COMP389 SOFTWARE ENGINEERING PROJECT, 2001

D2 Requirements

Computer-Based SPOT

Team 7

 Team Meeting: Tuesday 11:00am

Team Leader:

Rilla Khaled

(Rilla.Khaled@mcs.vuw.ac.nz)

0211371850

Team members:

Daniel Ballinger
(Daniel.Ballinger@mcs.vuw.ac.nz)
0211159226

Edward Bedwell
(Edward.Bedwell@mcs.vuw.ac.nz)

Derek Foo

(Derek.Foo@mcs.vuw.ac.nz)

0211259807

Anna Ladd

(Anna.Ladd@mcs.vuw.ac.nz)

0211299879

Supervisor: Glen Walker

Client: Dr. Paul Warren

Date: 10/08/01

 [image: image1.png]Pl

‘W“

S

Contact details for Client and Supervisor:

Client: Dr. Paul Warren
Senior Lecturer in Linguistics and Acting Research Director
School of Linguistics and Applied Language Studies
Victoria University of Wellington
PO Box 600
Wellington, New Zealand
tel. +64 4 463 5631
fax. +64 4 463 5604
Paul.Warren@vuw.ac.nz
http://www.vuw.ac.nz/lals/

Supervisor: Glen Walker
Glen.Walker@mcs.vuw.ac.nz

Contents:

1.
Introduction……………………………………………………………………4

2.
Current system……………………………………………………….……….4

2.1
Brief explanation of the SPOT project……………………….……4

2.2
Problems with the current system…………………………….…...4

3.
Proposed system……………………………………………………….……..5

3.1
Overview…………………….…………………………………….…….5

3.2
Functional requirements…..…………………………………..……..5

3.2.1
Actors………………….…………………………………..…….5

3.2.2
Use cases…………….………………………………….……...7

3.3
Non-functional requirements..………………..…………………...12

3.4
System models……………….………………………………………13

3.4.1
Use case model...…….………………………………………13

3.4.2
Domain model………….……………………………………..17

3.4.2.1
Data dictionary….………….…………………17

3.4.2.2
Object model………………………………….19

4.
Reviewed project risks……………………………………………………...20

5.
Individual contributions…………………………………………………….22

6.
Appendices…………………………………………………………………...23

6.1
Description of the game……………………………………………23

6.2
Glossary of SPOT related terms………………………………….24

1.
Introduction:

The purpose of this document is to outline the functional and non-functional requirements of the Computerised SPOT System and give a general view of the scope of the system. It also aims to provide an overview of the components that comprise the system as well as their interaction, from the perspective of the user.

2.
Current system:

2.1
Brief explanation of the SPOT project:

The SPOT project collects speech data using a board game in which
participants have to negotiate moves of objects across game-boards, using
spoken instructions from a fixed inventory of commands and responses. The
goal of the SPOT project is to investigate the use of intonation to
disambiguate between utterances. The intention of the SPOT board game is to test and record the ambiguities of various speech patterns. Results are obtained from the games to allow researchers to study the reactions made by participants in response to these ambiguities. For a full description of the game, refer to appendix 1, p.24.

2.2 Problems with the current system:

· The noise made by players moving the pieces around the board interferes with the microphone, making it difficult to obtain audio data.

· The referee needs to oversee game play whilst simultaneously keeping track of the score and recording the moves made by each of the players.

· It is up to the referee to ensure that the players move the pieces correctly, (for instance pieces can only move vertically or horizontally and must move until they reach an obstacle).

· The written results of moves from the games are hard to analyse co concurrently with the audio results.

· The game boards are made of cardboard and are not easily creatable or modifiable.

3.
Proposed system:

3.1
Overview:

Our main objective is to create a computerised version of the SPOT board game. The system will:

· Allow a slider and a driver to play a game of SPOT on two separate computers.

· Allow users to play the game quietly so as to not interfere with the microphones.

· Record all the moves made by each player during a game, including any moves that are undone.

· Keep track of the score as the slider moves over bonuses/hazards.

