
plementation knowledge.

Our experiences with the spreadsheet paradigm consisted of two stages. In the first
stage, we took a prototype-driven research approach in studying how spreadsheet environ-
ments can be employed for visualization. To this end, we constructed a prototype visual-
ization spreadsheet system for molecular biology. We started with a complete visualization
application that was built for studying genetic sequence similarity that has only a single vi-
sualization at a time on the screen, which we call a “single cell application”. In the second
stage, we used a visualization toolkit to build a general visualization spreadsheet called
Spreadsheet for Information Visualization.

In this chapter, we first describe the system we built in the first prototype stage, then

we describe our general visualization spreadsheet system.

7.1 The Prototype System: Spreadsheet for Similarity Reports

The first system is a domain-specific study on how spreadsheets can be structured and used

in performing specific tasks in analyzing genetic sequence similarity reports, and is called

122

“Spreadsheet for Similarity Reports” (SSR). The system is designed for biologists and their
task of comparing similarity reports, which we presented in Chapter 3. The flexibility of
the layout of a spreadsheet enables the user to compare the contents of a cell to other 3D
representations of the same or related data in another cell.

SSR is built using the OpenGL graphics rendering library and the Motif X11 interface
toolkit using the C++ programming language. SSR is a spreadsheet version of a non-
spreadsheet system we call “AlignmentViewer” [31, 32]. It includes a computational steer-
ing environment for rapidly executing the similarity algorithm on multi-processor comput-
ers using different algorithm parameters. For analysis, it provides animation, filtering, and
variable-to-axis mapping capabilities.

SSR uses noun-verb interaction techniques, to explore their suitability for spreadsheet-
based information visualization. Each spreadsheet cell contains abstract data that is geo-
metrically represented in 3D. The user first selects the cells (the noun), and then selects
the operation to be performed on those cells (the verb). The user can specify in each cell
how to map the higher dimensional data into 3D geometric representations. The user can
construct other 3D geometric mappings of the same data, apply rotation, translation, and
scaling/zooming to the cells, filter the data, or even animate the data over a variable in a
cell.

The AlignmentViewer system was a single cell application that packaged many inter-
actions that are necessary for the analysis task that the molecular biologists perform. Their
need to compare and contrast several visualizations at the same time lead us to transform
this single cell application into a spreadsheet system. We analyzed the task structure of the
comparison analysis, and determined that the current single cell application model does
not fulfill the need to support these tasks. Our experience of moving this application to
the spreadsheet model is that the underlying rendering routines and program data struc-
tures had to be reimplemented. This is because a single cell application typically has its
rendering routines hardwired into a single graphic context. This is true when using most

graphic rendering libraries, including OpenGL. The conversion process was neither triv-

123

ial nor easy. However, as shown in Chapter 3, the resulting system indeed supported the
comparison task and provided the necessary interactions to the users.

Our experience with the first custom-tailored spreadsheet system proved that special
purpose spreadsheets can be tailored to provide support for tasks that are difficult or impos-
sible to perform with a single cell application. The question is whether a general purpose

spreadsheet visualization system is feasible and useful.

7.2 The General System: Spreadsheet for Information Visualization

The second system is based on our prototype stage experience with SSR, and is a gen-
eral visualization spreadsheet called “Spreadsheet for Information Visualization” (SIV, pro-
nounced “sieve”).

Figure 7.1, we show a diagram of the control flow of the system. The user interacts
with the system via the input devices, such as the mouse and the keyboard. A command
parser then decodes the input and feeds the result into a command interpreter. The com-
mand interpreter instructs the executor to execute instructions that correspond to the user
command issued.

To carry out the instructions, the executor modifies the memory, which consists of three
parts: grid memory, dependency information, and command workspace. The grid memory
holds the cells of a spreadsheet. A cell holds an entire raw data set. The dependency
information specifies the relationships between the cells of the spreadsheet. A command
workspace holds the temporary data that is generated during computation.

Graphical processing routines render the contents of the memory to the graphical dis-
play. When the user makes her input via the input device, she gets immediate feedback of
her actions via a formula entry box and a status window. The user gets her feedback via
this graphical display to understand and make discoveries about the data sets in the cells.
Each cell view can occupy its own window for finer detail, and its dependency relationships

appear in a formula entry box.

124

Graphical
Input Devices Display
Commard Graphical Rendering
and Processing

Command
Interpreter
Dependency
Information
Grid Menory
(storing cells)
Executor
Command
Workspace

Figure 7.1: Interactions and Control Flow of the Spreadsheet for Information Visualization
System

125

Figure 7.2 shows the architecture of the SIV system. On top of the windowing sys-
tem, we use a graphic rendering library, such as OpenGL. We use the C++ programming
language. On top of C++, we use a visualization toolkit, which provides various visualiza-
tion rendering techniques. We use a scripting language such as Tcl/Tk to enable users and
programmers to interact with the system using higher-level programming constructs than
a complex lower-level language such as C++. We prepackage many often-used commands
into procedures written in the scripting language. Finally, the user interacts with this entire
system via a user interface, which is presented on the display to the user directly.

