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Dynamic Dominating Set and Turbo-Charging Greedy Heuristics
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Abstract: The main purpose of this paper is to exposit two very different, but very general, motivational schemes

in the art of parameterization and a concrete example connecting them. We introduce a dynamic version of the

DOMINATING SET problem and prove that it is fixed-parameter tractable (FPT). The problem is motivated by settings

where problem instances evolve. It also arises in the quest to improve a natural greedy heuristic for the DOMINATING

SET problem.
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1 Introduction

Suppose we have a network (modeled by an undirected
graph) G, and we have a dominating set D for
G. We do not assume that D is optimal, but we do
assume that we are happy with D. Or perhaps we
are stuck with D because we have built facilities on
the vertices of D. Unfortunately, as often happens,
G changes to G0 and D is no longer a dominating
set. Fortunately the changes were relatively minor: A
few edges disappeared and a few were added.

We might reasonably hope that if we can find a way
to slightly modify D to obtain a set of vertices D0 that
is a dominating set of G0, then we will once again be
happy, or at least functional.

The above discussion leads to the following
problem. Here, de.G;G

0/ denotes the edge edit distance
from G to G0: the number of edge edit operations (edge
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addition or edge deletion) required to transform G into
G0. Equivalently, de.G;G

0/ D j
�
E.G/ � E.G0/

�
[�

E.G0/ � E.G/
�
j. Similarly, the vertex edit distance

from D to D0 is denoted dv.D;D
0/ D j.D � D0/ [

.D0 �D/j. See Fig. 1.

DYNAMIC DOMINATING SET (DDS)

Instance: A graph G and a graph G0 with
de.G;G

0/ 6 k; a dominating set D � V.G/;
a positive integer r .

Parameter: .k; r/.

Question: Does there exist a set of vertices
D0 � V.G/ D V.G0/ with dv.D;D

0/ 6 r

and with D0 a dominating set of G0?

Another motivation. The above storyline is quite
natural and could be widely relevant. Essentially,
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we have an instance I and solution S with which
we are content, or at least functional. Instance I

evolves (slightly) into I 0. If we can slightly modify
S into S 0, then we will again be content, or at least
functional. This is a strong storyline in the context of
practical computing.

There is another, completely different but also
quite general, motivation to our problem. Most work
in algorithmics and complexity to date could be
characterized as top down. One models the entire
computational problem, hoping to find a tractability
result that performs well on real-world datasets. This
approach usually fails, and most practical computing
relies on heuristics, as recently emphasized by Karp[1].

The multivariate approach to algorithmics pioneered
in the important work of Chen et al.[2-11] and
others[12-15], offers the framework for a plausible
alternative. This alternative is to work bottom up: begin
with a successful heuristic H used in practice, and try
to find a fixed-parameter tractable (FPT) subroutine to
empower a sharper heuristic H 0. A possible strength of
this approach is that successful heuristics capture some
implicit knowledge of real-world datasets, a matter of
crucial importance, but also significant mystery. We
do not understand natural datasets very well. As
emphasized by Karp[1] in recent years, we generally do
not understand why heuristics work so well in practice
for NP-hard problems. In the bottom-up approach,
we begin with a successful heuristic, and try to improve
it.

Greedy heuristics (and greedy subroutines) play a
major role in practical computing. In the quest to deploy
FPT subroutines to improve greedy heuristics there
arises a very general scheme of parameterization.

Consider the following greedy algorithm for
MINIMUM DOMINATING SET:

(1) List the vertices of G from high degree to low
degree.

(2) Going through the list, if a vertex v is not
dominated by the vertices already chosen to
belong to the dominating set D, choose a vertex
in NŒv� (the vertex v together with all of its
neighbors) of highest utility (the number of so-
far undominated neighbors).