· Prevent the players from making illegal moves (such as moving the square piece by itself or moving the pieces in a diagonal direction).

· Allow authorised users to review game results, either by replaying a game in real-time or by viewing the moves in a textual format.

· Store results of games using unique identifiers to distinguish them.

· Allow authorised users to edit, copy and create game boards.

· Allow users to play a demo game to practice moving the pieces around a sample game board and investigate how the game works.

3.2
Functional requirements:

3.2.1
Actors:

The actors are the users that will interact with the system. Our project is designed for use in experiments run by the LALS school, therefore, only a certain number of people are involved in using the system. We have classed these people into five actor roles, as follows:

1. Reviewer:
The reviewer accesses and reviews the data collected during games. They can also log in and log out of the system. It is expected that the reviewer will have a good level of computer skills and be capable of connecting to the location of the stored records. They should have basic file management skills in order to help manage the data.

2. Driver:
The driver's role in the system is to move pieces on the dedicated driver board and then give instructions to the slider as to which move to make. It is possible for the driver to have minimal computer experience. Basic competency with the mouse and keyboard is expected. The demo board will be available along with instructions from the referee to help train the Driver on how to use the system.

3. Slider:
The slider's role in the system is to move pieces on the dedicated slider board in response to instructions given by the driver. The slider will have the same degree of computer skills as the Driver.

4. Administrator:

The administrator is responsible for creation, modification and deletion of game boards. He or she can also log in and log out of the system. Administrators will need the highest computer competency of all the users. It is expected that they will understand the filing structure used by the program. They will need to know the format of game boards and how they are represented by the system. Knowledge of how the communication protocols work will also be required.

5. Referee:
The referee is responsible for the overall running of the experiment. This would include logging in, setting up of games, ending games, logging out and swapping slider and driver roles. Referees will need moderate computing ability. They will need to be able to start the application without assistance and to form a connection between the two boards that make up the game. This would most likely require knowledge of IP addresses and/or machine names.

3.2.2
Use cases:

A use case describes a single interaction between one or more actors and the system. By reviewing all the use cases the reader should develop an understanding of the functionality that the system provides and the tasks that it supports.

The use cases for the system are listed below in order of priority for development.

 1 Move Piece

 2 Set Up Game

 3 End Game

 4 Undo Move

 5 Swap Role

 6 List Logged Games

 7 Display Results

 8 Log In

 9 Log Out
 10 Start Session Clock

 11 Stop Session Clock

 12 Pause Session Clock

 13 Start Watching Replay

 14 Stop Replay

 15 Start Demo Session

 16 End Demo Session

 17 Make New Administrator/referee/reviewer

 18 List All Administrators/referees/reviewers

 19 Edit Administrator/referee/reviewer profile

 20 Delete Administrator/referee/reviewer

 21 Display All Boards

 22 Start Editing Board Session

 23 Edit Grid Square

 24 Enter Create New Board Session

 25 End Create New/Edit Board Session

 26 Delete Existing Board

 27 Delete Game Results

 28 Copy Board

 29 Pause Replay

 30 Unpause Replay

 31 Restart Replay

Due to limitations in time and resources it may not be possible to deliver a full working system. As such we shall concentrate on implementing a vertical slice of the system that will consist of the functionality provided by use cases 1 – 20.

The details of uses cases 1 – 10 are given below, grouped in terms of the actor that invokes them.

Note that for the below use cases, only non-trivial pre/post conditions are stated. The goal of the use case is described where it is not explicit.

Referee:

The Referee only has to log in once per game session. A game session can consist of many rounds.

	Log in (Referee) Priority: 8

	Pre-conditions: User is not logged into system.

	User intention
	System Responsibility

	 Enters username and password
	

	
	 Verifies user and confirms user entry

	Post-conditions: User is logged into system.

	Exception flow: the referee enters an invalid user name or password. To proceed, valid login information must be given. Documentation: The user only needs to log in once for each session. The reviewer and the administrator can also log on.

