COMP413 Project 1

Performance of Interprocess Communication

Abstract

This project examined the performance of 4 interprocess communicatoin (IPC) paradigms to answer the following questions:

What is the relative performance of each IPC method?

What features of each method explain the difference in performance?

Experiment setup

The experiment consisted of client-server pairs exchanging simple ping-pong messages with the client timing the round-trip time (RTT) at μs detail. Each client/server was made as simple as possible and for each pair 5 runs of 10000 messages were run.
Timing and networking layering details

Synchronous RMI.

For each IPC, only the call to send a message and receive a response was timed (between points 1 and 4 in Figure XYZ). This corresponds to the sending of useful information from the perspective of the program. As such, any computation that occurred before or after the messaging was not timed. This often included the reading of command line variables, finding the server, and releasing resources when communication was finished.

The cost for all methods of IPC to use the network layer (IP) would be fairly consistent regardless of Transport layer protocol (network congestion is considered to be minimal and a negligible number of packets are dropped, if any at all). Hence it will not be considered other than to acknowledge that every message passed to the network layer will incur a fairly consistent cost. Any one off spikes will become insignificant over the larger runs of 10000 messages.

Due to the nature of TCP, it will send more messages than UDP (ACKS and setup/tare-down) and therefore have a higher time overhead from sending more messages.

TCP buffers the data to be transmitted in a send buffer, which is created during the 3-way handshake. RFC 793 states only that TCP should “send that data in segments at its own convenience.” This data will be sent in segments up to the Maximum segment size (typically 1,500 bytes, 536 bytes, and 512 bytes). Hence the data may sit in the buffer for an unknown number of (s and when it is sent it may go in multiple segments. In contrast, UDP will send data as fast as possible and is only limited by the speed of the CPU and underlying network. TCP also performs buffering on the server side before passing the message up to the application.

Application services
Ping client and Pong server

Middleware Layer

ONC RPC
Stub
ONC RPC
Stub
CORBA
Proxy
Skeleton

Object Adapter

IPC Runtime

IPC Runtime

ORB (IIOP)

Transport Layer
UDP
TCP
UDP
TCP
TCP

Network Layer
IP

<p>UDP segment structure
 (Image from CNTDA)</p>

<p>TCP segment structure
 (Image from CNTDA)</p>

UDP has lightweight header of a fixed 8 bytes for the source and destination ports, length of packet and checksum. TCP has additional fields for sequence and acknowledgement numbers, window size, checksum, and various other information (including some optional fields) making the TCP header typically 20 bytes (according to [CNTDA]). Hence UDP messages will require less computation at each end of the connection and arrive across the network faster.

When sending a message using RPC the client stub (which must be linked in before use) must pack the parameters of the call into a message and then call the operating system to send the message via the IDL runtime (point 1 in Figure XYZ). When the message arrives, the server stub must unpack the parameters onto the stack and call the server method indicated in the message. When the server is finished processing it returns the result to the server stub via a static structure. The server stub then packs the result and returns it to the client via its local operating system.

When the message arrives back at the client the OS gives the message to the client stub that unpacks the result. The returned value is put onto the stack and control returns to the client.

A header
for RPC messages includes information like a transaction identifier, remote program number, remote program version number, remote procedure number and optional authentication data. This is sent in addition to any headers added by the transport layer and actual procedure parameters.

CORBA has the additional overhead of objects to perform remote invocation. On the client side the remote object has a proxy that provides the same interface. When the client calls a method on the server object it is actually called on the proxy. As with RPC, the proxy will marshal the invocation and send it over the network to the server where it will be delivered to the skeleton. The skeleton will unpack the message and perform the invocation of the remote object.

On returning string results (as in the experiment), CORBA must copy the string back using the string_dup function.

1. Does the method have a significant start up cost?

Of all the methods considered, UDP had minimal start up costs. Initial set-up consisted of resolving the host’s IP address and binding to a local port so the reply message can be received. These times where not included in the round trip timing loop.

There appears to be a small overhead with the sending of the first message for UDP. On average the round trip time for the first message (over 5 runs) was 406.2 μs. This is 86% higher than the median RTT. This overhead could be contributed to time spent assigning buffers to use when creating the message packet. A certain time component would be spent in layers below the transport layer (like the network layer doing routing).

In contrast to UDP, TCP shows significant start up costs. The initial set up involves the creation of a socket, to both send and receive on (as TCP is full duplex), and resolving the servers IP address. Before any messages can be sent the socket must be connected. As with UDP, these once off costs were not included in the timing loop.

The average round trip time for the first message in TCP was 688.8 μs, which was 202.37% higher than the median RTT. This higher overhead could be contributed to TCP performing a 3-way handshake and slow start for congestion control. Additionally, as mentioned above, TCP generates additional traffic by performing ACK’s.

When setting up RPC the only action the client must perform is to create a "client handle" that causes the underlying system to contact the designated server to make sure that the requested program and version are available. As usual this was not included in the timing loop.

When the RPC messaging procedure is invoked the client handle is passed as the final parameter to the stub. With the first call the stub uses this to retrieve the connection information that was cached when the client handle was created.

From the experiment results, the average round trip time for the first message in ONC RPC using UDP was 422.2 μs. This is 33.52% higher than the median RTT. Using TCP as the underlying transport protocol gave an average round trip time for the first message of 1109.6 μs, which was 233.41% higher than the median RTT. These differences are displayed in Figure XYZ. This figure indicates that the first message has around the same overhead when using straight UDP or RPC with UDP. Again, TCP’s small window size when starting increases the round trip time for the first message (with or without RPC). It seems that multiple packets must be sent for the first message to reach the server (possibly due to the connection information mentioned above). Subsequent messages should go directly and in sequence due to the increased TCP window size.

