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THIS LECTURE:

I In this lecture I have chosen some material which is
relevant to the theme of this meeting.

I It involves a combination of logic, complexity theory and
low dimensional topology, so I will explain each bit
separately.



PARAMETERIZED COMPLEXITY

I A mathematical idealization is to identify “Feasible” with P
I With this assumption, the theory of NP-hardness is an

excellent vehicle for mapping an outer boundary of
intractability, for all practical purposes.

I Indeed, assuming the reasonable current working
assumption that NTM acceptance is Ω(2n), NP-hardness
allows for practical lower bound for exact solution for
problems.

I A very difficult practical and theoretical problem is “How
can we deal with P?”.

I More importantly how can we deal with P − FEASIBLE ,
and map a further boundary of intractability.



REVISIONING COMPLEXITY THEORY

I When is the only thing you know about a problem is the
input size

I Answer : only cryptography, and this is by design.
I For practical problems, the world comes equipped with

many many additional parameters.
I As we soon see, sensitizing the run times to parameters

allows the development of a distinctive and often useful
toolkit.

I In particular, focusing on the paramaters as a standard
attack method for practice can be systematized, and
sometimes even automated.

I The theory equips us with both a positive and negative tool
kit.

I We are far from undrstanding the complexity of real data,
and whether things like P vs NP even matters.



PARAMETERS

I Without even going into details, think of all the graphs you
have given names to and each has a relevant parameter:
planar, bounded genus, bounded cutwidth, pathwidth,
treewidth, degree, interval, etc, etc. In numerical analysis
the degree of precision etc.

I Also nature is kind in that for many practical problems the
input (often designed by us) is nicely ordered.



TWO BASIC EXAMPLES

I VERTEX COVER
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k vertex cover? (Vertices
cover edges.)

I DOMINATING SET
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k dominating set? (Vertices
cover vertices.)



I VERTEX COVER is solvable by an algorithm O in time
f (k)|G|, a behaviour we call fixed parameter tractability,
(Specifically 1.275kk2 + c|G|, with c a small absolute
constant independent of k .)

I Whereas the only known algorithm for DOMINATING SET
is complete search of the possible k -subsets, which takes
time Ω(|G|k ).



I In the below I will mostly talk for convenience about graphs.
I I could just as easily be talking about many other areas.
I In the Computer Journal alone, there is biological, artificial

intelligence, constraint satisfaction, geometric problems,
scheduling, cognitive science, voting, combinatorial
optimzation, phylogeny.



BASIC DEFINITION(S)

I Setting : Languages L ⊆ Σ∗ × Σ∗.
I Example (Graph, Parameter).
I We say that a language L is fixed parameter tractable if

there is a algorithm M, a constant C and a function f such
that for all x , k ,

(x , k) ∈ L iff M(x) = 1 and

the running time of M(x) isf (k)|x |C .
I E.g. VERTEX COVER has C = 1. Vertex Cover has been

implemented in computational biology for k up to about
7000 and n large.

I One example: Langston et. al. 2008 Innovative
computational methods for transcriptomic data analysis: A
case study in the use of FPT for practical algorithm design
and implementation. in The Computer Journal,
51(1):26–38, 2008.



OTHER POSSIBLE VERSIONS

GRAPH LINKING NUMBER :
K 6 has linking number 1.

K 3,3 has genus 1 by 
putting all lines except
< b,2 >  on a sphere 
and < b,2 >  on a handle.
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VERTEX COVER : Vertices cover edges.
Example: {c, f, b, e, h}.

K 3,3
GRAPH GENUS
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FIGURE: Examples of FPT problems



I There has been now over 20 years of research into this
area.

I What is not well known is that we now more or less can
match upper and lower bounds for various algorithms,
assuming a certain complexity hypothesis, like P6=NP,
(namely M[1] 6= FPT , no 2o(n) algorithm for n-variable
3SAT. Impagliazzo, Paturi and Zane)

I For example, (Cai and Juedes) Assuming this, there is no
2o(k)|G|c algorithm for k -PATH in a graph G.

I There is known a 2O(k)|G|c algorithm!
I That is, upper and lower bounds are matching up to big O.
I In case you are interested, I have order forms for an

excellent book....



POSITIVE TECHNIQUES

I Elementary ones that work.
I Fancy metatechniques that almost work.
I Exotic methods that are even non-constructive. We know

something is in P but don’t know the algorithm. E.g.
embeddable on a torus, linkless embedding.