As this greedy algorithm is executed on a graph G,
one may suffer a moment of regret: At some point (at a
vertex v on the list) one may be forced to add another
vertex to D from NŒv�. The regret comes from the fact
that our objective is to minimize the size of the resulting

dominating set D.
Notice that this greedy algorithm is somewhat

nondeterministic (as is often the case): When one is
forced to add a new vertex to D, there might be several
possible choices.

The key idea in the following parameterized problem,
in view of the nondeterminism of the greedy algorithm,
is to back up, with the distance of the back-up being
the parameter k, and to ask if there is a different
route forward through the list, redoing the last k steps,
that avoids the moment of regret. That is, the route
should reach v with a current dominating set D0 with
jD0j < jDj, where D is the current dominating set that
we would have by adding a new vertex to D when
we reach v. Possibly, this may lead to an improved
greedy heuristic. Formalizing this discussion, we have
the following problem.

GREEDY IMPROVEMENT FOR DOMINATING

SET (GREEDY DS)

Instance: A graph G; a list L of the
vertices of G ordered from highest degree to
lowest degree, L D .v1; � � � ; vl ; � � � ; vlCk D

v; � � � ; vn/ (v is the moment of regret, vl

is the back-up point, and k is the amount
of back-up); a set of vertices D � V.G/

that dominates the set V 0 of vertices in G,
V 0 D fv1; � � � ; vlCk D vg (note that D is
not necessarily a subset of V 0); a partition
D D D1 [ D2 where D1 dominates the set
of vertices fv1; � � � ; vlg and jD2j 6 k.

Parameter: k.

Question: Is there a set of vertices D0 �
V.G/ such that D0 dominates the vertices of
V 0 [D, with D1 � D

0 and jD0j < jDj?

1.1 Our results

We offer two main results.
Theorem 1 DYNAMIC DOMINATING SET is fixed-

parameter tractable.
Theorem 2 GREEDY IMPROVEMENT FOR

DOMINATING SET is fixed-parameter tractable.
Although the two motivations are quite different,

and are both of wide relevance in the context of
heuristics and practical computing situations for NP-
hard problems, it turns out that the two problems are
closely related.

We also offer some results of secondary importance,
but still of interest.
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Theorem 3 DYNAMIC DOMINATING SET is NP-
hard. The motivation to this result is that FPT
results should generally be a response to NP-
completeness. Said differently, the best kind of FPT is
solvability in polynomial time!

Theorem 4 Although DYNAMIC DOMINATING

SET is fixed-parameter tractable, it does not admit a
polynomial kernel unless NP � co-NP/poly.

1.2 Related work

DYNAMIC DOMINATING SET (and the entire program
that it represents) is closely related to the body of work
on re-optimization[16, 17].

The difference between the re-optimization problem
template and the dynamic problem template, is that in
the re-optimization research program one assumes that
for the original instance I , the solution S is optimal,
and one tries to restore this situation for S 0 with respect
to I 0. In the classical complexity setting, most re-
optimization problems turn out to be NP-hard. In the
re-optimization setting, it is natural to parameterize on
.k; r/, just as we have in the definition of DYNAMIC

DOMINATING SET.
We do not prove this here, but the naturally

defined RE-OPTIMIZATION ANALOG OF DYNAMIC

DOMINATING SET is W Œ2�-complete (the proof is not
difficult), and as in the classical framework, most
parameterized complexity results in the re-optimization
program are hardness results.

In rough terms, optimality seems to be the “kiss of
death”, and everything becomes hard for such variations
in problem definition. The following seemingly natural
variation is also W Œ2�-complete, as first noted by
Stege[18] (private communication).

ALMOST A DOMINATING SET

Instance: A graph G and D � V.G/; a
positive integer k.

Parameter: k.

Question: Does there exist a set D0 �
V.G/, with dv.D;D

0/ 6 k, where D0 is a
dominating set in G?

There have been a number of papers investigating
the complexity of “dynamic problems” in various
application domains[19-21], but only one (to the best
of our knowledge) that investigates the parameterized
complexity of an dynamic problem — the recent
pioneering paper of Hartung and Niedermeier[22] that
inspired this paper.