The system is built on top of the Visualization Toolkit (VTK) [89, 90]. We chose VTK
because it provides an object-oriented architecture with many pre-built objects that we can
use for exploring the spreadsheet paradigm. This is one of many advantages of using an
existing visualization toolkit. For example, since VTK can be used in conjunction with
the Tcl command language and Tk widget toolkit, it facilitates rapid development in an
interpreted environment. The system can also run on multiple platforms since VTK and
Tcl/Tk are both available under Unix and Windows 95/NT. SIV is scalable and can handle
any data sets that is importable into VTK. SIV is capable of handling sixteen megabytes
of terrain data points, and volume visualization of size 64 x 64 x 64 voxels or larger. For
example, molecular biologists who were end-users in our initial design evaluation have

used SIV on sequence similarity data sets as large as several hundred pages long.

7.3 Discussion

Task Tailored vs. General Purpose The SSR prototype system is custom-tailored to the
molecular biologists’ task of comparing multiple sequence similarity reports. Its advantage
is that since we know the data domain extremely well, due to our long-time collaboration
with them, operations that are needed in their tasks are custom programmed and supported
by drop-down menus. All operations were performed with a noun-verb interaction tech-

nique. This facilitates the ease-of-use of the system.

126

Architecture of Spreadsheet for Information Visualization

Graphical User I nterface

Tcl Scripts implementing Modules

Tool Command Language and Toolkit
(Tcl/Tk)

Visualization Toolkit (VTK)

Gragphic Rendering Library
(OpenGL)

Operating System

Figure 7.2: Architecture of the Spreadsheet for Information Visualization System

127

While the general purpose SIV system can be tailored to this task as well, it requires
an application programmer to achieve the kind of user-friendliness that is available in the

SSR system.

Scripting Language The general purpose SIV system is customizable using the Tcl
scripting language, which facilitates easy prototyping when we encounter a new visualiza-
tion domain. Itis fast to experiment with different visualization techniques that are already
available in the visualization toolkit. If a new visualization technique is needed, it is often
possible to construct new visualization operators directly using the scripting language and
the visualization toolkit. The scripting language greatly enhanced the programmability of

the spreadsheet system.

Visualization Toolkit This programmability is enabled by the many pre-built visualiza-
tion objects that were available in the VTK visualization toolkit. The techniques include
graphic primitives (e. g. texture-mapping, lighting, surface rendering), scalar visualiza-
tion, contouring, dividing cubes, marching cubes, vector visualization, glyphs, streamlines,
streamtubes, tensor visualization, image processing, volume visualization, visualization
modeling (e. g. decimation, implicit surfaces). The wide-variety of pre-built modules en-
abled fast and efficient prototyping that shift the spreadsheet programmer’s attention away
from “reinventing the wheel” and focuses it on the tasks at hand and the operators that are
needed. The programmer can pay more attention to how operators fit in the Data State
Model. In particular, these pre-built modules help programmers in creating the appropri-
ate task-specific operators and in thinking about how these operators interface with the

spreadsheet.

Operator Reuse The advantage of using a scripting language and a visualization toolkit
is that operators are not only easy to program, but they are also easy to reuse. Since most

operators in the SIV system is implemented using scripts, the spreadsheet programmer can

128

easily change the operators by modifying the scripts. Operators that are useful in one par-
ticular application domain often can be used unmodified or slightly modified in another
application domain. For example, we have found the Disk Tree layout algorithm to be use-
ful in visualizing many different hierarchical data in many different application domains.
Once it is implemented in the Visualization Spreadsheet, it need not be re-implemented
again.

As described in Chapter 4, operationally similar operators have very similar procedural
patterns. So even in the case where these operators cannot be directly reused, we have

found that we can often use the same procedural template.

Implementing Operators using Iterators A design pattern that occurs often in the im-
plementation of visualization operators is the need to iterate over a particular variable.
The implementation of such operators can be simplified by using an object-oriented tech-
nique called “iterators”, which is an object that provides access and traversal interfaces to
a collection of objects. Many spreadsheet-level operators could even be described using
iterators. For instance, copying an entire row or column simply requires an single iteration
over the range of cells.

Using iterators to implement operators is a powerful technique. For example, for data
sets that are represented using linked lists, addition can be performed by using two iterators
that iterate over the two lists to merge them. Subtraction can be performed by iterating over
one list while looking for the existence of the element in the other list.

Let us also describe how we can implement animation using iterators. Many application
domains contain variables of nominal, ordinal, or quantitative types [24]. An iterator can
be used to generate sequences of ordered sets of values from ordinal and quantitative types.
We can then use these iterators to specify animations. So for variables that we already know
the order, we can simply provide a default animation iterator. If a variable is nominal, we
can still perform the same action by asking the user to specify an order between the named

values. This is valid, because often the order of named values does not matter in the

129

particular application domain.

Interestingly, by parameterizing the iterator, we can even get different step sizes. An
iterator can even be applied over an variable that is not currently mapped onto the dis-
play [32]. For instance, we can dynamically query over the sales price of homes even if
that variable is not shown on one of the axes.

The advantage of using iterators to implement operators is that we can build iterators
without tying them to the underlying data type. The implementation of the operators then
becomes independent of the data type and the data structure. This enables iterator reuse,
and hence operator reuse. Operator reuse cuts programmers’ costs by enabling rapid im-

plementation.