I Logical metatheorems that we thought did not work but
now have some implementations.

I We care about the last one here. But I will begin with one
easy algorithm.

I Limits



METATHEOREMS: LOGIC I

I One of the key realizations is that many things we are
interested in are constructed inductively using a finite set
of “operators”

I This means that they can (i) be thought of as a “parse”
formal langauge, and (ii) can attract “metrics” as
parameters for the size of this “language”.

I This allows for interactions complexity, automata,
definability.

I Ideas go back to Büchi, Rabin, Kleene, McNaughton etc.



METATHEOREMS: LOGIC

I (First order Logic)

1. Atomic formulas: x = y and R(x1, ..., xk ), where R is a
k -ary relation symbol and x , y , x1, ..., xk are individual
variables, are FO-formulas.

2. Conjunction, Disjunction: If φ and ψ are FO-formulas,
then φ ∧ ψ is an FO-formula and φ ∨ ψ is an FO-formula.

3. Negation: If φ is an FO-formula, then ¬φ is an FO-formula.
4. Quantification: If φ is an FO-formula and x is an individual

variable, then ∃x φ is an FO-formula and ∀x φ is an
FO-formula.

I Eg We can state that a graph has a clique of size k using
an FO-formula,

∃x1...xk
∧

1≤i≤j≤k

E(xi , xj)



MONADIC SECOND ORDER LOGIC

I Two sorted structure with variables for sets of objects.
I 1. Additional atomic formulas: For all set variables X and

individual variables y , Xy is an MSO-formula.
2. Set quantification: If φ is an MSO-formula and X is a set

variable, then ∃X φ is an MSO -formula, and ∀X φ is an
MSO-formula.

I Eg k -colorability

∃X1, , , ∃Xk

(
∀x

k∨
i=1

Xix∧∀x∀y
(

E(x , y)→
k∧

i=1

¬(Xix∧Xiy)
))

I Want to be careful as to what the primitives are. Eg. MSO
graphs, MSO strings, etc. Many questions involve the
translations between.

I For example, Büchi’s theorem for strings uses the ordering
of strings, what about graphs of bounded treewidth
(below)? No order there, etc.



MODEL CHECKING

I Instance: A structure A ∈ D, and a sentence (no free
variables) φ ∈ Φ.
Question: Does A satisfy φ?

I PSPACE-complete for FO and MSO.



I Logicians such as Büchi, Rabin and others realized the
conection between MSO and complexity, especially on
formal languages. Below we will discuss this in the
situation where objects of interest have parse languages,
meaning that they are build up in an inductive manner.

I MSO is central to program verification, and makes logic the
calculus of computer science. See articles by Moshe Vardi.

I That is, the connection is way beyond mere complexity.



BOUNDED WIDTH METRICS

I Graphs constructed inductively. Treewidth, Pathwidth,
Branschwidth, Cliquewidth mixed width etc. k -Inductive
graphs, plus old favourites such as planarity etc, which can
be viewed as local width.

I Example:

DEFINITION
[Tree decomposition and Treewidth] Let G = (V ,E) be a graph.
A tree decomposition, TD, of G is a pair (T ,X ) where
1. T = (I,F ) is a tree, and
2. X = {Xi | i ∈ I} is a family of subsets of V , one for each node
of T , such that

(i)
⋃

i∈I Xi = V ,
(ii) for every edge {v ,w} ∈ E , there is an i ∈ I with

v ∈ Xi and w ∈ Xi , and
(iii) for all i , j , k ∈ I, if j is on the path from i to k in

T , then Xi ∩ Xk ⊆ Xj .



I This gives the following well-known definition.

DEFINITION
The width of a tree decomposition ((I,F ), {Xi | i ∈ I}) is
maxi∈I |Xi | − 1. The treewidth of a graph G, denoted by tw(G), is
the minimum width over all possible tree decompositions of G.



THE CANONICAL METHOD

I The following refers to any of these inductively defined
graphs families. Notes that many commercial constructions
of, for example chips are inductively defined.

1. Find a bounded-width tree (path) decomposition of the input
graph that exhibits the underlying tree (path) structure.

2. Perform dynamic programming on this decomposition to
solve the problem.



AN EXAMPLE FOR INDEPENDENT SET
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∅ a b c ab ac bc abc
0 1 1 1 2 - - -



BODLAENDER’S THEOREM

I The following theorem is shows that treewidth is FPT.
Improves many earlier results showing this. The constant
is about 235k3

.