	Set Up Game (Referee) Priority: 2

	User intention
	System Responsibility

	 Enters game identifier, board, role and participant ID
	

	
	 Displays appropriate board and is ready for game play

	Start Session Clock (Referee) Priority: 10

	User intention
	System Responsibility

	
	 System restarts session clock to 00:00 and displays the new time.

	End Game (Referee) Priority: 3

	Pre-conditions: The game play has reached a final state or the referee has decided to end the game.

	User intention
	System Responsibility

	
	 Gives the user the option to save the game.

	 Enters his/her choice.
	

	
	 Confirms choice and responds accordingly.

Driver/Slider:
	Move Piece (Driver) Priority: 1

	Pre-conditions: A game is being played.

	User intention
	System Responsibility

	 Selects the piece s/he wants to move and the direction s/he wants to move it in
	

	
	 The system moves piece as far as possible in specified direction until movement is barred by an obstacle. The move is recorded by the system if it is not part of a demo session.

	Exception flows: 1) The piece encounters a cookie or a goat during the move. The piece moves over the cookie/goat but the score is updated accordingly. Documentation: This use case can also be invoked by the slider. 2) The piece encounters a square piece during the move. The square-piece is pushed by the other piece and they both move as far as possible, but the square-piece remains one grid-space ahead.

	Undo Move (Driver) Priority: 4

	Pre-conditions: There has been at least one move made.

	User intention
	System Responsibility

	
	 Restores the state of the game to that prior to the last move. The last move is still recorded in the log as well as the undo.

	Documentation: Hazards and bonuses do not reappear even if the move that encountered them is undone. Similarly the score is not changed by an undo. Exception flow: There were no moves to undo. System does not do anything.

Driver:

Only the Driver can invoke the Swap Role use case. This was done to prevent confusion or endless loops.

	Swap Role (Driver) Priority: 5

	User intention
	System Responsibility

	
	 System toggles the roles of the slider and the driver.

 Game round is updated.

Reviewer:

The Reviewer may want to list all the logged game results so that they can select one to review or delete.
RRrrr
	List logged games (Reviewer) Priority: 6

	User intention
	System Responsibility

	
	 Lists logged games by game ID

It was a client specification that the results of a game should be able to be viewed in textual form.
	Display Results (Reviewer) Priority: 7

	User intention
	System Responsibility

	 Enters unique identifier of game to be reviewed.
	

	
	 Displays textual description of moves of specified game.

	Documentation: This allows the user to display the moves from a given game in text format. This is a functional requirement specified by the client.

	Log out (Referee) Priority: 9

	Pre-conditions: User is logged into system.

	User intention
	System Responsibility

	
	 Logs user out of system.

	Post-conditions: User is no longer logged into system.

	Documentation: the user who is being logged out can be a referee, reviewer or administrator.

3.3
Non-functional requirements:

Non-functional requirements are constraints on various attributes of the functions and tasks mentioned in the previous section. The following are the non-functional requirements for the SPOT program.

Portability: The SPOT program must be easily transferable between platforms. The client has two computers, each of which has two platforms, which are Windows and Linux. The client would prefer the SPOT program to run on the Windows OS. A programming language that is portable will be used for the implementation of the SPOT program. This programming language would most likely be Java. The client would also like the program to be easily carried, to show to his colleagues in the USA and other interested parties, therefore the SPOT program must be easily portable via a floppy disk or the hard drive of a laptop.

Reliability: The SPOT program will be highly reliable. It will support a driver and a slider concurrently. The results will be accessible to no more than 500 people at one time.

Performance: Each move transaction will take less than one second, each access to the disk will only take three seconds, and each access to the storage device will only take five seconds. The loading of a new board will take less then five seconds.

Robustness: The SPOT game will be able to handle a variety of conditions and will be very durable, this will be reflected by the program’s ability to operate on many platforms worldwide (as this is an experiment that has global interests).

Time Bounds: A game will take less than two hours: this is equivalent to the time bound that the experimenter has with the slider/driver.

Skill level consideration: The players are assumed to have very low computer literacy skills; a demo board will be set up to aid them to learn how to use the game play function of the system.