7.4 Summary

We have developed a system that supports visualizations using a spreadsheet metaphor.
The system supports the Data State Model we described in Chapter 4, and the many lev-
els of visualization abstraction described in that model. We described the architecture of
our general purpose Spreadsheet for Information Visualization system. As Chapter 3 has
shown, the implementations we described in this chapter are successful in fulfilling many
of the task scenarios that users encounter while they are trying to make sense of their large

data sets.

130

Chapter 8

CONCLUSION

Since the mid-nineteenth century, the use of statistical graphics to show numbers has
become a fixture in communicating information in our daily lives in newspapers and maga-
zines. Since the early 1980s, we have seen an explosion of the use of scientific visualization
in computational analysis of complex problems. Since the late 1980s, information visual-
ization techniques have emerged to push the visualization frontier to abstract information
that does not have an inherent spatial representation. Information is no longer simply pas-
sive graphics on paper. Visualization promises to change the way people interact with
information by making information come alive on the computer screen.

Indeed, visualization research spans a remarkable range of scientific and non-scientific
disciplines and corresponding visualization techniques. Visualization researchers have dis-
covered that certain operations are needed across this entire range. These operations in-
clude comparing visualizations of two different datasets, as well as performing algebraic
operations on two or more visualizations, such as visualizing the difference between two
datasets. The challenge is to organize these complex visualization interactions into a co-
herent framework.

In this thesis, our idea was inspired by observing the success of a powerful concept—
the spreadsheet. The invention of the VisiCalc numerical spreadsheetin 1979 enabled ordi-
nary computer users to handle complex mathematical and statistical analysis and fueled the
adoption of personal computers. Spreadsheets have proven to be highly successful tools for
interacting with numerical data with numerous advantages. Users can easily organize large
groups of numbers in cells arranged in tabular form, apply algebraic operations to cells,

manipulating rows and columns of data simultaneously. Users can directly manipulate the

131

numbers. Spreadsheets is useful as an end-user programming tool, especially in enabling
user to define data dependencies and kept up-to-date automatically. These advantages en-
able users to explore “what-if” scenarios rapidly.

Extending from this concept, our novel idea is that, unlike traditional spreadsheets, each
cell in a spreadsheet can hold an entire visualization of a large complex data set, its associ-
ated data selection criteria, and viewing specifications needed to create a full-fledged infor-
mation visualization. Similarly, inter-cell operations become far more complex, stretching
beyond simple arithmetic and string operations to encompass a range of domain-specific
operators. The advantages of the spreadsheet metaphor translate easily into analogous tasks
in visualization. The spreadsheet metaphor can be applied to a wide variety of user tasks
where the primary data sets are represented in cells using visualization techniques. The Vi-
sualization Spreadsheet supports cells containing complex datasets, viewed through pow-
erful visualizations, with constraints between cells linking both data and view attributes.

Visualization Spreadsheet supports tasks that were difficult to accomplish previously.

8.1 Lessons Learned: Answers to High-Level Challenges

We now have evidences of our success. Over the past several years we have learned that the
spreadsheet approach is a powerful and intuitive technique for interacting with information
visualizations. Here we answer the High-Level Challenges from Chapter 1, which are the
guestions that we must answer to address the success of the project.

The first question is,Fow is the visualization spreadsheet valuable for user tasks
and visualization applications?

The visualization spreadsheet idea is valuable in many visualization tasks. Informa-
tion visualization systems confront such questions as how to represent abstract data visu-
ally, what types of exploratory interaction to include, and how to structure this interaction.
Therefore, certain capabilities are critical, such as exploring different views of the data in-

teractively, applying operations like rotation or data filtering to a view or group of views,

132

and comparing two or more related datasets. The need to explore multiple visual represen-
tations simultaneously arises especially in information visualization. For example, in the
time-series matrix visualization, different visualization techniques extract different visual
features that represent distinct data patterns. The Visualization Spreadsheet is an excel-
lent way to address these issues that involve multiple data sets and visualizations. These
operations are natural in a spreadsheet environment.

The value of a visualization spreadsheet lies in enabling users to build multiple visual
representations of data sets, perform operations on the visual representations, and compare
and contrast the results visually. In the 3D Delaunay algorithm visualization example, al-
gebraic operations made comparing different steps of the algorithm easier, because the user
can see the operands and the results simultaneously. The spreadsheet paradigm is helpful
in structuring certain interactions, such as cases where one change needs to be applied or
propagated to other datasets. In the biological sequence similarity visualization, the par-
allel application of the rotation operator across an entire row of data sets enabled users to
view the similarities between data sets in the same orientation. Because the spreadsheet
provides a structured environment to perform tasks, it significantly reduce the amount of
time it takes to analyze data.

The second question isyWhat kinds of user tasks are supported by the visualiza-
tion spreadsheet environment?, or “What properties of tasks make them suitable for
spreadsheet-based interaction?

There are a large number of tasks that are particularly suitable. Here are some intuitive

ones:

1. Tasks that explore “what-if” scenarios. For example, what if a different color scale
is used? Or what if we look at the usage pattern of a Web site using different time

ranges?

2. Tasks that involve exploring similar features of different data sets. For example, we

can look at similar usage patterns from different time periods).