2 Preliminary Definitions and Background

A parameterized problem is classified FPT if it can be
solved by an algorithm with running time f .k/ � nO.1/,
where f is some arbitrary function depending only
on the parameter k, not on the input size n[12, 15]. A
parameterized reduction from a parameterized problem
˘ to a parameterized problem ˘ 0 is an algorithm that,
given an instance .I; k/ of ˘ , computes in FPT time
an instance .I 0; k0/ of ˘ 0, with k0 only depending
on k, such that .I; k/ is a yes-instance of ˘ if and
only if .I 0; k0/ is a yes-instance of ˘ 0. A classification
framework for the complexity analysis of parameterized
problems is supplied by the W -hierarchy introduced by
Downey and Fellows[12].

A kernelization of a parameterized problem ˘ is
a polynomial-time algorithm that, given an instance
.I; k/ of ˘ , computes an instance .I 0; k0/ of ˘ , where

(1) jI 0j 6 f .k/ for some function f ,
(2) k0 6 g.k/ for some function f , and
(3) .I; k/ is a yes-instance of˘ if and only if .I 0; k0/

is a yes-instance of ˘ .
Importantly, it is known (and not hard to show) that a

parameterized problem is FPT if and only if it admits a
kernelization[4, 23].

A kernelization algorithm is often based on a set of
data-reduction rules that can be applied in polynomial
time, to progessively simplify .I; k/ to the reduced
instance .I 0; k0/. The kernel of the problem instance
.I; k/ is the reduced instance .I 0; k0/ and the size of the
kernel is given by jI 0j. If the kernel size is guaranteed
to be bounded by a polynomial function of k then
the problem is said to have a polynomial kernel. In
Section 4 we will employ some recently developed
techniques of Refs. [24-26] for demonstrating that an
FPT parameterized problem has no polynomial kernel.

Introductory and further information about
parameterized complexity is presented in Refs.
[12-15, 27].

Given a graph G D .V;E/, let V.G/ D V and
E.G/ D E. Unless otherwise stated, we will assume
that all graphs are finite, simple, and undirected. Two
vertices u and v in V.G/ are neighbors, if .u; v/
is an edge in E.G/. The set of neighbors, or open
neighborhood, of a vertex v is given by NG.v/ D

fu 2 V.G/j.u; v/ 2 E.G/g. The closed neighborhood
of v is NG Œv� D NG.v/ [ fvg. If S � V.G/, then
NG.S/ D

S
v2S NG.v/ and NG ŒS� D NG.S/ [ S: A

dominating set forG is a set of vertices S � V.G/ such
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that every vertex not in S has at least one neighbor in
S . Equivalently, S is a dominating set forG ifNG ŒS� D

V.G/.
If C and D are subsets of V.G/ satisfying C �

NG ŒD�, then we say that D dominates C , or
equivalently, that C is dominated by D. Note that D
may also dominate vertices outside of C but it need
not be a dominating set for G. When a single vertex
fvg is dominated by D, we say that v is dominated by
D. Otherwise, NG Œv� \ D D ∅, hence v is called a
non-dominated vertex, with respect to D.

A set of vertices J � V.G/ is an independent set if
NG.J /\ J D ∅. A set of vertices C � V.G/ is called
a vertex cover of G if every edge of G is incident with
a vertex in C . That is, C D fu 2 V.G/j8.v; w/ 2

E.G/; u D v or u D wg.
The DOMINATING SET problem is well-known to be

NP-complete[28].

DOMINATING SET

Input: A graph G D .V;E/ and a positive
integer k.

Question: Does there exist D � V such that
jDj 6 k, and D is a dominating set for G?

Parameterized by k (the size of the dominating set),
DOMINATING SET(k) is W Œ2�-complete[12].