The highest overhead for the first message was seen using (heavyweight) CORBA where the average round trip time for the first message was 3424 μs, a huge 501.97% higher than the median RTT. When CORBA performs a remote invocation it must marshal the message through a proxy stub generated by the Interface Definition Language (IDL) before routing it through the Object request broker (ORB) to the server via TCP. When the message arrives at the server, it is passed up to the application via the ORB, object adapter, and object skeleton.

This larger CORBA value can probably be contributed to the creation of the proxy/skeleton stubs, location of the server and correct method through the ORB (registering and binding). The IPC runtime in ONC RPC is lightweight in comparison to the ORB as it just forwards requests to the operating system.

Both RPC and CORBA have the additional work of packaging parameters for transport, where as directly accessing the transport layer make UDP and TCP faster as they just transport arrays of characters (the underlying internal representation), removing the overhead of middleware messages and layers.

2. Is the round trip time of the method consistent or highly variable?

Of all the methods, straight UDP is the most variable in round trip time. This is clearly visible in Figure 1 with the lower peak and wider core frequency band. The standard deviation also confirms this (taking into account that the CORBA standard deviation is larger but so is its maximum value). This is most likely due to its connectionless state and shortest RTT, even small processing delays will effect the consistency more than other methods.

The three IPC methods that use TCP as the transport provider produced the most consistent round-trip times. Proving the most consistent was RPC using TCP (as indicated by the highest peak in Figure 1 and small standard deviation). This was followed by basic TCP then closely by CORBA.

RPC using UDP was considerably more consistent than straight UDP (probably due to the larger round-trip time). It was however less consistent than the TCP based methods.

Looking at the distribution of the lower and upper quartiles around the median leads to similar conclusions.

3. How does the performance of each method compare? Is one definitely better than another?

As one would expect, UDP and TCP provided the fastest round trip times as the are both Internet transport-layer protocols that are made available to the applications. By-passing the middleware layer decreases the overhead in sending simple messages but lacks transparency. The result is that the transport layers have a high degree of coupling with the platform they were complied on (and to some degree the compiler itself).

The speed benefits of using UDP or TCP directly may be offset by the additional code the programmer must write to provide communication and the decreased portability.

CORBA and ONC RPC are built on top of these transport layers and hence could not achieve faster round trip times. The advantage of RPC and CORBA is that the messages are platform and language independent, decreasing coupling.

RPC and CORBA may have to reorder bits for the wire format to comply with the RPC/RMI protocol (big/little Indian byte ordering). This increase in overhead is a trade off for improved platform and language transparency (portability).

Interesting things to note

Examining the bar graphs for each IPC method indicates the presence of ripples after the core frequency band. These are most likely caused by processor events delaying the messages by fairly consistent periods.

Client and Server processor events outside the ping-pong program are clearly visible in the fluctuation graphs as jumps in the RTT (Note that all fluctuation graphs have data above the ranges cut off). In most cases these were ignored as being non-indicative of the actual RTT.

In terms of my code, RPC is probably the most transparent to the programmer. If object support were required, CORBA would then be the most desirable IPC method.

I would have liked to run PING between the two servers to find the time lag introduced by the network layer. However, on the Sun/Solaris servers that were used the resolution of the PING command was only 1 ms. I would also have liked to perform a traceroute between the client and the server to get a feeling for the number of steps in the path.

Conclusions

In general, the more an IPC protocol supplies in terms of transparency to the programmer the poorer the round-trip time.

If a minimal RTT were the most important factor for a particular interprocess communication requirement, then using UDP or TCP directly would achieve the best results. The slightly better RTT for UDP over TCP may be offset by its larger variation. The final decision would also depend on the size of the data to be sent and reliability of transport issues.

UDP and TCP may provide better performance but suffer from a very high degree of coupling. RPC and CORBA address this by adding layers of middleware that help mask the location of the remote method/object and provide platform independence. This decreased coupling comes at a cost as more messages must be sent and more processing must be performed on both ends of the connection.

Appendix

References

[HOPPER] Eric Hopper, Why I think CORBA and other forms of RPC are often a bad idea.

http://www.omnifarious.org/~hopper/technical/corbabad.html
[CNTDA] James E. Kurose, Keith W. Ross (2001).

Computer Networking - A Top-down Approach Featuring the Internet, Addison Wesley.

http://www.awl.com/kurose-ross
3

4

2

1

Request

Reply

Round Trip Time (RTT)

Server

Client

Time

Setup

Breakdown

Remote Invocation

�PAGE \# "'Page: '#'�'" ��The IP address and destination port of the server are attached to the message.

�PAGE \# "'Page: '#'�'" ��to the IP address and destination port of the server being attached to the message.

�PAGE \# "'Page: '#'�'" ��

struct rpc_msg {

 unsigned int xid; /*All messages start with a transaction identifier*/

 union switch (msg_type mtype) {

 case CALL:

 call_body cbody;

 case REPLY:

 reply_body rbody;

 } body;

 };

struct call_body {

 unsigned int rpcvers; /* must be equal to two (2) */

 unsigned int prog;

 unsigned int vers;

 unsigned int proc;

 opaque_auth cred;

 opaque_auth verf;

 /* procedure specific parameters start here */

 };

struct accepted_reply {

 opaque_auth verf;

 union switch (accept_stat stat) {

 case SUCCESS:

 opaque results[0];

 /*

 * procedure-specific results start here

 */

 case PROG_MISMATCH:

 struct {

 unsigned int low;

 unsigned int high;

 } mismatch_info;

 default:

 /*

 * Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL,

 * GARBAGE_ARGS, and SYSTEM_ERR.

 */

 void;

 } reply_data;

 };

