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Abstract

The Nord Modular music synthesiser system comprises a standalone ar-
ray of digital signal processors programmed by a dataflow visual lan-
gauage and supported by a visual programming environment that runs
on commodity hardware. A crucial difference between the Nord Mod-
ular and traditional modular synthesizers is that each Nord module can
be positioned individually, whereas physical analogue signal processing
units are typically installed in fixed racks. We have used information vi-
sualisation techniques to investigate the layouts and programming style
of 1,051 Nord Modular programs. We found that although modules could
be positioned freely within a program, particular types of modules were
generally found in sterotypical locations.

Keywords: Software Visualisation, Corpus Analysis.

1 Introduction

Domain-specific dataflow visual programming languages
are now commonplace throughout the world of com-
puting. Even in just one domain, computer music,
several dataflow visual languages have been successful
as products over relatively long terms, including Max
[Cycling ’74, 2001], Bars-n-Pipes [Hagen, 1990], and the
visual programming language underlying the Nord Mod-
ular synthesizer [Clavia DMI AB, 1999].

The Nord Modular synthesizer system, by Clavia AB
of Sweden, is a digital (re)creation of the traditional ana-
logue modular synthesizer systems common in the 1970s.
A traditional modular synthesizer consists of a number
of modules such as voltage controlled oscillators (VCO),
voltage controlled filters (VCF), envelope generators (EG)
and low-frequency oscillators (LFO) fixed in position to a
rack and connected together using “patch cords” to pro-
duce sounds.

Figure 1 shows a very basic Nord Modular patch.
This comprises four modules: an input module named
Keyboard1, an oscillator (OscB1), an envelope generator
(ADSR-Env1) and an output module (2 outputs1). Fig-
ure 2 shows a more complex patch.

The Nord Modular system includes approximately a
hundred different types of modules, including oscillators,
filters, clocks, and so on: a patch generally uses around
20 modules. Module positions are constrained to one of
four columns and about thirty rows without scrolling: all
modules are one column wide, but different modules have
different heights.
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Figure 1: A Simple Modular Patch

1.1 Nord Modular Programming

Patches are produced using a programming environment
called the Nord Modular Editor1. Using the Modular Ed-
itor is different from using a physical analogue modular
system in a number of important ways. The most critical
is that programming analogue systems is embodied in the
physical world, connecting physical patch cables to physi-
cal modules, whereas in the Nord this experience is recre-
ated in software for general-purpose computers. Because
the Nord is a software simulation of a modular synthe-
sizer, some constraints are different. In a physical modu-
lar synthesizer, users are restricted to a certain number of
modules of a given type; if you run of out oscillators, you
must do without or buy a new module. In the Nord Mod-
ular, patches are limited by the amount of DSP processing
power: you can choose to trade off oscillators against fil-
ters or envelope generators, but only up to a fixed limit.
Crucially, users can choose the layout of the modules in
a Nord modular patch, whereas physical module positions
are fixed in a traditional modular synthesizer.

As well as providing the interface for users to create
and edit patches, the Modular Editor also allows patches
to be stored into standard file systems. Unlike many other
synthesizers, where patch information is only available en-
coded in MIDI System Exclusive formats, the Nord Mod-
ular patches are stored in standard ASCII files (one of the
advantages of a system that relies on commodity computer
support). This file format is quite simple, and has been
designed to be easy to exchange between Modular users.

1The Nord Modular Editor is available for download free from
http://www.clavia.se/nordmodular.



Figure 2: A More Complex Patch

For example, on a web page, a textual link (or snapshot
image of a patch in the Editor) can be linked to the patch
file. Clicking on the patch will then automatically open
the patch file in the editor and load it into a Modular syn-
thesizer, assuming one is attached.