Given two graphs possessing the same set of vertices,
that is G D .V;E/ and G0 D .V;E 0/, we interpret that
G0 has been obtained fromG by some sequence of edge
edit operations where the allowable such operations
are edge deletion and edge addition. We define the
edge edit distance, de.G;G

0/ as the Hamming distance
between 0=1 vectors indicating the edge sets, E and
E 0, of the two graphs. In this paper, we are concerned
with the situation where we have some solution D �
V for G and are interested in whether or not there
exists a solution D0 � V for the modified graph G0,
such that D0 is within a certain distance of the
original solution. This distance is the vertex solution
set distance, dv.D;D

0/ which is defined to be the
Hamming distance between 0=1 vectors indicating the
sets of vertices, D;D0, of solutions corresponding to
G;G0, respectively (the vertex edit distance between the
two sets of vertices).

3 Dynamic Dominating Set is FPT

We first show that DYNAMIC DOMINATING SET is
polynomial-time equivalent (with a nice connection

between the parameters) to the following problem with
a simplified structure.

MONOTONE DYNAMIC DOMINATING SET

(MON-DDS)

Instance: A graph G; a graph G0 with
V.G/ D V.G0/ and de.G;G

0/ 6 k where
G0 is obtained from G by only the deletion
of edges (thus E.G0/ � E.G/); a dominating
set D � V.G/ of G; a positive integer r .

Parameter: .k; r/.

Question: Does there exist a set of vertices
D0 � V.G/ D V.G0/ with dv.D;D

0/ 6 r

where D0 is obtained from D only by adding
vertices (thus D � D0), and with D0 a
dominating set of G0?

Lemma 1 DYNAMIC DOMINATING SET and
MONOTONE DYNAMIC DOMINATING SET are
polynomial-time equivalent.

Proof We must argue that there are reductions in
both directions between the two problems.

We first reduce MONOTONE DYNAMIC

DOMINATING SET to DYNAMIC DOMINATING

SET. Suppose .I; .k; r// is an instance of MON-DDS
where I describes G, G0, and D. We transform by
simply taking .I; .k; r// to be the input to DDS (the
identity transformation).

If .I; .k; r// is a yes-instance of MON-DDS, as
witnessed by D0, then D0 also witnesses that .I; .k; r//
is a yes-instance of DDS.

Conversely, suppose a set of vertices D0 witnesses
that .I; .k; r// is a yes-instance of DDS. Then D0

is obtained from D by a sequence � of at most r
vertex edit operations. Consider D00 to be the vertex
set obtained by restricting � to only the vertex addition
operations. Clearly we have dv.D;D

0/ 6 r . Since
D � D00 and D is a dominating set of G, D00 is also a
dominating set of G. Since G0 is obtained from G only
by adding edges, D00 is also a dominating set for G0,
and thus D00 witnesses that .I; .k; r// is a yes-instance
for MON-DDS.

Reducing in the other direction, suppose .I; .k; r// is
an instance of DDS where I describes G, G0, and D.
We transform as follows to an instance .I 0; .k; r// of
MON-DDS where I 0 is composed of information about
a graphGC and the graphG0 whereG0 is obtained from
GC only by deleting edges. We know thatG0 is obtained
fromG by a sequence � of at most k operations of edge
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addition and edge deletion. GC is the graph we obtain
from G by restricting � to only the operations of edge
addition. This, G0 is obtained from GC by only edge
deletion operations, as required for a valid instance of
MON-DDS; also de.G

C; G0/ 6 k.
If .I; .k; r// is a yes-instance of DDS, as witnessed

by a set of vertices D0, so that D0 is obtained from D

by at most r vertex edit operations, letD00 denote the set
of vertices one obtains by restricting to only the vertex
additions. So dv.D;D

00/ 6 r and alsoD0 � D00, soD00

is also a dominating set for G0 and thus witnesses that
.I 0; .k; r// is a yes-instance of DDS.