THEOREM (BODLAENDER)
k-TREEWIDTH is linear time FPT

I Not practical because of large hidden O term.
I Unknown if there is a practical FPT treewidth algorithm
I Nevertheless approximation and algorithms specific to

known decomps run well at least sometimes.



COURCELLE’S AND SEESE’S THEOREMS

THEOREM (COURCELLE 1990)
The model-checking problem for MSO restricted to graphs of
bounded treewidth is linear-time fixed-parameter tractable.
Detlef Seese has proved a converse to Courcelle’s theorem.

THEOREM (SEESE 1991)
Suppose that F is any family of graphs for which the
model-checking problem for MSO is decidable, then there is a
number n such that, for all G ∈ F , the treewidth of G is less
than n.



GRAPHS?

I The treewidth methodology has been applied in lots of
areas. Finite model theory, braids, knots (Makowski, Rotics
etc), matroids,

I Can be used for hard problems like counting.
I No general metheorem.
I Generalized to other parse notions like CLIQUEWIDTH

d -DEGENERACY, NOWHERE DENSITY the idea being that
formal languages and automata are basic.

I Here I will look at a new application.



TRIANGULATIONS

I 1. A d-dimensional triangulation consists of a collection of
d-dimensional simplices ∆1, . . . ,∆n some or all of whose
facets (ie. d − 1-dimensional faces) are affinely identified.

2. Each facet F may only be identified with at most one other
facet F ′ of a d-simplex. (This could be the same d-simplex
but not the same facet.)

I There are
(d+1

i+1

)
many i-faces of the d-simplices (where a

0-face is a vertex, a 1-face an edge etc).
I A d-manifold triangulation is simply a d-dimensional

triangulation whose underlying topological space is a
d-manifold when using the quotient topology.

I There are
(d+1

i+1

)
many i-faces of the d-simplices (where a

0-face is a vertex, a 1-face an edge etc).
I The idea is to have a metatheorem for such traingulations.



AN EXAMPLE-KLEIN BOTTLE
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(a) A Klein bottle K
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(b) A one-tetrahedron solid torus
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(c) The dual graph D(K)

FIGURE: Examples of triangulations

∆1 :02←→ ∆2 :20, ∆1 :01←→ ∆1 :12, ∆2 :01←→ ∆2 :12.



I The resulting triangulation has one vertex (since all three
vertices of ∆1 and all three vertices of ∆2 become
identified together), and three edges (labelled e, f ,g in the
diagram).

I The dual graph D(T ) of a triangulation T is the multigraph
whose nodes correspond to simplices and whose edges
correspond to identified pairs of facets.
Above we have the dual graph of the Klein bottle.



THE LANGUAGE

I Standard boolean operations.
I for each i ∈ [0,d ] variables for i-faces of a triangulation,

and ones for sets of them.
I for each i ∈ [0,d ], and each ordered sequence π0, . . . , πi of

distinct integers from {0, . . . ,d}, a subface relation ≤π0...πi .

I The interpretation f ≤π0...πi s indicates that f is a subface of
the triangulation, s a simplex of the triangulation, and f is
identified with th subface of s formed by the simplicial
vertices π0, . . . , πi in the way that vertices of the face
0, . . . , i of the face f correspond to vertices π0, . . . , πi of the
simplex s.



ORIENTABILITY

Recall: 2-dimensional triangulation is orientable if and only if
each triangle can be assigned an orientation (clockwise or
anticlockwise) so that adjacent triangles have compatible
orientations, as illustrated in Figure 3 below.

FIGURE: Adjacent triangles have compatible orientations



THEOREM (BURTON AND D)
For any fixed dimension d, let K denote the class of
d-dimensional triangulations whose dual graphs have
universally bounded treewidth. Then for a fixed MSO φ, and
triangulation T ∈ K , we can decide if T satisfies φ in linear time.

I We also show that the optimization problems can be
solved.

I The method is one of reduction to the graph version.
I We apply this to various problems on these objects.

including things called TAUT ANGLE STRUCTURE,
DISCRETE MORSE MATCHING, TURAEV-VIRO INVARIANTS,
of which I know nothing.



I Many Thanks