1.2 The Nord Corpus

The ease with which patches can be archived and shared
has meant that many Modular users have made patches
available; the manufacturer, Clavia, also collects user-
contributed programs on their web site. This ensures
there is a readymade corpus of publically available
Modular patches for visualisation and analysis, proba-
bly more so than with any other visual programming
language. In this paper, we apply program visualisa-
tion techniques to the Nord Modular programming lan-
guage to analyse the choice and layout of modules within
patches: previous work has investigated visualising whole
patches and the vectors of the patch cords within then
[Noble and Biddle, 2002]. The corpus used in this pa-
per contains 467 patches supplied with the Nord Modular
(“Factory Patches”) plus 584 user contributed patches 2.

2 Module Choice

We begin this investigation by considering the number of
modules of each type that are chosen by programmers for
use in patches. Figure 3 shows the number of times mod-
ules of each category are used across the corpus. From
this visualisation, we can readily see that every patch in-
cludes one input and one output module (in fact, a few
patches must include more than one output module: the
extra gridline shows one module per patch). Many patches
must include several oscillators, envelope generators and

2The “V3.0 Factory Patches” and “V3.0 Contributed Patches” are available for
download from http://www.clavia.se/nordmodular
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Figure 3: Module Categories

mixers, with relatively fewer audio and control (ctrl) mod-
ules. Sequencer (seq) and logic modules are comparitively
underutilised.

We can also show the number of times any particular
module is used. Each point in Figure 4 represents an indi-
vidual module (colour-coded to the module categories in
Figure 3). In this figure it can be seen that module utilisa-
tion is rougly exponential. The most commonly used mod-
ules (top down in the upper right of the diagram) are the
ADSR envelope generator, the mixer, the standard output
module, the control mixer, and the keyboard input module.



Figure 4: Module Utilisation

Figure 5: Module Utilisation vs. Module Power

2.1 Module Power

Different modules require different amounts of DSP pro-
cessing power. Since the Nord Modular hardware has a
fixed amount of power available (one, four, or eight Mo-
torola 56000 DSPs depending upon the model) Figure 5
visualises a module’s power requirements (on the � axis)
against its utilisation (on the � axis as in Figure 4). This
figure shows that most modules have low power require-
ments, including those modules that are used most fre-
quently (close to the � axis). Modules with very high
power requirements (such as the vocoder, filter bank, sine
bank, phaser and drum synthesizer, reading right to left
along the � axis) are used infrequently. Note all these
high-power modules actually combine the features of sev-
eral less powerful modules.

2.2 Module Size

As shown in Figure 1, different modules are different
sizes, in particular, while all have the same width different
modules have different heights. We hypothesized that the
larger the module the more DSP power it would require.
Figure 6 plots module height (on the � axis) versus power
(again on the � axis), and illustates that this hypothesis
holds on a large scale: bigger modules generally consume
more power than smaller modules. The largest modules
are the drum synth and note sequencer (size 9) and the
sine bank (size 10); the most power-hungry module, the
vocoder, is size 8. Note also that the smallest module oc-
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Figure 6: Module Height vs. Module Power

cupies two rows (size 2) and the next largest module is is
one and a half times as large (size 3). There are no size 1
modules.

3 Module Layout

As well as visualising programmer’s choice of modules,
we also analysed modules’ layout — their positions in pro-
grams. Figure 7 shows the “real estate utilisation” for the
first five columns and fifty rows for all patches in the cor-
pus. This image is an approximation to printing all 1,051
corpus patches onto acetates and then placing all the ac-
etates into a large stack. The top left of the image is dark,
thus almost every patch includes a module in that posi-
tion: the bottom and right of the image is light, because
few patches have modules there.

This diagram illustrates several large-scale features of
Modular patches. First, most modules are positioned to
the top and to the left of the patch layouts, and most sub-
stantially to the top. Second, patches are longer than wide
— the figure is drawn with the same aspect ratio used by
the modular editor (16:1). This implies that modular pro-
grammers prefer to scroll vertically, rather than horizon-
tally, as the editor displays four columns and about forty
rows on a 1024x768 pixel screen, three columns and thiry
rows on a 800x600 screen, and two columns and twenty
rows on a 640x480 screen. (Subsequent real estate dia-
grams will be cropped to the first three columns and thirty-
five rows).