Conversely, suppose a set of vertices D0 is a witness
that .I 0; .k; r// is a yes-instance of MON-DDS, but
thenD0 is also a witness that .I; .k; r// is a yes-instance
of DDS. �

The above lemma shows that DDS and MON-
DDS are equivalent with respect to all measures of
computational complexity considered in this paper.

Our proof that DDS (equivalently, MON-DDS) is
FPT will involve a reduction to the following problem
of possible independent interest:

DOMINATING A VERTEX COVER (DOM-A-
VC)

Input: A graph G D .V;E/, a vertex cover C
for G of size k, and a positive integer r 6 k.

Parameter: .k; r/.

Question: Does there exist D � V such that
jDj 6 r , and D dominates the vertex cover
C ?

Lemma 2 An instance .I; .k; r// of the problem
MON-DDS can be reduced in polynomial time to an
instance .I 0; .k; r// of DOM-A-VC.

Proof Let .I; .k; r// where I gives us information
about G, G0, and D, be an instance of MON-DDS. Let
C D V.G0/ n NG0 ŒD�, and B D NG0.D/ n D. The
sets C , B , and D form a partition of the vertices
of G0. Since at most k edge addition operations
transformed G to G0, the set C consists of at most k
non-dominated vertices. If k 6 r then we are done, take
D0 D D [ C . Henceforth, assume that k > r .

Considering that vertices in C can only be dominated
by the vertices in B or C in augmentingD toD0 proves
the soundness of the reduction rules:

R1: If v 2 D, then remove v and its incident edges.

R2: If v 2 B and N.v/ \ C D ∅, then remove v

and its incident edges.
R3: If .u; v/ is an edge and fu; vg � B , remove the

edge .u; v/.
Thus, we obtain from G0 a reduced graph H such

that,
V.H/ D V.G0/ nX and E.H/ D E.G0/ n Y; where,

X D D [ fv 2 BjNG0.v/ \ C D ∅g; and

Y D f.u; v/j fu; vg \X ¤ ∅g [ f.u; v/jfu; vg � Bg:
In H , what remains of B now forms an independent

set, so it means C is a vertex cover for H . The original
instance I of MON-DDS.k; r/ is thus reduced to an
instance I 0 D .H;C; k; r/ of the problem DOM-A-
VC.k; r/ where C is a vertex cover forH , jC j 6 k. As
required, the reduction can be achieved in polynomial
time.

If I 0 is a yes-instance, thenH has a set of verticesD,
of size at most r , and such thatD dominates C . Then in
I , the graph G0 has a dominating setD0 D D [C with
dv.D;D

0/ 6 r , hence I is a yes-instance. Conversely,
suppose that I is a yes-instance so that G0 has a
dominating set D0 with dv.D;D

0/ 6 r . Then in I 0,
the graph H has a set of vertices D D D0 n D, hence
jDj 6 r , and D dominates the vertices in C . Thus I 0 is
a yes-instance. Hence the lemma is shown. �

Lemma 3 The problem DOM-A-VC.k; r/ is FPT.
Proof Given an instance .G; C; k; r/ of DOM-A-

VC.k; r/, let B D V.G/nC . Since C is a vertex cover,
the vertices in B form an independent set. The question
is whether or not there is a set D � V.G/, jDj 6 r ,
such thatD dominatesC . If k 6 r the solution is trivial,
take D D C . Thus k > r .

Two vertices u; v 2 B are said to have the same
neighbor type if NG.u/ D NG.v/. If there are multiple
vertices in B of the same neighbor type then we
can discard all but one of them to dominate that
neighborhood. The size of the vertex cover, jC j D k,
so there are 2k possible neighbor types to consider in
B . Some of the vertices in D may come from C so we
also add those for consideration. Thus we need to search
at most

�
kC2k

r

�
possibilities. �

We now state our first main result in Theorem 5
(called Theorem 1 in the Introduction).