133

3. Tasks that study the interaction between two different variables. For example, we
can look at the interaction between color scales and different time intervals in the

Web analysis example.

4. Tasks that involve applying a single operation to multiple visualizations, such as
applying similar selection, filtering, and highlighting to different data sets. For ex-
ample, we can select an entire row of biological sequence similarity visualizations

and rotate them coordinately.

The third question is,How general is the visualization spreadsheet paradigni?

The idea is general. The visualization spreadsheet paradigm is applicable to all visual-
ization domains except a few situations. Sometimes a single-view application is sufficient
for the task. Sometimes a data-flow visualization system is more appropriate, because the
focus is on how to translate the raw data into a visualization. The visualization spreadsheet
paradigm supports a variety of tasks in situations involving multiple data sets or visualiza-
tion techniques, parallel application of operations to multiple visualizations, derivation of
comparison data sets, re-computation of dependencies between data sets, re-application of
analysis templates, etc. The advantages of the Visualization Spreadsheet in these situations
are evident in a variety of data domains. The thesis selected a variety of different types of
data from several scientific disciplines and information fields: genetic sequence similarity
from molecular biology, time-series matrices, algorithm visualization, and statistical data
set patterns from a World-Wide Web site’s content, usage, and structure.

The visualization spreadsheet principles discussed apply across a wide range of visu-
alization applications, helping spreadsheet users understand how to take advantage of the
power of the paradigm, and assisting spreadsheet developers understand how to structure
their tools. In various example domains, the visualization spreadsheet principles arose
while users applied operations to the data. In particular, in the visual sensemaking task
of a large Web site, the visualization spreadsheet principles applied directly to help users

extract data patterns.

134

In developing the visualization spreadsheet paradigm, a visualization operator and in-
teraction framework called thPata State Modearose. This model is also general, as it
is applicable to a variety of information visualization techniques. The model is as expres-
sive as the Data Flow Model, but emphasizes the state of the data rather than the flow of
the data. By modeling data set operations as data moves through the various stages of
the visualization pipeline, the Data State Model categorizes operations into seven different
basic types. The categorization of numerous information visualization techniques and its
associated operations in Chapter 6 shows the generality of the Data State Model.

By answering these three High-Level Challenges, we have shed some light on the gen-
eral utility of the visualization spreadsheet paradigm. First, the Visualization Spreadsheet
is valuable in data analysis tasks, especially in information visualization, where users con-
front various ways of viewing and interacting with the data. The abstraction of visualiza-
tion spreadsheet principles makes the value of the spreadsheet-based interaction especially
clear. Second, gaining knowledge of the properties of suitable tasks for spreadsheet-based
interaction enables researchers to identify future situations where the Visualization Spread-
sheet is useful. Lastly, the Visualization Spreadsheet and the Data State Model are general
frameworks that are applicable to a variety of data domains. In particular, the Data State
Model enables researchers to taxonomize the space of visualization interactions. Undoubt-

edly, we will discover future benefits of the visualization spreadsheet paradigm.

8.2 Contributions
The contribution of this thesis include:

1. providing a structured, intuitive, and powerful interface concept called the Visual-
ization Spreadsheet, for investigating information visualizations of abstract multidi-

mensional datasets.

135

2. specifying, constructing, and evaluating the Visualization Spreadsheet, a novel infor-
mation visualization framework. We based our design by collaborating with domain
experts in several fields. In our research, we first carefully studied several existing
and new applications in several domains to identify requirements. We then used
these requirements along with ideas from existing systems to design and implement
a visualization spreadsheet framework. We evaluated this framework by using it in

real-world scenarios.

3. confronting the challenge of visualizing a variety of different types of data, and il-
lustrating the visualization spreadsheet principles in these various data domains. We

showed the important capabilities offered by the Visualization Spreadsheet.

4. consolidating visualization interactions and operations under one operator frame-
work called the Data State Model, by studying and building on current interaction

models.

5. proving the visualization equivalence between the Data State Model and the Data
Flow Model.

6. illustrating the usage of the Data State Model by characterizing and categorizing

numerous visualization techniques and their associated operations.

7. answering a set of key research questions and challenges on the effectiveness of
the framework, and evaluating how the Visualization Spreadsheet concept meets the

needs of users.

8.3 Summary

By describing how the Visualization Spreadsheet enables users to interact with and pro-

cess visualizations, we showed its advantages in the analytical process of making sense

136

of complex data sets, such as an evolving document collection as large as the entire Xe-
rox Web site. By mapping data values to structures in the Visualization Spreadsheet, the
user is engaged in a sensemaking cycle of mapping, perceiving, and cognitively processing
informational graphics. Using a variety of visualization techniques, we showed that the
interactions of the Visualization Spreadsheet help users draw conclusions from the overall
relationships of the entire information set.

The key to the success of information analysis is that the assembly of new visualizations
must proceed at about the same rate as the analysis. By providing a operator framework that
is concise and easy-to-understand, our Data State Model and the Visualization Spreadsheet
framework achieve the goal of quickly adapting a tool to various analysis situations.

By enabling key analysis tasks, we have shown that the spreadsheet approach is a pow-
erful and intuitive technique for interacting with the information visualizations in a struc-
tured way. It is conceivable that one day there will be a Visualization Spreadsheet available

on every desktop computer just as most computers have numeric spreadsheets today.