Adaptation: The SPOT program will be easily adapted to cater for future implementation to the project. The Java programming language, which is fairly flexible, ensures adaptability in the near future.

Machine Noise: The program has two mouse clicks for the movement of an object during the recording of a game. The client would prefer the level of noise to remain at a minimum to ensure that there is little or no interference with the recording of the speech made by the participants of the game.

Participant View: The slider and the driver will be able to see only the boards that are displayed for them. The referee is capable of seeing both boards.

Security: Only authorized users can only access the storage device. Furthermore, only authorized users will be able to save the game information: so only authorized users will have access to and from the data. However, anyone will have access to playing the SPOT game.

Computer Hardware Requirements: The SPOT program will operate on a Pentium II, 350MHz, 128Mb, 10GB (with currently only 1.5GB as Windows-partition), and Windows 98 as a minimum.
3.4
System models:

3.4.1
Use case model:

The use case models show the interaction and relationship between the use cases detailed above.

 [image: image2.wmf]Undo move

Move Piece

Driver

Swap Role

Slider

[image: image3.wmf]<<extend>>

Delete existing board

Delete

administrator/refer...

Edit

administrator/refer...

Edit Grid Square

Start Editing Board

Session

<<include>>

Copy Board

Enter Create New Board

Session

<<include>>

Display All Boards

<<extend>>

<<extend>>

Make new

administrator/refer...

List all

administrators/refe...

<<extend>>

<<extend>>

Log in

End CreateNew/Edit

Board Session

Log out

Administrat

or

[image: image4.wmf]Pause Session Clock

Start Demo Session

Log in

Set up game

Start Session Clock

<<extend>>

Stop Session Clock

End Game

End Demo Session

Log out

Referee

[image: image5.wmf]Log out

Delete game results

Pause Replay

Restart Replay

Start Watching Replay

<<extend>>

<<extend>>

Log in

Display Results

List Logged games

<<extend>>

<<extend>>

Stop replay

Unpause Replay

Reviewer

3.4.2
Domain model:

The domain model consists of the application concepts that are visible to the user.

3.4.2.1
Data dictionary:

The data dictionary explains the concepts that are represented in the object model.

Board: The board comes from a file that describes the initial set up of the board. It then displays the view that is represented by the slider or driver classes.

Cell: The top-level component of the game board, describes height, width, and has a position. It is the main component for drawing the board.

Communications: Each slider and driver game communicates with each other for synchronisation, and centralised logging of results and moves.

Driver: The driver controls the driver's board

Feature: Describes the cookie and the goat positions, as well as the rules involved with both (i.e. scoring rules).

Game: This class has the main method, co-ordinates information between the two boards via the communication class, and is responsible for the logging of the moves and management of the boards and the users.

Log/Moves: When a player makes a move it is stored in the log. When the round finishes the log then stores all these moves for that into the storage device.

Piece/Block: Describes the main playing pieces and the rules, movement, colour, start position and final position of these pieces.

Reviewer: The reviewer has the ability to review the past moves/logs from the RoundRecords.

Round: A game is made up of several rounds. Each round has a board and logs each move into the storage device.

RoundRecords: This stores all the moves that have occurred for each round. The reviewer is able to access this object in order to review the results.

Slider: The slider controls the slider's board
4. Reviewed project risks:

	Risk and type

	Likelihood and potential impact
	Mitigation strategy

	Analytical: Failure to understand client specifications

	Very likely and high impact

	We propose to have regular meetings with the client to present developments. In addition we will keep in close contact with the client via email to clear up any ambiguities.

	Analytical: The user interface does not match the client’s mental model of the system.
	Likely and Moderate Impact.
	We propose to do paper-mock-ups and horizontal slices of the system to investigate the client’s expectations.

	Technical: Team members choose an inappropriate implementation technology.
	Unlikely and high impact

	Development of small-scale prototypes to test the appropriateness of the technology.

	Technical: Design of a system that cannot be implemented with the available technologies

	Possible and high impact
	Scale down the system. Additionally, take note of comments from the supervisor and marker.