Theorem 5 The problem DDS is FPT.
Proof Immediate from Lemmas 1-3 and the

equivalence of DDS and Mon-DDS. �
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4 A Lower Bound on the Kernel Size

The proof of Lemma 3 identified a kernel for DDS.k; r/
that is exponential in k. As will be shown in this section,
a polynomial kernel for the problem is unlikely.

Techniques introduced by Bodlaender et al.[24],
and Bodlaender et al.[25], together with a result by
Fortnow and Santhanam[26], provide a framework
for many problems to be classified as having no
polynomial kernel unless NP� coNP / Poly. Successful
applications of that framework includes the work of
Dom et al.[29] who showed that a list of parameterized
problems, including RED-BLUE DOMINATING SET

which we will soon consider, have no polynomial kernel
(unless NP � coNP/Poly).

A concept used by Binkel-Raible et al.[30] and
formalised in Bodlaender et al.[25] is that of a
Polynomial Parameter and Time (PPT) reduction. A
PPT reduction is a parameterized reduction from a
parameterized problem ˘ to a parameterized problem
˘ 0, taking an instance .I; k/ to an instance .I 0; k0/
in time polynomial in j.I; k/j, with the additional
constraint that k0 is bounded by kc , for some constant
c. All of the reductions so far discussed in this paper
can be seen to be PPT reductions.

Theorem 6 is given by Bodlaender et al.[25]

Theorem 6 Let P and Q be parameterized
problems. Suppose that the unparameterized versions
of these problems are, respectively, eP and eQ, and
furthermore that eP is NP-complete and eQ is in NP. If
Q has a polynomial kernel and there is a PPT reduction
from P to Q, then P has a polynomial kernel.

The contrapositive of Theorem 6 is stated next as a
corollary of Theorem 6.

Corollary 1 Let P and Q be parameterized
problems. Suppose that the unparameterized versions
of these problems are, respectively, eP and eQ, and
furthermore that eP is NP-complete and eQ is in NP. If
P has no polynomial kernel (unless NP � coNP / Poly)
and there is a PPT reduction from P to Q, then Q has
no polynomial kernel unless NP � coNP / Poly.

For a more thorough explanation of kernelization
lower bounds techniques, including the results
mentioned herein, we refer the interested reader to
Downey and Fellows[13, Chapt. 30]. Next, we proceed to
apply Corollary 1 to show that DDS has no polynomial
kernel unless NP � coNP / Poly.

Lemma 4 The unparameterized version of DDS is
NP-complete.

Proof Observe that DOM-A-VC is in NP.
Let I D .H; d/ be an instance of DOMINATING

SET and transform I as follows. Let G be the
graph obtained from H by first adjoining a single
vertex u� and then adding an edge .u�; v/ to
every other vertex v in G. Specifically, we have
V.G/ D V.H/ [ fu�g, and E.G/ D E.H/ [ E�

where E� D f.u�; v/jv 2 V.G/; v ¤ u�g. Let D D

fu�g. By construction, D is a dominating set for G. For
the edge set of G0 let E.G0/ D E.G/ n E�, and we
further specify that r D d . The described instance I 0

of DDS has k D jE�j D jV.H/j. As required, the
reduction from I to I 0 can be achieved in polynomial
time.

Suppose thatH has a dominating set S of size at most
d . Then inG0 there must be a dominating setD0 D S [
fu�g (of size at most dC1) and satisfying dv.D;D

0/ 6
d D r . Conversely, suppose that G0 has a dominating
set D0 and dv.D;D

0/ 6 r . Since G0 was obtained from
G by deleting all of the k edges incident to u� then
S D D0 n fu�g is a dominating set for the subgraph
G0 n fu�g � H . Also, jD0j D dv.D;D

0/ 6 r D d

hence H has a dominating set of size at most d . �
Lemma 5 The unparameterized version of DOM-

A-VC is NP-complete.
Proof Observe that DOM-A-VC is in NP. Relying

on Lemma 4, we reduce from DDS to an instance of
DOM-A-VC.