137

BIBLIOGRAPHY

[1] Greg Abram and Lloyd Treinish. An extended data-flow architecture for data anal-
ysis and visualizationComputer Graphics29(3), May 1995.

[2] Christopher Ahlberg and Ben Shneiderman. Visual information seeking: Tight
coupling of dynamic query filters with starfield displays. Rroceedings of ACM
CHI'94 Conference on Human Factors in Computing Systewlame 1, pages 313—
317,1994. Color plates on pages 479-480.

[3] Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, and David Lipman.
Basic Local Alignment Search Toollournal of Molecular Biology215:403-410,
1990.

[4] J. R. Anderson and Peter L. Pirolli. Spread of activatidaurnal of Experimental
Psychology: Learning, Memory, and Cognitjd®:791-798, 1984.

[5] Keith Andrews. Visualizing cyberspace: Information visualization in the harmony
internet browser. IProceedings of the Symposium on Information Visualization
'95. IEEE CS, 1995. Atlanta, Georgia.

[6] V. Anupam, S. Dar, T. Leibfried, and E. Petajan. DataSpace: 3-D visualizations of
large databases. Proceedings of the Symposium on Information Visualization '95
pages 82-88,144,145, 1995.

[7] Astra SiteManager. http://www.merc-int.com, 1997.

[8] Advanced Visualization System home page. http://www.avs.com, February 1999.

[9] R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing network dalBEE Trans-
action on Visualization and Computer Graphid$1):16—28, 1995.

[10] Ronald A. Becker and William S. Cleveland. Brushing scatterplB@shnometrics
29(2):127-142,1987.

[11] Benjamin B. Bederson and James D. Hollan. Pad++: A zooming graphical interface
for exploring alternate interface physics.Pmoceedings of the ACM Symposium on
User Interface Software and Technolpggages 17—26, 1994.

138

[12] Benjamin B. Bederson, Larry Stead, and James D. Hollan. Pad++: Advances in
multiscale interfaces. IRroceedings of ACM CHI'94 Conference on Human Factors
in Computing Systemsolume 2, pages 315-316, 1994.

[13] Dennis Benson, Mark Boguski, David Lipman, and James Ostell. GenBlaudkeic
Acids Researgi22(17):3441-3444, 1994.

[14] Jacques BertinSemiology of Graphics: Diagrams, Networks, Mapmiversity of
Wisconsin Press, Madison, WI, 1967/1983.

[15] Jacques BertinGraphics and Graphic Information Processing/alter de Gruyter,
1981.

[16] Eric A. Bier, Maureen C. Stone, Ken Fishkin, William Buxton, and Thomas Baudel.
A taxonomy of see-through tools. FProceedings of ACM CHI'94 Conference on
Human Factors in Computing Systeraslume 1, pages 358—-364, 1994.

[17] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony DeRose. Tool-
glass and Magic Lenses: The see-through interface. In James T. Kajiya, editor,
Computer Graphics (SIGGRAPH '93 Proceeding&lume 27, pages 73-80, Au-
gust 1993.

[18] A. Borning and R. Duisberg. Constraint-based tools for building user interfaces.
ACM Transactions on Graphig§:345-374, October 1986.

[19] Alan Borning. Defining constraints graphically. Rroceedings of ACM CHI'86
Conference on Human Factors in Computing Sysieages 137-143, 1986.

[20] Alan Borning. The progamming language aspects of ThingLab, a constraint-oriented
simulation laboratoryACM Transactions on Programming Lanauges and Systems
3:353-387, October 1986.

[21] Polly S. Brown and John D. Gould. An experimental study of people creating
spreadsheet®ACM Transactions on Office Information Syste&(8):258—-272, July
1987.

[22] Vannevar Bush. As we may thintlantic Monthly 176:101-108, 1945.

[23] Stuart Card, Steve Eick, and Nahum Gershon, editBreceedings of the Sympo-
sium on Information Visualization '96EEE CS, 1996. San Francisco, California.

139

[24] Stuart K. Card and Jock Mackinlay. The structure of the information visualization
design space. IRroceedings of the Symposium on Information Visualization '97
pages 92-99. IEEE CS, 1997. Phoenix, Arizona.

[25] Stuart K. Card, Jock Mackinlay, and Ben Shneiderm&®adings in Information
Visualization: Using Vision to ThinkMorgan Kaufmann, 1999.

[26] Stuart K. Card, George G. Robertson, and William York. The WebBook and the
Web Forager: An Information Workspace for the World-Wide WebPtaceedings
of ACM CHI 96 Conference on Human Factors in Computing Systeatisme 1,
pages 111-117, 1996.

[27] Ed H. Chi. WebSpace Visualization. http://www.geom.umn.edu/docs/weboogl/
webspace/, 1994. The Geometry Center, University of Minnesota (Also appeared
in First WWW Conference, Chicago, IL. November 1994).

[28] Ed H. Chi, James Pitkow, Jock Mackinlay, Peter Pirolli, Rich Gossweiler, and Stu-
art K. Card. Visualizing the evolution of web ecologiesPimceedings of ACM CHI
98 Conference on Human Factors in Computing Systeaisme 1, pages 400—407,
1998. color plate on pp. 644-645.