	Technical: Our decision to use a database to store results could have implications we are yet to consider
	Likely and High Impact
	We aim to design a system that is not dependant on any storage device so that it can easily be modified if the database is found to be too complex.

	Technical: We decide to implement some or all features of our system using CGI and are unable to master the technology.
	Unlikely and High Impact.
	We plan to design in parallel to some extent to investigate other available technologies.

	Technical: We decide to use different technologies to implement the various aspects of the system and are unable to merge them.
	Likely and High Impact.
	We plan to perform integration testing throughout development to avoid this.

	Managerial: Client changes requirements during project.

	Unlikely and high impact

	Keep design flexible and constantly keep in contact with client.

	Managerial: Communication problems within the group.

	Not so likely and high impact

	We plan to do the following: have at least one weekly meeting, file share via group accounts, use email to update team members of progress and make use of the discussion board.

	Managerial: Deadlines for deliverables not met.

	Likely and high impact
	Regular status reports to ensure the project is on track.

	Managerial: Team member is unable to continue work on the project

	Unlikely and high impact
	Ensure that all team members keep up to date with work of all other team members so roles can be delegated if necessary.

	Managerial: Team members are cast in roles that do not extend them.
	Likely and low impact (with regards to completion of the project, but high impact in terms of team members’ personal development).
	Discuss role allocation at team meetings to force team members out of their comfort zones.

5. Individual contributions:

Non functional requirements and class descriptions: Derek Foo.
Domain analysis model: Daniel Ballinger.
Functional requirements, use cases, use case diagram, actor descriptions: Edward Bedwell, Rilla Khaled and Anna Ladd
Problem statement: Anna Ladd

Editing: Anna Ladd and Rilla Khaled.

6.1
Appendix 1: Description of the game:

Currently the client runs the SPOT experiment on pairs of physical boards, which have several moveable pieces. Two players participate in a game: a Driver and a Slider. The Driver directs the other player's pieces to the end position displayed on his or her board. The Slider moves his or her pieces according to the directions given by the Driver, while at the same time avoiding goats and collecting cookies in order to maximise their score.

The boards are made up of a grid, similar to that of a crossword puzzle. The Slider and Driver have identical grids and moveable game pieces, initialised to the same positions. Only the Driver has the end positions marked on his or her board and only the Slider’s board displays the position of hazards/bonuses.

A game is made up of many rounds, and each round uses one set of boards. The Driver can only use a very specific list of directions during the course of the game, and is penalised by the Referee for deviating from this list. While the game is being played the conversation between the participants is recorded. At the end of each game a Reviewer compares the movements recorded during the game with the conversation recorded between the participants.

 When pieces are moved they must be moved until they encounter the edge of the grid or another piece other than a square. The square-piece is the only piece that cannot move on its own, instead it must be pushed by another piece. If the Slider makes an incorrect movement the Referee must inform him/her of his/her mistake. Then, the move is undone and the Slider makes another attempt at the move. If the Slider encounters a cookie during a movement then she/he keeps that cookie, even if she/he encountered the cookie during an incorrect movement. The cookie then disappears from the grid. If the Slider encounters a goat, even during an incorrect movement, they must feed it a cookie if they have one, or lose ten points from his/her score. The goat then loses its ability to feed on cookies or points if it is encountered again during the course of the round.

The game ends when all pieces have been successfully navigated to their end positions or the game is terminated due to reaching a stalemate situation. At the end of each round the Referee informs the Slider of the points that he/she has achieved.

6.2
Appendix 2: Glossary of SPOT related terms:

Circle piece:

Cannot be pushed by any other object.
Cookie:

Represent bonuses on the game board. Points are awarded if the sliders game pieces land in a square with a Cookie.

Goat:

The "Hairy Goat" represents a hazard on the game board. Players will lose points if the sliders game-pieces land in a square with a Goat, if they do not have a Cookie to feed to the Goat.

Square piece:

Cannot move by itself. This piece must be pushed by the other pieces.

Square with a triangle piece:

Cannot be pushed by any other object. It can be described as a square with a triangle on the top.

Triangle piece:

Cannot be pushed by any other object.

PAGE
24