Let I be an instance of DDS. Reduction of I D
.G;G;D; k; r/ to an instance I 0 of DOM-A-VC
follows the process which is described and justified in
the proof of Lemma 2. Given such a reduction I 0 of
DOM-A-VC, the final part of the proof of Lemma 2
shows that I is a yes-instance of DDS if and only if I 0

is a YES-instance of DOM-A-VC. �
Our next objective is to PPT reduce from a suitable

parameterized problem to DDS.

RED-BLUE DOMINATING SET (RBDS)

Input: A graph G D .V;E/ with vertices
partitioned V D R [ B , where R and B are
independent sets, a positive integer d .

Parameter: .jRj; d /.

Question: Does there exist D � B such that
jDj 6 d , and each vertex inR has at least one
neighbor in D?

Dom et al.[29] proved that RED-BLUE

DOMINATING SET has no polynomial kernel unless
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NP � coNP / Poly. The unparameterized version
of RED-BLUE DOMINATING SET is known to be
NP-hard.

Lemma 6 RBDS has a PPT reduction to DOM-A-
VC. Thus DOM-A-VC has no polynomial kernel unless
NP � co-NP / Poly.

Proof The proof will follow by a direct
application of Corollary 1. We proved in Lemma 5
that the unparameterized version of DOM-A-VC is
NP-complete. Given that RBDS has no polynomial
kernel[29], and its unparameterized version is NP-
complete, a PPT reduction to DOM-A-VC is sufficient
to complete the proof.

Given an instance of RBDS, I D ..R [ B;E/; d/

where R and B are independent sets, we assume that
R has no isolated vertex as otherwise it is trivially
a NO-instance. We make the following, trivial, PPT
reduction to an instance I 0 D .G; C; k; r/ of DOM-
A-VC. Using the same graph, let G D .R [ B;E/,
C D R, and r D d . The size of C is k D jRj. Note that
R is indeed a vertex cover because B is an independent
set. As required, the parameters k and r are polynomial
functions, respectively, of jRj and of d . Satisfaction of
the polynomial time constraint for this reduction is also
obvious.

Suppose that I is a yes-instance of RBDS. Then
there is a set of at most d vertices, D � B , such that
each vertex in R has at least one neighbor in D. Then
D satisfies the identical condition in I 0, hence I 0 is a
yes-instance.

Conversely, suppose that I 0 is a yes-instance of
DOM-A-VC. Then G has a set D of at most r vertices
such that every vertex inR either belongs inD, or has at
least one neighbor in D. We require slightly more, that
D � B . Suppose that there is a vertex v inR\D. Then
v has a neighbor u in B , since R is a vertex cover with
no isolated vertex. Exchanging each such vertex v in
R\D with a neighbor u in B , we obtain the desired set
D0 of size at most r D d . Therefore I is a yes-instance
of RBDS. �

Theorem 7 The problem DDS has no polynomial
kernel unless NP � co-NP / Poly.

Proof We show that DOM-A-VC has a PPT
reduction to DDS.

Let I D .H;C; k; r/ be an instance of DOM-
A-VC. Then B D V.G/ n C is an independent
set. Similar to the proof of Lemma 4, we construct G
from H by adjoining two new vertices b�; c� to H ,
and then adding edges so that b� is adjacent to each

vertex in B , and c� is adjacent to those in C . That is,
V.G/ D V.H/ [ fb�; c�g and E.G/ D E.H/ [E�,
where E� D f.v; b�/jv 2 B; v ¤ b�g [ f.v; c�/jv 2 C;
v ¤ c�g. Set D D fb�; c�g is then a dominating
set for G. Let G0 D .V .G/;E.G/ nE�C / where
E�C D f.v; c

�/jv 2 C; v ¤ c�g � E�. Thus the edge
operations taking G to G0 remove the k edges
between D and C , hence C has now k non-dominated
vertices. This instance I 0 D .G;G0;D; k; r/ satisfies
the polynomial parameter and time requirements of
a PPT reduction. The question concerning I 0 now
amounts to the existence, or otherwise, of at most r
vertices which dominate the vertices in C .