[29] Ed H. Chi and John T. Riedl. An operator interaction framework for visualization
systems. IrProceedings of the Symposium on Information Visualizationp@ges
63—70. IEEE CS, October 1998. Research Triangle Park, North Carolina.

[30] Ed Huai-hsin Chi, Phillip Barry, John Riedl, and Joseph Konstan. A spreadsheet
approach to information visualization. Proceedings of the Symposium on Infor-
mation Visualization '97pages 17-24,116. IEEE CS, 1997. Phoenix, Arizona.

[31] Ed Huai-hsin Chi, Phillip Barry, Elizabeth Shoop, John Carlis, Ernest Retzel, and
John Riedl. Visualization of biological sequence similarity search resultBrdao.
IEEE Visualization '95pages 44-51. IEEE CS, 1995. Atlanta, Georgia.

[32] Ed Huai-hsin Chi, John Riedl, Elizabeth Shoop, John V. Carlis, Ernest Retzel, and
Phillip Barry. Flexible information visualization of multivariate data from biological
sequence similarity searches.Rroc. IEEE Visualization '96pages 133-140, 477.
IEEE CS, 1996. San Francisco, California.

[33] Mei C. Chuah and Steven F. Roth. On the semantics of interactive visualization. In
Proceedings of the Symposium on Information Visualizationg@fes 29-36. IEEE
CS, 1996. San Francisco, California.

140

[34] W.S. Cleveland and M.E. McGill, editors. Dynamic Graphics for Statistics
Wadsworth & Brooks/Cole, Belmont, CA, 1988.

[35] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change
in proteins. In M. O. Dayhoff, edito/itlas of Protein Sequence and Structure, Vol.
5, Suppl. 3chapter 22, pages 345-352. National Biomedical Research Foundation,
1978.

[36] John Dill and Nahum Gershon, editoRroceedings of the Symposium on Informa-
tion Visualization '97 IEEE CS, 1997. Phoenix, Arizona.

[37] S. Feiner and C. Beshers. Visualizingdimensional virtual worlds with-vision.
Computer Graphics24(2):37-38, 1990.

[38] James D. Foley, A. vanDam, S. K. Feiner, and J. F. Huglsnputer Graphics:
Principles and PracticeAddison-Wesley, 1990.

[39] George W. Furnas. Generalized fisheye views.Ptaceedings of ACM CHI'86
Conference on Human Factors in Computing Sysieages 16—23, 1986.

[40] Nahum Gershon and Steve Eick, editoRroceedings of the Symposium on Infor-
mation Visualization '95IEEE CS, 1995. Atlanta, Georgia.

[41] Warren Gish and David States. Identification of protein coding regions by database
similarity search Nature Genetics3:266-272, 1993.

[42] Graph Visualizer 3D. http://www.omg.unb.ca/hci/projects/gv3d/, March 1998.

[43] Paul E. Haeberli. ConMan: A visual programming language for interactive graphics.
In John Dill, editor,Computer Graphics (SIGGRAPH '88 Proceeding®lume 22,
pages 103-111, August 1988.

[44] A.F. Hasler, K. Palaniappan, and M. Manyin. A high performance interactive image
spreadsheet (IISSComputers in Physi¢c8(3):325-342, May/June 1994.

[45] Judith G. Hays and Margaret M. Burnett. A guided tour of Forms/3. Technical
Report TR 95-60-6, Oregon State University, Computer Science Department, June
1995. (Revised Janurary 1997).

[46] R. J. Hendley, N. S. Drew, A. M. Wood, and R. Beale. Narcissus: Visualizing
information. InProceedings of the Symposium on Information Visualization '95
IEEE CS, 1995. Atlanta, Georgia.

141

[47] Steven Henikoff and Jorga Henikoff. Performance evaluation of amino acid substi-
tution matricesProteins: Structure, Function, and Genetid§:49-61, 1993.

[48] Scott E. Hudson. User interface specification using an enhanced spreadsheet model.
ACM Transactions on Graphig43(3):209-239, July 1994.

[49] Scott E. Hudson and Shamim P. Mohamed. Interactive specification of flexible user
interface displaysACM Transactions on Information Syster@€3):269-288, 1990.

[50] IBM Visualization Data Explorer (DX). http://www.almaden.ibm.com/dx/, February
1999. (current as of date).

[51] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and K. Doyle. Fabrick: A visual
programming environment. lafroc. OOPSLA '88pages 176—190, September 1988.

[52] Alfred Inselberg. Multidimensional detective. Rroceedings of the Symposium on
Information Visualization '97pages 100-107. IEEE CS, 1997. Phoenix, Arizona.

[53] IRIS Explorer home page. http://www.nag.co.uk/WelcaB€.html, February
1999.

[54] Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling approach to the
visualization of hierarchical information structures Aroc. IEEE Visualization '9;1
pages 284-291. IEEE CS, 1991.

[55] Colleen M. Kehoe and James E. Pitkow. Emerging trends in the www user popula-
tion. Communications of the ACN89(6), 1996.

[56] Frank Kriwaczek. LogiCalc—a Prolog spreadsheet. In Bob Kowalski and Frank
Kriwaczek, editorsl.ogic Programmingpages 105-117. Addison-Wesley, 1986.