Third, the image shows prominent banding after the
fourth row from the top: ever odd-numbered row is darker
(more often occupied) than the even numbered rows. We
hypothesize that programmers treat modules as if their
size was always a natural multiple of the size of the small-
est modules, that is, size 2 (see Figure 6), and lay them out
on an imagined grid where rows are double height, with
an aspect ratio of 16:2 rather than 16:1. Odd sized mod-
ules will be undersized in this grid, leaving a gap of one
(Nord) row between the end of one module and the start
of the next. Testing this hypothesis would require some
kind of interaction with Modular progrmamers, such as a
usability evaulation or questionnaire: while a corpus study
is excellent for finding such effects, by its nature it cannot
verify explanations for them.

3.1 Module Position

We have also considered the positions occupied by partic-
ular categories of modules. Figure 8 shows similar dia-
grams (draw with an 8:1 aspect ratio), each displaying a
particular module type.

From this figure, we can see that input modules are
tightly clustered along the top row, and the next two loca-
tions of the leftmost column, but rarely appear elsewhere
(input modules are mostly size two). Oscillators are cen-
tred at the top left, however are more often positioned in
the left column (presumably just under the input modules).



Figure 7: Real Estate Utilisation

Low frequency oscillators also appear primarily in the left-
most column, either under the input modules or under the
oscillators, further down. Note that the two top left posi-
tions are only occupied by input modules, oscillators, or
LFOs.

The Nord documentation treats sequencer modules
(seq) as special kinds of LFOs, however we have anal-
ysed them separately. Certainly they are positioned differ-
ently, mostly in the right column, rather than on the left.
Filters, meanwhile, are mostly in the center column at at
the top. Envelope generators are mostly to the top right
of patches — compared with other modules, envelope
generators and audio modules appear widely distributed
throughout patches. Mixer modules are also quite widely
distributed (although not as much as audio modules) and
tend towards the middle of the left column. Output mod-
ules appear in the right column towards the bottom of the
patch.

3.2 Location Use

Figure 9 is a complementary visualisation to Figure 8,
showing the aggregate use made of each location in a
patch. Colour coding and order is again taken from Fig-
ure 3. We see that the two top left positions are quite dis-
tinctly occupied by input modules, with the rest of the top
of the left and middle rows occupied primarly by oscilla-
tors and LFOs. Filters are predominant in the middle of
the second column, envelope generators at the top of the
third, and output modules are lower down.

4 Related Work

Dataflow visual languages are arguably the most com-
mon form of visual language, and there are a num-
ber of commercial systems based upon such lan-
guages, including the IRIS Explorer [NAG, 2000],
LabView [Baroth and Hartsough, 1995, NI, 2000], VEE
[Helsel, 1997], CAPRE, [Hansen, 1997], and MAX

[Cycling ’74, 2001, Desain et al., 1993], as well as the
Nord Modular patch language [Clavia DMI AB, 1999].
Given this widespread practical acceptance, it is perhaps
surprising that there has been little standalone research
on visualising programs in these languages or analysing
the kinds of programs these languages are acutally used to
write.

Most research on visualisation of visual programs
is generally subsumed with research on the visual pro-
gramming environments themselves — indeed, one of
the reasons for the software visualisation research com-
munity moving away from dataflow languages is that
the execution of these programs is not easy to visu-
alise. Rather, following Sketchpad [Sutherland, 1963]
once again, many modern (non-dataflow) visual lan-
guages incorporate dynamic visualisations directly into
the programming model, so that whenever a pro-
gram runs it is visualised: Toontalk [Kahn, 1996],
Agentsheets [Repenning and Sumner, 1995], and VIPR
[Citrin et al., 1998] are just three examples of this ap-
proach.

There has been some work on specialised visuali-
sation of visual programs, however. Burnett has ap-
plied software visualisation techniqes to support test-
ing of Forms/3 programs [Rothermel et al., 2000], and
Grundy and Hosking have applied some program visual-
isation techniques to software engineering modelling lan-
guages [Grundy and Hosking, 2000, Grundy et al., 1996]
— in one case, successfully visualising a “gedanken”
notation that was never designed to be executed
[Grundy and Hosking, 1995].