Assume that I is a yes-instance. Then the vertex
cover C of size k in H is dominated by a set D of
at most r vertices. Then in G0, there is a dominating
set D0 that contains at most r C 2 vertices, hence
dv.D;D

0/ 6 r . Therefore I 0 is a yes-instance.
Conversely, suppose that I 0 is a yes-instance. Then

dv.D;D
0/ 6 r implies that at most r vertices of D0 n

D D D are needed to dominate C . Therefore in I , the
same vertices in D will dominate C . Thus I is a yes-
instance.

We have now shown that DOM-A-VC has a PPT
reduction to DDS. Collecting this result with Lemmas
4 and 6, the theorem is proved by direct application of
Corollary 1. �

Summarizing this section and the previous one, we
have shown our first main result: that the DYNAMIC

DOMINATING SET problem is FPT. Pursuing this
positive result a little further, we have shown that
although it is FPT, it probably does not have a
polynomial kernelization. We next turn to our second
storyline.

5 Turbo-Charging a Greedy Heuristic
In this section, we prove our second main result: that
GREEDY-DS is FPT.

Theorem 8 GREEDY-DS is FPT.
Proof We reduce the problem to DDS. Given an

instance J D .H;L; v; k;D D D1 [D2/ of GREEDY-
DS, we can assume that jD2j > 2 else J is trivial to
decide. We can similarly assume that jD1j > 1, and
can choose a vertex x 2 D1. We create the following
instance of DDS.
� G is the graph consisting of the subgraphH 0 ofH

induced by the set of vertices U D fv1; � � � ; vg [

D, augmented with any edges xu that are not
already present in H 0, for all u 2 U .
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� The evolved graph G0 D H 0.
� The dominating set D of G is D1.
� The edge-edit distance fromG toG0 is the number
k� of augmenting edges. (Note that k� 6 k.)
� The targeted vertex-edit distance to repairD is r D
jD2j � 1.

Verification of the soundness of the reduction is
straightforward. �

Discussion. The two storylines, as reflected in our
two main results, appear to be closely related. We first
found the result that DDS is FPT, and then, inspired
by the pioneering work of Hartung and Niedermeier[22]

(who proved an FPT result for INCREMENTAL LIST

COLORING seemingly motivated by the potential
application to FPT-turbo-charging a common greedy
heuristic for GRAPH COLORING), we then began to
look for a greedy heuristic for DOMINATING SET

for which our FPT result about DDS could serve
as the turbo-charging FPT subroutine, thus in some
sense, working backwards to the flow of motivation in
Ref. [22].

6 Summary and Research Horizons

We offer here somewhat surprising FPT results about
two parameterizations of the famously W Œ2�-complete
and arguably elemental DOMINATING SET problem,
with two completely different and seemingly quite
general, natural storylines as motivation.

The main research horizons, as we see it, are two:
(1) Investigate the parameterized complexity of

DYNAMIC X for other W Œ1�-hard problems X .
(2) Investigate the parameterized complexity of the

naturally defined parameterized problems that
arise in attempting to sharpen greedy heuristics,
as exemplified by the work of Hartung and
Niedermeier (and our Theorem 2, inspired by
them).

We remark that with respect to the research program
of sharpening greedy heuristics, there is nothing to lose!
If one sets the back-up parameter at k D 0, then
one simply has the original greedy routine currently
in use. Beyond “nothing to lose” we believe that both
research directions may be quite practical and profitable
— but to determine if this is so will require some
serious engagement with algorithms engineering and
implementation, such as in Ref. [22].

Lastly, whether the FPT “turbo-charged” greedy
heuristic for MINIMUM DOMINATING SET has
practical value is as yet undetermined, and is the subject

of a sequel investigation. Preliminary results seem to be
encouraging.
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