[57] John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies.Phoceedings of ACM
CHI'95 Conference on Human Factors in Computing Systewiame 1, pages 401—
408, 1995.

[58] John Peter Lee and Georges G. Grinstein. An architecture for retaining and an-
alyzing visual explorations of databases. Rroc. IEEE Visualization '95pages
101-108. IEEE CS, 1995. Atlanta, Georgia.

[59] K. Lee. Interactive Computer Graphics in Architectur&nvironmental Design &
Research Center, Boston, 1976.

142

[60] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-oriented
presentation techniques.ACM Transactions on Computer-Human Interaction
1(2):126-160, 1994.

[61] Marc Levoy. Spreadsheets for images. In Andrew Glassner, eBriaceedings of
SIGGRAPH '94 (Orlando, Florida, July 24-29, 199@omputer Graphics Proceed-
ings, Annual Conference Series, pages 139-146. ACM SIGGRAPH, ACM Press,
July 1994. ISBN 0-89791-667-0.

[62] T. V. Loudon, J. F. Wheeler, and K. P. Andrew. Affine transformations for digitized
spatial data in geologyComput. Geosgipages 397-412, 1980.

[63] Jock Mackinlay. Automating the design of graphical presentation of relational in-
formation. ACM Transaction on Graphi¢$(2):110-141, April 1986.

[64] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The Perspective Wall:
Detail and context smoothly integrated.Rroceedings of ACM CHI'91 Conference
on Human Factors in Computing Systemages 173-179, 1991.

[65] B. McCormick et al. Visualization in scientific computing. Gomputer Graphics
volume 21. ACM Press, November 1987.

[66] Sougata Mukherjea, James D. Foley, and Scott Hudson. Visualizing complex hy-
permedia networks through multiple hierarchical views. Pioceedings of ACM
CHI'95 Conference on Human Factors in Computing Systewiame 1, pages 331—
337, 1995.

[67] Brad A. Myers. Graphical techniques in a spreadsheet for specifying user inter-
faces. InProceedings of ACM CHI'91 Conference on Human Factors in Computing
Systemspages 243-249, 1991.

[68] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden,
David S. Kosbie, Ed Pervin, Andrew Mickish, and Philippe Marchal. Comprehen-
sive support for graphical, highly-interactive user interfaces: The Garnet user inter-
face development environmenEEE Computer23(11):71-85, November 1990.

[69] David Nation, C. Plaisant, G. Marchioinini, and A. Komlodi. Visualizing websites
using a hierarchical table of contents browser. WebTOC Proceedings of 3rd
Conference on Human Factors and the W&B97. http://www.uswest.com/web-
conference/proceedings/nation.html.

[70] National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/.

143

[71] Greg Nelson. Juno, A constraint-based graphics system. In B. A. Barsky, editor,
Computer Graphics (SIGGRAPH "85 Proceedingsjume 19, pages 235-243, July
1985.

[72] Donald A. Norman.The Design of Everyday ThingBoubleday, 1988.

[73] M. V. Olson. The human genome projeéttoc Natl Acad Sci U S A0(10):4338—
4344, 1993.

[74] John K. OusterhoufTcl and the Tk ToolkitAddison-Wesley, 1994.

[75] K. W. Piersol. Object-oriented spreadsheets: The Analytic Spreadsheet Package.
In Norman Meyrowitz, editorProceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOR Slages 385-390,
Portland, OR USA, November 1986. ACM Press. Published as SIGPLAN Notices,
volume 21, number 11.

[76] Peter Pirolli and Stuart Card. Information foraging in information access environ-
ments. InProceedings of ACM CHI'95 Conference on Human Factors in Computing
Systemsvolume 1, pages 51-58, 1995.

[77] Peter Pirolli, James Pitkow, and Ramana Rao. Silk from a sow’s ear: Extracting us-
able structure from the web. Proceedings of ACM CHI 96 Conference on Human
Factors in Computing Systemslume 1, pages 118-125, 1996.

[78] James E. Pitkow and Krishna Bharat. WebViz: A tool for world wide web access log
visualization. InProceedings of the First International World Wide Web Confergnce
May 1994. Geneva, Switzerland.

[79] T. K. Porter. The shaded surface display of large molecule€omputer Graphics
(SIGGRAPH '79 Proceedingsjolume 13, pages 234-236, August 1979.

[80] David Potter.Computational Physicslohn Wiley and Sons, 1973.

[81] Ramana Rao and Stuart K. Card. The Table Lens: Merging graphical and symbolic
representations in an interactive focus+context visualization for tabular information.
In Proceedings of ACM CHI'94 Conference on Human Factors in Computing Sys-
tems volume 1, pages 318-322, 1994. Color plates on pages 481-482.

[82] Ramana Rao and Stuart K. Card. Exploring large tables with the Table Lens. In
Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems
volume 2, pages 403-404, 1995.

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

144

Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
In Maureen C. Stone, editoGomputer Graphics (SIGGRAPH '87 Proceedings)
volume 21, pages 25—-34, July 1987.

George G. Robertson and Jock D. Mackinlay. The Document Lerf3rolceedings
of the ACM SIGGRAPH Symposium on User Interface Software and Technology
pages 101-108, 1993.