Probably because most visual languages do not have
a large user base, the practice of the visual languages
community has been to adopt empirical usability evalua-
tions to understand how languages are used, or to measure
the effectiveness of individual small details of language
designs [Rothermel et al., 2000, Blackwell, 2001], or re-
searchers may participate in programming communities to
evaluate their use of langauges [Carroll and Rosson, 1987,
Nardi, 1993].
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Figure 9: Module Category by Position

Because they are time consuming, usability evalua-
tions and participant observation are generally limited
to tens of subjects working on tens of programs. Sur-
veys can provide information from many more sub-
jects, but surveys cannot engage with actual programs,
only programmers’ opinions and beliefs about their pro-
grams [Whitley and Blackwell, 2001]. Probably closest
in spirit to our work is the empirical analysis of spread-
sheet programs, where accountants or auditors work
through a corpus to identify features of programs, such
as cell error rates [Panko, 1998]. In the mainstream
textual language community, analyses of programs are
carried out mainly to improve implementations: anal-
yses and critiques of programming style are generally
based on single examples, drawing on literary criti-
sism [Kernighan and Plauger, 1974, Skublics et al., 1996]
or the patterns movement [Beck, 1997] for models.

In comparison with usability evaluation or participant
observation, an approach based on corpus analysis re-
quires a sample of several hundreds of programs, but does
not require detailed analysis of the process by which those
programs were written. Corpus analysis is best suited to
investigating the parole [de Saussure, 1916] of a language
— the way it is used in practice — while other techniques
can provide more specific information about the design of
languages themselves. Corpus analysis has the problem
of bias in the selection of the corpus: human studies have
analagous problems with the selection of test subjects.

5 Discussion and Conclusion

In this paper we have applied program visualisation to the
dataflow visual language for the Nord Modular synthe-
sizer, to investigate modules choice and layout in Modular
patches.

Considering the choice of modules within patches, we
found oscillators and mixers are used several times in a
patch, while sequencers and logic category modules are
used rarely. Each patch generally has one input and one
output module. Regardless of module category, modules
which impose high processing loads are used less fre-
quently than lower power modules.

Considering the layout of those modules, we found that
patches tend to be long and thin, promoting vertical rather
than horizontal scrolling, and possibly laid out on an 16:2
grid. Within a patch, modules tend to be placed towards
the top left, with the absolute top left position typically oc-
cupied by an input module. Oscillators and lfos are placed
to the left and below them, with filters, envelope genera-
tors and mixers in the middle of the patch. Output mod-
ules are placed towards the bottom right. This tallies with
our previous work on cable direction in modular patches,
which found that cables generally flowed rightwards and
downwards [Noble and Biddle, 2002].

The key technical advantage allowing us to produce
these visualisations, and to perform corpus analysis in par-
ticular, is that the Nord Modular patch files are stored in a
simple ASCII format. Performing a similar analysis on
many other visual languages would be much more dif-
ficult, because we would first have had to parse a much
more complex binary file.

We do need to note that these results are somewhat pre-



liminary. Each Nord Modular program actually consists of
two separate patch areas — a polyphonic voice area (PVA)
where modules are duplicated for polyphonic patches and
a common voice area (CVA) which is shared across all
polyphonic voices. For technical reasons due to the Mod-
ular patch file format, our current tools analyse only the
polyphonic voice area. We plan to extend our tools to anal-
yse both areas, but do not expect this to markedly impact
our results.

We plan further visualisation work on Nord Modular
programs: indeed, there seems quite some scope for re-
search since only a small amount of standalone visualisa-
tion has been performed upon dataflow visual languages,
and very little corpus analysis has performed upon visual
langauges of any type. We plan to analyse the use of sec-
ondary notation, particularly the names programmers as-
sign to modules. We would like to experiment with pro-
viding automatic layout support for modules (to reorgan-
ise patches to minimise cable length and cable crossings)
and with program slicing (so that all the modules produc-
ing one part of a patch could be automatically extracted
from a patch making multiple sounds). Finally, we hope
to extend this work to analyse many more patches.
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