George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone Trees: Ani-
mated 3D visualizations of hierarchical informationFroceedings of ACM CHI'91
Conference on Human Factors in Computing Sysfgages 189-194, 1991.

Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and Stuart K. Card. The cost struc-
ture of sensemaking. IAroceedings of ACM INTERCHI'93 Conference on Human
Factors in Computing Systenmsages 269-276, 1993.

Manoijit Sarkar and Marc H. Brown. Graphical fisheye views of graphBraiceed-
ings of ACM CHI'92 Conference on Human Factors in Computing Systeages
83-91, 1992.

Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretching
the rubber sheet: A metophor for visualizing large layouts on small screens. In

Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and
Technologypages 81-91, 1993.

William J. Schroeder, Kenneth M. Martin, and William E. Lorensen. The design and
implementation of an object-oriented toolkit for 3D graphics and visualization. In
Roni Yagel and Gregory M. Nielson, editof8roc. IEEE Visualization '96pages
93-100. IEEE CS Press, 1996. San Francisco, California.

William J. Schroeder, Kenneth M. Martin, and William E. Lorens&he Visualiza-
tion Toolkit: An Object-Oriented Approach to 3D Graphi¢entice Hall, 1996.

Herbert A. SimonThe Sciences of the ArtificiaMIT Press, 1969.

Michael Spenke and Christian Beilken. A spreadsheet interface for logic program-
ming. InProceedings of ACM CHI'89 Conference on Human Factors in Computing
Systemspages 75-80, 1989.

Michael Spenke, Christian Beilken, and Thomas Berlage. FOCUS: The interactive
table for product comparison and selection Phoceedings of the ACM Symposium
on User Interface Software and Technolpgsges 41-50, 1996.

145

[94] Marc Stadelmann. A spreadsheet based on constrainBroteedings of the ACM
SIGGRAPH Symposium on User Interface Software and Technglaggs 217—
224, 1993.

[95] Maureen C. Stone, Ken Fishkin, and Eric A. Bier. The movable filter as a user
interface tool. InProceedings of ACM CHI'94 Conference on Human Factors in
Computing Systemsgolume 1, pages 306-312, 1994.

[96] Silicon Graphics Computer SystemRIS Explorer User’s GuideSilicon Graphics
Computer Systems, Mountain View, CA, 1991.

[97] Tom Newman et al. A Summary of Methods for Accessing Results from Large-Scale
Partial Sequencing of AnonymousabidopsiscDNA Clones. Plant Physiology
106:1241-1255, 1994.

[98] Lloyd A. Treinish. Visualization of stratospheric ozone depletion and the polar vor-
tex. Technical report, IBM Thomas J. Watson Research Center, 1996.

[99] Edward Tufte. The Visual Display of Quantitative InformationGraphics Press,
Cheshire, Connecticut, 1992.

[100] Lisa Tweedie. Characterizing interactive externalizationsPrbteedings of ACM
CHI 97 Conference on Human Factors in Computing Systealsme 1, pages 375—
382, 1997.

[101] Craig Upson, Jr. Thomas Faulhaber, David Kamins, David Laidlaw, David Schlegel,
Jeffery Vroom, Robert Gurwitz, and Andries van Dam. The Application Visual-
ization System: A computational environment for scientific visualizatidBEE
Computer Graphics and Applicationsages 30-42, July 1989.

[102] M. H.van Emden, M. Ohki, and A. Takeuchi. Spreadsheets with incremental queries
as a user interface for logic programming. Technical Report TR-144, ICOT, 1985.

[103] J.J. van Wijke and R. van Liere. Hyperslice: Visualization of scalar functions of
many variable. IrProc. IEEE Visualization '91pages 119-125, Los Altimos, CA,
1991. IEEE CS.

[104] Amitabh Varshney and Arie Kaufman. FINESSE: A financial information spread-
sheet. InProceedings of the Symposium on Information Visualization f2jes
70-71, 125. IEEE CS, 1996. San Francisco, California.

[105] Visible Decisions. Visible Decisions, Inc. http://www.vdi.com, January 1999.

146

[106] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R. Cook. Does
continuous visual feedback aid debugging in direct-manipulation programming sys-
tems? INACM Proceedings CHI'97: Human Factors in Computing Systqrages
258-265, March 1997.

[107] Nicholas Wilde and Clayton Lewis. Spreadsheet-based interactive graphics: From
prototype to tool. IiProceedings of ACM CHI'90 Conference on Human Factors in
Computing Systempages 153-159, 1990.

[108] Graham Wills and John Dill, editor®roceedings of the Symposium on Information
Visualization '98 IEEE CS, 1998. Research Triangle Park, North Carolina.

[109] James A. Wise, James J. Thomas, Kelly Pennock, David Lantrip, Marc Pottier, Anne
Schur, and Vern Crow. Visualizing the non-visual: Spatial analysis and interaction
with information from text documents. IAroceedings of the Symposium on Infor-
mation Visualization '95pages 51-58. IEEE CS, 1995. Atlanta, Georgia.

[110] Brad Vander Zanden, Brad A. Myers, Dario Giuse, and Pedro Szekely. The impor-
tance of pointer variables in constraint models. Pimceedings of the ACM SIG-
GRAPH Symposium on User Interface Software and Technopames 155-164,
1991.

